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Motivation

e Magnetized quantum systems exhibit anisotropic stress-energy
tensor:

T} = diag(—0, P, P1, P))

0=Q(B,u) +uN(B,u)
P, =-Q(B,u) — BM(B, )
Py =-Q(B,u)

e Magnetic collapse if: P| =0, 'DH #0and 0 #0
The collapsed gas can be pushed towards the

magnetic field axis while exerting a positive parallel
pressure.

Connected to Astrophysical Jets.
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Motivation

The problem for the jets description is twofold:

1. Understand the production mechanism.

2. Look for GR solutions to study the stability.

Our aim:

Find exact solutions of Einstein's equations allowing the system to
collapse in the direction of the magnetic field.



Plane-symmetric solutions

Considering:

o T) =diag(—0, P1, P2, Py), with Py = P = P,
e Einstein's field equations exactly soluble

e Static Metric:

ds® = —f(z)dt? + g(z)(dx? + dy?) + dz?
f(z) = p(2)%a(2) "3, g(z) = q(2)*>



Plane-symmetric solutions

Considering:

o T) =diag(—0, P1, P2, Py), with Py = P = P,
e Einstein's field equations exactly soluble

e Static Metric:

N

ds®> = —f(z2)dt? + g(z)(dx* + dy?) + dz
f(z) = p(2)%q(2) >, gl(z) = a(2)*3
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Plane-symmetric solutions: Cosmological constant

Including a cosmological constant, A, in the geometric sector of
the field equations:

T _ gi Q2 + 3P|T — 20\ — 6PHA Qz + 3Pﬁ — 20\ — 6P”A
v = 1ag(*Qr* 4Q+4A ,— 4Q+4A
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Plane-symmetric solutions: Cosmological constant

Including a cosmological constant, A, in the geometric sector of
the field equations:

b _ g 0> +3PF —20A —6PA 0> +3PF —20A — 6P|A
T/ = diag(—0, — -
v = diag(—e, 49+ 4A ’ 40+ 4A

)

Therefore,
13Pf+ 0% +4PLe
T2 3P +¢-2P,

Collapsed solution Isotropic case
P, = 0. Strong magnetic P, ~ P”. Weak magnetic

field limit field limit
1 3PH2 + QZ
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Plane-symmetric solutions: Cosmological constant. Fermions
gas results

e 0<A/o<1

e Strong magnetic field limit: gas collapsed, all particles in LLL and
A/o=1/2.

e Weak magnetic field limit: higher Landau levels occupied, Haas van
Alphen oscillations, ¢ — 3PH and A/o — 1.
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Conclusions

e Solutions obtained for plane—symmetric spacetime.

e With the inclusion of the cosmological constant, it is possible to
recover the isotropic case from the anisotropic one. By tuning A,
the system can be driven continuously from one case to the other.

e In the weak magnetic field regime, A/ — 1, while in the strong
magnetic field limit, A/o — 1/2, which corresponds to the
magnetic collapse situation that may be of importance for the
description of jets.

e Cosmological constant has been used previously in the study of
compact objects as a modification to structure equations (TOV). If
taking the accepted value from the cosmological point of view, there
is no visible effect on the mass and the radius.
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Plane-symmetric solutions: Field equations & metric functions

Without A:
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With A:
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c1, ¢ and c3 are integration constants, A = —¢ and Ay = 'DH'



EoS for a fermions gas in a constant magnetic field

m? Bl j+ pr
|
= a2B, Zg/(HPF+5/ ", )

m2 B Imax

— 2 (L PF
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where:

2 m2]

e / runs for the Landau levels, /oy = /[E 3TeB]

e Fermi momenta: pp = \/p2 — 5,2
e rest energy: & = \/2|eB|l + m?

e B. = m?/|e|: Schwinger critical magnetic field
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