Correlations far from equilibrium

NED2019, 16-22 June 2019, Castiglione della Pescaia, Italy

June 21st, 2019

Matthias Kaminski University of Alabama [Cartwright, Kaminski; arXiv (2019)]

Correlations far from equilibrium in charged strongly coupled fluids

NED2019, 16-22 June 2019, Castiglione della Pescaia, Italy

June 21st, 2019

Matthias Kaminski University of Alabama [Cartwright, Kaminski; arXiv (2019)]

Correlations far from equilibrium in charged strongly coupled fluids subjected to a strong magnetic field

NED2019, 16-22 June 2019, Castiglione della Pescaia, Italy

June 21st, 2019

Matthias Kaminski University of Alabama [Cartwright, Kaminski; arXiv (2019)]

Summary of results

• generated charged magnetic fluid with initial anisotropy

$$\rho \neq 0 \qquad \mathcal{B} \neq 0 \qquad \qquad \Delta \mathcal{P} = \mathcal{P}_T - \mathcal{P}_L$$

- calculated 1- and 2-point functions
- early times: strong medium effect
- 2-point functions thermalize significantly slower than 1-point functions

	$\rho = 0$	$\rho=0.78\rho_e$	$_{ ext{to extremality}}^{ ext{approach}} ho$		
$\mathcal{B}=0$	$t_{1pt} \approx 0.7$ $t_{2pt} \approx 1.4$	$\begin{array}{l} t_{1pt} \approx 0.7 \\ t_{2pt} \approx 1.4 \end{array}$	$\begin{array}{c} t_{1pt} \to \infty \\ t_{2pt} \to \infty \end{array}$		
$\mathcal{B} = 1$	$\begin{array}{l} t_{1pt} \approx 0.7 \\ t_{2pt} \approx 1.9 \end{array}$	$\begin{array}{l} t_{1pt} \approx 0.8 \\ t_{2pt} \approx 2.3 \end{array}$	➡ competition of sca *charge	ales	
$\mathcal{B}=3$	saturation t_{2pt} $t_{1pt} \approx 0.6$ $t_{2pt} \approx 1.4$	on regime $\approx t_{2pt}(l)$ $t_{1pt} \approx 0.6$ $t_{2pt} \approx 1.5$	*magnetic field *initial anisotropy →universal thermalization time at large <i>B</i> [Glorioso, Son; (2018)] [Grozdanov, Pooputtikul: JHEP (2019)]		
\mathcal{B}			➡large charge: the	(in N=4 Super-Yang-Mills theory in 3+1 dimensions, minimally coupled to external U(1) gauge field)	

Summary of results • generated charged magnetic fluid with initial anisotropy $\Delta \mathcal{P} = \mathcal{P}_T - \mathcal{P}_L$ $\rho \neq 0 \qquad \mathcal{B} \neq 0$ nd 2-point functions edium effect • 2-<u>P</u> tions $\mathcal{B} = 0 \quad \begin{vmatrix} t_{1pt} \approx 0. \\ t_{2pt} \approx 1.4 \end{vmatrix}$ (in N=4 Super-Yang-Mills $t_{1pt} \approx 0.7$ $t_{1pt} \gamma$ theory in 3+1 dimensions, $\mathcal{B} = 1 | t_{2pt} \approx 1.9$ t_{2pt} minimally coupled to external U(1) gauge field) saturation regin $t_{2pt} \not\approx t_{2pt}(l)$ $\mathcal{B} = 3 \quad \begin{array}{c} t_{1pt} \approx 0.6 \\ t_{2pt} \approx 1.4 \end{array} \quad \begin{array}{c} t_{1pt} \approx \\ t_{2pt} \approx \end{array}$

Matthias Kaminski

Correlations

Method: holography & hydrodynamics

EFT

Method: holography & hydrodynamics

- Holography good at qualitative or universal predictions.
- Compare holographic result to hydrodynamics of model theory.
- Compare hydrodynamics of original theory to hydrodynamics of model.
- Understand holography as an effective description.

EFT

Motivation

N=4 Super-Yang-Mills theory with a magnetic field in equilibrium has a universal magnetoresponse variable, which agrees *well* with its QCD equivalent [Endrödi, Kaminski, Schäfer, Wu, Yaffe; JHEP (2018)]

2 consider this theory **near equilibrium**, compute dispersion relations & correlation functions and compare to *strong magnetic field (chiral) hydro*

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; work in progress] [Ammon, Kaminski, Koirala, Leiber, Wu; JHEP (2017)]

consider this theory **far from equilibrium** [Cartwright, Kaminski; arXiv (2019)]

> Casey Cartwright (University of Alabama)

Outline

- 1. Invitation
- 2. Setup & Calculations
- 3. Results
- 4. Discussion/Outlook

Fluid thermalizing after initial anisotropy

Fluid thermalizing after initial anisotropy

Fluid thermalizing after initial anisotropy

(c) neutral fluid in magnetic field

(d) charged fluid in magnetic field

Matthias Kaminski

Correlations far from equilibrium

The AdS/CFT correspondence

The AdS/CFT correspondence

"I think you should be more explicit here in step two."

Gravity setup (dual to N=4 SYM)

Einstein-Maxwell-Chern-Simons action:

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} (R - 2\Lambda + F_{\mu\nu}F^{\mu\nu}) + \gamma \epsilon^{\alpha\beta\gamma\delta\eta} A_{\alpha}F_{\beta\gamma}F_{\delta\eta}$$

neglected in this work

homogenous anisotropic non-equilibrium state

Metric ansatz:

$$\mathrm{d}s^2 = -A(r,t)\mathrm{d}t^2 + 2\mathrm{d}r\mathrm{d}t + S(t,r)^2(e^{B(r,t)}(\mathrm{d}x^2 + \mathrm{d}y^2) + e^{-2B(r,t)}\mathrm{d}z^2)$$

Gravity setup (dual to N=4 SYM)

Einstein-Maxwell-Chern-Simons action:

$$S = \frac{1}{16\pi G} \int d^4x \sqrt{-g} (R - 2\Lambda + F_{\mu\nu}F^{\mu\nu}) + \gamma \epsilon^{\alpha\beta\gamma\delta\eta} A_{\alpha}F_{\beta\gamma}F_{\delta\eta}$$

neglected in this work

Metric ansatz:

$$ds^{2} = -A(r,t)dt^{2} + 2drdt + S(t,r)^{2}(e^{B(r,t)}(dx^{2} + dy^{2}) + e^{-2B(r,t)}dz^{2})$$

Maxwell equations are solved by: $\mathscr{A}(r,t) = (0,\phi(r,t),-\frac{1}{2}y\mathscr{B},\frac{1}{2}x\mathscr{B},0)$ $-\partial_r \phi(r,t) = \mathscr{E}(r,t) = \frac{\rho(r,t)}{S(t,r)^3}$

Einstein equations are nested:

$$S''(t,r) = -\frac{1}{2}B'(t,r)^{2}S(t,r)$$

$$\dot{S}'(t,r) = -\frac{3\dot{B}(t,r)S'(t,r)}{3S(t,r)^{3}} - \frac{2S'(t,r)\dot{S}(t,r)}{S(t,r)} + \frac{\rho^{2}}{3S(t,r)^{5}} + 2S(t,r)$$
Derivative: $\dot{f} = \partial_{t}f + \frac{1}{2}A\partial_{r}f$.
$$\dot{B}'(t,r) = -\frac{3\dot{B}(t,r)S'(t,r)}{2S(t,r)} - \frac{3B'(t,r)\dot{S}(t,r)}{2S(t,r)} + \frac{2\mathscr{B}^{2}e^{-2B(t,r)}}{3S(t,r)^{4}}$$

$$A''(t,r) = -3B'(t,r)\dot{B}(t,r) - \frac{10\mathscr{B}^{2}e^{-2B(t,r)}}{3S(t,r)^{4}} + \frac{12S'(t,r)\dot{S}(t,r)}{S(t,r)^{2}} - \frac{14\rho^{2}}{3S(t,r)^{6}} - 4$$

$$\ddot{S}(t,r) = \frac{1}{2}A'(t,r)\dot{S}(t,r) - \frac{1}{2}\dot{B}(t,r)^{2}S(t,r).$$
Matthias Kaminski
Correlations far from equilibrium
Page 99

homogenous anisotropic non-equilibrium state

Correlations far from equilibrium

Background (the state in the field theory)

 $\mathrm{d}s^2 = -A(r,t)\mathrm{d}t^2 + 2\mathrm{d}r\mathrm{d}t + S(t,r)^2(e^{B(r,t)}(\mathrm{d}x^2 + \mathrm{d}y^2) + e^{-2B(r,t)}\mathrm{d}z^2)$

Numerical implementation- characteristic formulation

[Chesler, Yaffe; PRL (2009)]

- use (pseudo)spectral methods with Cardinal Function basis to solve ODEs in r at initial time for S, S, B, A on Chebyshev grid
- time step forward using 4th order Runge-Kutta on first 4 time steps, and subsequently Adams-Bashforth
- boundary expand and solve for subtracted and scaled functions
- radial diffeomorphism used to keep horizon fixed

Matthias Kaminski

Correlations far from equilibrium

Correlations - geodesic approximation [Balasubramanian, Ross; PRD(2000)]

Correlations - geodesic approximation

[Balasubramanian, Ross; PRD(2000)]Correlator as a sum over geodesics: $\langle \mathscr{O}(t, \vec{x}_1)\mathscr{O}(t, \vec{x}_2) \rangle = \int \mathcal{DP}e^{i\Delta \mathcal{L}(\mathcal{P})} \approx \sum_{\text{geodesics}} e^{-\Delta L} \approx e^{-\Delta L}$ Geodesic length (Lagrangian): $\Delta L = L - L_{\text{thermalized}}$ $L = \int d\lambda \sqrt{g_{\mu\nu} \dot{x}^{\mu} \dot{x}^{\nu}} \Rightarrow \frac{d^2 x^{\mu}}{d\sigma^2} + \Gamma^{\mu}_{\alpha\beta} \frac{dx^{\alpha}}{d\sigma} \frac{dx^{\beta}}{d\sigma} = 0$ geodesic equation

Numerical implementation - relaxation method:

[Ecker, Grumiller, Stricker; JHEP (2015)]

- 1. Generate the dynamic background
- 2. Generate interpolations of the metric functions
- 3. Discretize the geodesic equations using a relaxation scheme
- 4. Approximate the proper length using a Riemann sum

0.4 Coordinate

Outline

- 1. Invitation
- 2. Setup & Calculations
- 3. Results
- 4. Discussion/Outlook

Background - 1-Point Functions

reproduces and extends [Fuini, Yaffe; JHEP (2015)]

Comparison $\rho=0$ vs $\rho\neq0$

Correlations - zero charge, zero B

results similar to [Ecker, Grumiller, Stricker; JHEP (2015)]

Isotropization: Transverse Correlations

Correlations - zero charge, zero B

results similar to [Ecker, Grumiller, Stricker; JHEP (2015)]

Isotropization: Transverse Correlations

Correlations - zero charge, zero B reproducing results similar to [Ecker, Grumiller, Stricker; JHEP (2015)]

Isotropization: Longitudinal Correlations

Correlations - zero charge, zero B reproducing results similar to [Ecker, Grumiller, Stricker; JHEP (2015)]

Isotropization: Longitudinal Correlations

Correlations - zero charge, zero B reproducing results similar to [Ecker, Grumiller, Stricker; JHEP (2015)]

Isotropization: Longitudinal Correlations

Transient equilibrium times

Transient equilibrium times

	Longitudinal separation							
	\boldsymbol{n}	$t_{eq,n}$	$l\epsilon^{1/4}$	Predicted $t_{cor,n}$	Numerical $t_{cor,n}$	Relative percent error		
		0.411	0.5	0.661	0.578	13.301		
			0.7	0.761	0.653	15.342		
	9		0.9	0.861	0.732	16.188		
			1.1	0.961	0.814	16.553		
			1.3	1.061	0.897	16.785		
			1.5	1.161	0.978	17.063		
		0.519	0.5	0.769	0.8	4.026		
			0.7	0.869	0.881	1.43		
	2		0.9	0.969	0.968	0.042		
1	0		1.1	1.069	1.0581	1.013		
			1.3	1.169	1.1481	1.797		
			1.5	1.269	1.237	2.553		
predicted:								
$\Delta t \qquad $						$t_{eq,n} = t_{eq,n} + l/2$		

Correlations - zero charge, zero B

Matthias Kaminski

Correlations - zero charge, zero B

Transient equilibrium times

Transient equilibrium times

Correlations - nonzero charge, zero B

Charged Isotropization:

Transverse Correlations Comparison

Correlations - nonzero charge, zero B

Charged Isotropization:

Transverse Correlations Comparison

Correlations - zero charge, nonzero B

Magnetic Isotropization: Transverse Correlations

Correlations - zero charge, nonzero B

Magnetic Isotropization: Transverse Correlations

Transient equilibrium times - zero charge, nonzero B

	Longitudinal separation							
n	$t_{eq,n}$	$l\epsilon^{1/4}$	Predicted $t_{cor,n}$	Numerical $t_{cor,n}$	Relative percent error			
3	0.518	0.5	0.768	0.579	28.125			
		0.7	0.868	0.660	27.224			
		0.9	0.968	0.755	24.737			
		1.1	1.068	0.863	21.322			
		1.3	1.168	0.981	17.406			
		1.5	1.268	D.N.E	D.N.E			
4	0.716	0.5	0.966	0.782	21.091			
		0.7	1.066	0.844	23.268			
		0.9	1.166	0.916	24.011			
		1.1	1.266	0.99	24.44			
		1.3	1.366	1.061	25.137			
		1.5	1.4659	D.N.E	D.N.E			
5	1.896	0.5	2.146	1.909	11.69			
		0.7	2.246	1.915	15.879			
		0.9	2.346	1.944	18.712			
		1.1	2.446	1.983	20.867			
		1.3	2.546	2.03	22.517			
		1.5	2.646	2.083	23.776			

Thermalization times - definition

The thermalization time is that time *t*, for which the following equation is satisfied for all times greater than *t*:

$$\left|\Delta \langle \mathcal{O}(t,l)\mathcal{O}(t,0) \rangle - \Delta \langle \mathcal{O}(t=\infty,l)\mathcal{O}(t=\infty,0) \rangle \right| \le 0.01A$$

Peak to peak amplitude: $A = \max(\Delta \langle \mathcal{O}(t, l) \mathcal{O}(t, 0) \rangle) - \min(\Delta \langle \mathcal{O}(t, l) \mathcal{O}(t, 0) \rangle)$

Anisotropic part:

 $\Delta \langle \mathcal{O}(t,l) \mathcal{O}(t,0) \rangle = (\langle \mathcal{O}(t,l) \mathcal{O}(t,0) \rangle_T - \langle \mathcal{O}(t,l) \mathcal{O}(t,0) \rangle_L)$

Recall 1-point functions:

 $\Delta \mathcal{P} = \mathcal{P}_T - \mathcal{P}_L$

Matthias Kaminski

Correlations far from equilibrium

Thermalization times as function of length and $\ensuremath{\mathcal{B}}$

Thermalization times as function of length and ${\cal B}$

Thermalization times as function of length and ${\cal B}$

Matthias Kaminski

Correlations far from equilibrium

Outline

- 1. Invitation
- 2. Setup & Calculations
- 3. Results
- 4. Discussion/Outlook

Summary of results

• generated charged magnetic fluid with initial anisotropy

$$\rho \neq 0 \qquad \mathcal{B} \neq 0 \qquad \qquad \Delta \mathcal{P} = \mathcal{P}_T - \mathcal{P}_L$$

- calculated 1- and 2-point functions
- early times: strong medium effect
- 2-point functions thermalize significantly slower than 1-point functions

	$\rho = 0$	$\rho=0.78\rho_e$	$_{ ext{to extremality}}^{ ext{approach}} ho$	
$\mathcal{B}=0$	$t_{1pt} \approx 0.7$ $t_{2pt} \approx 1.4$	$t_{1pt} \approx 0.7$ $t_{2pt} \approx 1.4$	$t_{1pt} \to \infty$ $t_{2pt} \to \infty$	
$\mathcal{B} = 1$	$\begin{array}{l} t_{1pt} \approx 0.7 \\ t_{2pt} \approx 1.9 \end{array}$	$\begin{array}{l} t_{1pt} \approx 0.8 \\ t_{2pt} \approx 2.3 \end{array}$	➡ competition of sca *charge	ales
$\mathcal{B}=3$	saturatio t_{2pt} $t_{1pt} \approx 0.6$ $t_{2pt} \approx 1.4$	on regime $\approx t_{2pt}(l)$ $t_{1pt} \approx 0.6$ $t_{2pt} \approx 1.5$	*magnetic field *initial anisotropy ➡universal therma	lization time at large ${\cal B}$
\mathcal{B}			[Glorioso, Son; (2018)] [Grozdanov, Poovuttikul; large charge: ther	; JHEP (2019)] malization times diverge (in N=4 Super-Yang-Mills theory in 3+1 dimensions, minimally coupled to external U(1) gauge field)

Discussion I

comparison to chiral hydrodynamics at strong B

[Ammon, Kaminski et al.; JHEP (2017)] [Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; work in progress]

... so, correlators receive altered physical interpretation

• effective field theory of fluid far from equilibrium

[Romatschke; PRL (2017)]

[Heller, Spalinski; PRL (2015)]

[Cartwright, Kaminski et al.; work in progress]

Discussion I

comparison to chiral hydrodynamics at strong B

[Ammon, Kaminski et al.; JHEP (2017)]

[Ammon, Grieninger, Hernandez, Kaminski, Koirala, Leiber, Wu; work in progress]

... so, correlators receive altered physical interpretation

• effective field theory of fluid far from equilibrium

[Romatschke; PRL (2017)]

[Heller, Spalinski; PRL (2015)]

[Cartwright, Kaminski et al.; work in progress]

Discussion II

• entanglement entropy [Cartwright, Kaminski et al.; work in progress]

- initial state —> v_n
- shear viscosity far from eq.

[Wondrak, Kaminski,Bleicher; in progress]

- correlations in plasma with dynamical electromagnetic fields
- test/construct "magnetohydrodynamics"

[Hernandez, Kovtun; JHEP (2017)] [Grozdanov, Hofman, Iqbal; PRD (2017)] [Hattori, Hirono, Yee, Yin; (2017)]

• **chiral transport** far from equilibrium; e.g. chiral magnetic effect and chiral vortical effect

> [Kharzeev; (2004)] [Erdmenger, Haack, Kaminski, Yarom; JHEP (2009)] [Banerjee et al; JHEP (2011)] [Son,Surowka; PRL (2009)]

Correlations far from equilibrium

Chiral transport in strong magnetic fields from hydrodynamics & holography

Page 30

APPENDIX

Correlations - nonzero charge, zero B

Charged Isotropization:

Transverse Correlations Non-equal Time

Correlations - nonzero charge, zero B

Charged Isotropization:

Transverse Correlations Non-equal Time

Correlations - zero charge, nonzero B

Magnetic Isotropization:

Correlations - zero charge, nonzero B

Magnetic Isotropization:

Transverse Correlations Non-equal Time

Technicalities I

Chebyshev representation of functions:

$$f(r) \approx \sum_{i=0}^{N} T_i(r)a_i, \quad C_j(r) = \frac{2}{Np_j} \sum_{m=0}^{N} \frac{1}{p_m} T_m(r_j) T_m(r).$$

Derivatives:

$$D_{ij} = \frac{\mathrm{d}C_j(r)}{\mathrm{d}r} \mid_{r=r_i}, \quad D^2 = D \circ D$$

Radial shift invariance: $r \to r + \xi$ to fix $z_h = 1/r_h = 1$

Chebyshev grid:
$$r_i = \frac{1}{2}(a+b) + \frac{1}{2}(a-b)\cos(i\pi/(N-1))$$

Boundary expansions:

$$S(v,r) = r + \xi + \mathcal{O}(r^{-7}),$$

$$B(v,r) = \log(r) \left(-\frac{20\mathcal{B}^2\xi(v)^3}{3r^7} + \frac{10\mathcal{B}^2\xi(v)^2}{3r^6} - \frac{4\mathcal{B}^2\xi(v)}{3r^5} + \frac{\mathcal{B}^2}{3r^4} \right) + \frac{b_4(v)}{r^4} + \mathcal{O}(r^{-8}),$$
(2.12b)

$$A(v,r) = (r + \xi(v))^2 - 2\xi'(v) + \frac{a_4(v)}{r^2} + \log(r)\left(\frac{8\mathcal{B}^2\xi(v)^3}{3r^5} - \frac{2\mathcal{B}^2\xi(v)^2}{r^4} + \frac{4\mathcal{B}^2\xi(v)}{3r^3} - \frac{2\mathcal{B}^2}{3r^2}\right) + \mathcal{O}(r^{-6}).$$
(2.12c)

Matthias Kaminski

Correlations far from equilibrium

Technicalities II

Work with subtracted functions:

$$\begin{split} S(v,r) &= \frac{1}{r^4} S_s(v,r) + r + \xi, \\ B(v,r) &= \frac{1}{r^4} B_s(v,r) + \log(r) \left(-\frac{20\mathcal{B}^2 \xi(v)^7}{3r^7} + \frac{10\mathcal{B}^2 \xi(v)^2}{3r^6} - \frac{4\mathcal{B}^2 \xi(v)}{3r^5} + \frac{\mathcal{B}^2}{3r^4} \right), \\ A(v,r) &= \frac{1}{r^2} A_s(v,r) + (r + \xi(v))^2 - 2\xi'(v) \\ &\quad + \log(r) \left(-\frac{10\mathcal{B}^2 \xi(v)^4}{3r^6} + \frac{8\mathcal{B}^2 \xi(v)^3}{3r^5} - \frac{2\mathcal{B}^2 \xi(v)^2}{r^4} + \frac{4\mathcal{B}^2 \xi(v)}{3r^3} - \frac{2\mathcal{B}^2}{3r^2} \right). \end{split}$$

 Fix the horizon position:

How to fix the horizon position:

 $\dot{S} = 0$ defines location of horizon

$$\partial_v \dot{S}(v,r) \Big|_{r=r_h} = 0$$
. shall not change over time

writing this out gives: $A(v,r) + \dot{B}(v,r)^2 \frac{3S(v,r)^6}{(6S(v,r)^6 - \rho^2 - e^{-2B(v,r)}S(v,r)^2\mathcal{B}^2)}\Big|_{r=r_*} = 0. \text{ first order ODE for } \xi(v).$

Procedure: 1. First time step: guess initial shift to put horizon at 1 and iteratively improve at shifted r

2. All time steps after that: solve ODE

YET: horizon drift!

Matthias Kaminski

Correlations far from equilibrium

Technicalities III

Unique solutions and scalings:

$$\epsilon_{\mathcal{B}} = \epsilon + \frac{1}{4} \mathcal{B}^2 \ln |\mathcal{B}| \qquad T_{\alpha}^{\ \alpha} = -\frac{1}{2} \kappa \mathcal{B}^2,$$
$$\rho^{4/3}/\mathcal{B}^2 \qquad (\pi T)^4/\mathcal{B}^2$$

Renormalization scale dependent energy-momentum tensor:

Matthias Kaminski

Thermalization times as function of length and $\,{\cal B}$

	$t_{1pt.}$	$t_{2pt.}$		
case		l = 0.5	l = 1.1	l = 1.5
(a) $\rho = 0, \mathcal{B} = 0$	0.6869	0.9624	1.3942	1.6346
(b) $\rho \neq 0, \mathcal{B} = 0$	0.7297	0.9917	1.4360	1.6656
(c) $\rho = 0, \mathcal{B} = 1$	0.6815	1.5425	1.9180	2.0433
(c) $\rho = 0, \mathcal{B} = 2$	0.6403	1.5823	1.8229	1.9345
(c) $\rho = 0, \mathcal{B} = 3$	0.5537	1.2811	1.4007	1.5108
(d) $\rho \neq 0, \mathcal{B} = 1$	0.7746	1.6526	2.3034	2.5742
(d) $\rho \neq 0, \mathcal{B} = 2$	0.6803	1.6547	2.0043	2.130
(d) $\rho \neq 0, \mathcal{B} = 3$	0.5609	1.3232	1.4555	1.5716

Charged 2-pt functions towards extremality

Scale invariance in LQCD with magnetic field

[Endrödi, Kaminski, Schäfer, Wu, Yaffe; arXiv:1806.09632]

Lattice QCD with 2+1 flavors, dynamical quarks, physical massestransverse pressure: $p_{\rm T} = -\frac{L_{\rm T}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm T}}$ $F_{\rm QCD} \dots$ free energytransverse pressure: $p_{\rm T} = -\frac{L_{\rm L}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm T}}$ $L_{\rm T} \dots$ transverse system sizelongitudinal pressure: $p_{\rm L} = -\frac{L_{\rm L}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm L}}$ $L_{\rm L} \dots$ longitudinal system size

Scale invariance in LQCD with magnetic field

[Endrödi, Kaminski, Schäfer, Wu, Yaffe; arXiv:1806.09632]

Lattice QCD with 2+1 flavors, dynamical quarks, physical massestransverse pressure: $p_{\rm T} = -\frac{L_{\rm T}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm T}}$ $F_{\rm QCD} \dots$ free energytransverse pressure: $p_{\rm T} = -\frac{L_{\rm L}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm T}}$ $L_{\rm T} \dots$ transverse system sizelongitudinal pressure: $p_{\rm L} = -\frac{L_{\rm L}}{V} \frac{\partial F_{\rm QCD}}{\partial L_{\rm L}}$ $L_{\rm L} \dots$ longitudinal system size

Matthias Kaminski

Correlations far from equilibrium

Odd transport

Chiral transport in strong magnetic fields from hydrodynamics & holography Page 40

perpendicular

parallel

[Ammon, Kaminski et al.; JHEP (2017)] [Ammon, Leiber, Macedo; JHEP (2016)]

Odd transport

[Ammon, Kaminski et al.; JHEP (2017)] [Ammon, Leiber, Macedo; JHEP (2016)]

parallel

non-equilibrium parallel conductivity / perpendicular resistivity

 $\langle J^z J^z \rangle(\omega, \mathbf{k} = 0) \sim \sigma_{||}$

$$\langle J^x J^x \rangle(\omega, \mathbf{k} = 0) \sim \rho_\perp$$

$$\begin{array}{l} \textbf{non-equilibrium} \\ \textbf{parity-odd transport} \\ \langle J^x J^y \rangle(\omega, \mathbf{k} = 0) \sim \frac{n}{B} - \omega^2 \frac{w^2}{B^4} \tilde{\rho}_{\perp} + \dots \\ \langle J^x J^y \rangle(\omega = 0, \mathbf{k}) \sim -ik \underbrace{\xi_B}_{C\mu} \\ \textbf{anomaly type} \end{array}$$

EFT result I: strong B thermodynamics

[Ammon, Kaminski et al.; JHEP (2017)] [Ammon, Leiber, Macedo; JHEP (2016)]

Strong B thermodynamics with anomaly in **thermodynamic frame**:

Energy momentum tensor:

$$B \sim \mathcal{O}(1)$$

$$\langle T_{\rm EFT}^{\mu\nu} \rangle = \begin{pmatrix} \epsilon_0 & 0 & 0 & \xi_V^{(0)}B \\ 0 & P_0 - \chi_{BB}B^2 & 0 & 0 \\ 0 & 0 & P_0 - \chi_{BB}B^2 & 0 \\ \xi_V^{(0)}B & 0 & 0 & P_0 \end{pmatrix} + \mathcal{O}(\partial)$$

Axial current:

$$\langle J_{\rm EFT}^{\mu} \rangle = \left(n_0, \, 0, \, 0, \, \xi_B^{(0)} B \right) + \mathcal{O}(\partial)$$

based on previous work:

[Kovtun; JHEP (2016)] [Jensen, Loganayagam, Yarom; JHEP (2014)] [Israel; Gen.Rel.Grav. (1978)]

EFT result I: strong B thermodynamics

[Ammon, Kaminski et al.; JHEP (2017)] [Ammon, Leiber, Macedo; JHEP (2016)]

Strong B thermodynamics with anomaly in **thermodynamic frame**:

new contributions to thermodynamic equilibrium observables

based on previous work:

[Kovtun; JHEP (2016)]

[Jensen, Loganayagam, Yarom; JHEP (2014)] [Israel; Gen.Rel.Grav. (1978)]

Currents in equilibrium $\langle T^{0z} \rangle = \xi_V^{(0)} B$ $\langle J^z \rangle = \xi_B^{(0)} B$ axial heat current current

Holographic result: thermodynamics

[Ammon, Kaminski et al.; JHEP (2017)]

Background solution: charged magnetic black branes

[D'Hoker, Kraus; JHEP (2009)] [Ammon, Leiber, Macedo; JHEP (2016)]

- external magnetic field
- charged plasma
- anisotropic plasma

Holographic result: thermodynamics

[Ammon, Kaminski et al.; JHEP (2017)]

Background solution: charged magnetic black branes

[D'Hoker, Kraus; JHEP (2009)] [Ammon, Leiber, Macedo; JHEP (2016)]

- external magnetic field
- charged plasma
- anisotropic plasma

$$\begin{split} \text{Thermodynamics} \\ \langle T^{\mu\nu} \rangle &= \begin{pmatrix} -3 \, u_4 & 0 & 0 & -4 \, c_4 \\ 0 & -\frac{B^2}{4} - u_4 - 4 \, w_4 & 0 & 0 \\ 0 & 0 & -\frac{B^2}{4} - u_4 - 4 \, w_4 & 0 \\ -4 \, c_4 & 0 & 0 & 8 \, w_4 - u_4 \end{pmatrix} \\ \langle J^{\mu} \rangle &= (\rho, 0, 0, p_1) \, . \end{split} \qquad \langle T^{\mu\nu}_{\text{EFT}} \rangle = \begin{pmatrix} \epsilon_0 & 0 & 0 & \xi_V^{(0)}B \\ 0 & \rho_0 - \chi_{BB}B^2 & 0 & 0 \\ 0 & 0 & P_0 - \chi_{BB}B^2 & 0 \\ \xi_V^{(0)}B & 0 & 0 & P_0 \end{pmatrix} + \mathcal{O}(\partial) \end{split}$$

with near boundary expansion coefficients u_4, w_4, c_4, p_1

agrees in form with strong B thermodynamics from EFT

Weak B hydrodynamics - poles of 2-point functions $\langle T^{\mu\nu} T^{\alpha\beta} \rangle$, $\langle T^{\mu\nu} J^{\alpha} \rangle$, $\langle J^{\mu} T^{\alpha\beta} \rangle$, $\langle J^{\mu} J^{\alpha} \rangle$:

[Ammon, Kaminski et al.; JHEP (2017)] [Abbasi et al.; PLB (2016)] [Kalaydzhyan, Murchikova; NPB (2016)]

spin 1 modes under SO(2) rotations around B

$$\omega = -ik^2 \frac{\eta}{\epsilon_0 + P_0} +$$

former momentum diffusion modes

$$\begin{aligned} \mathbf{\mathfrak{s}}_0 &= s_0/n_0\\ \tilde{c}_P &= T_0 (\partial \mathbf{\mathfrak{s}}/\partial T)_P \end{aligned}$$

Weak B hydrodynamics - poles of 2-point functions $\langle T^{\mu\nu} T^{\alpha\beta} \rangle$, $\langle T^{\mu\nu} J^{\alpha} \rangle$, $\langle J^{\mu} T^{\alpha\beta} \rangle$, $\langle J^{\mu} J^{\alpha} \rangle$:

[Ammon, Kaminski et al.; JHEP (2017)] [Abbasi et al.; PLB (2016)] [Kalaydzhyan, Murchikova; NPB (2016)]

spin 1 modes under SO(2) rotations around B

$$\omega = \mp \frac{Bn_0}{\epsilon_0 + P_0} - ik^2 \frac{\eta}{\epsilon_0 + P_0} + k \frac{Bn_0\xi_3}{(\epsilon_0 + P_0)^2} - \frac{iB^2\sigma}{\epsilon_0 + P_0}$$
former momentum diffusion modes

former momentum diffusion modes

 $\mathfrak{s}_0 = s_0/n_0$ $\tilde{c}_P = T_0(\partial \mathfrak{s}/\partial T)_P$

Weak B hydrodynamics - poles of 2-point functions $\langle T^{\mu\nu} T^{\alpha\beta} \rangle$, $\langle T^{\mu\nu} J^{\alpha} \rangle$, $\langle J^{\mu} T^{\alpha\beta} \rangle$, $\langle J^{\mu} J^{\alpha} \rangle$:

[Ammon, Kaminski et al.; JHEP (2017)] [Abbasi et al.; PLB (2016)] [Kalaydzhyan, Murchikova; NPB (2016)]

spin 1 modes under SO(2) rotations around B

$$\omega = \mp \frac{Bn_0}{\epsilon_0 + P_0} - ik^2 \frac{\eta}{\epsilon_0 + P_0} + k \frac{Bn_0\xi_3}{(\epsilon_0 + P_0)^2} - \frac{iB^2\sigma}{\epsilon_0 + P_0}$$

$$\mathfrak{s}_0 = s_0/n_0$$

 $\tilde{c}_P = T_0(\partial \mathfrak{s}/\partial T)_P$

former momentum diffusion modes

spin 0 modes under SO(2) rotations around B $\omega_0 = v_0 k - i D_0 k^2 + O(\partial^3)$ former charge diffusion mode $\omega_+ = v_+ k - i \Gamma_+ k^2 + O(\partial^3)$

$$\omega_{+} = v_{+} k - i\Gamma_{+} k^{2} + \mathcal{O}(\partial^{3})$$

$$\omega_{-} = v_{-} k - i\Gamma_{-} k^{2} + \mathcal{O}(\partial^{3})$$
former
sound
modes

Weak B hydrodynamics - poles of 2-point functions $\langle T^{\mu\nu} T^{\alpha\beta} \rangle$, $\langle T^{\mu\nu} J^{\alpha} \rangle$, $\langle J^{\mu} T^{\alpha\beta} \rangle$, $\langle J^{\mu} J^{\alpha} \rangle$:

[Ammon, Kaminski et al.; JHEP (2017)] [Abbasi et al.; PLB (2016)] [Kalaydzhyan, Murchikova; NPB (2016)]

spin 1 modes under SO(2) rotations around B

$$\omega = \mp \frac{Bn_0}{\epsilon_0 + P_0} - ik^2 \frac{\eta}{\epsilon_0 + P_0} + k \frac{Bn_0\xi_3}{(\epsilon_0 + P_0)^2} - \frac{iB^2\sigma}{\epsilon_0 + P_0}$$

former momentum diffusion modes

$$\mathfrak{s}_0 = s_0/n_0$$
$$\tilde{c}_P = T_0(\partial \mathfrak{s}/\partial T)_P$$

spin 0 modes under SO(2) rotations around B $\omega_{0} = v_{0} k - i D_{0} k^{2} + \mathcal{O}(\partial^{3}) \text{ former charge}_{diffusion mode}$ $\omega_{+} = v_{+} k - i \Gamma_{+} k^{2} + \mathcal{O}(\partial^{3})$ $\omega_{-} = v_{-} k - i \Gamma_{-} k^{2} + \mathcal{O}(\partial^{3}) \text{ former}_{sound}_{modes}$ $\omega_{-} = v_{-} k - i \Gamma_{-} k^{2} + \mathcal{O}(\partial^{3}) \text{ former}_{sound}_{modes}$ $D_{0} = \frac{w_{0}^{2} \sigma}{\tilde{c}_{P} n_{0}^{3} T_{0}}$

dispersion relations of hydrodynamic modes are heavily modified by anomaly and B

Holographic result: hydrodynamic poles

Fluctuations around charged magnetic black branes

[Ammon, Kaminski et al.; JHEP (2017)]

- Weak B: holographic results are in "agreement" with hydrodynamics.
- Strong *B*: holographic result in agreement with thermodynamics, and numerical result indicates that **chiral waves propagate at** ...

confirming conjectures and results in probe brane approach [Kharzeev, Yee; PRD (2011)]

Holographic result: hydrodynamic poles

Fluctuations around charged magnetic black branes

[Ammon, Kaminski et al.; JHEP (2017)]

- Weak *B*: holographic results are in "agreement" with hydrodynamics.
- Strong *B*: holographic result in agreement with thermodynamics, and numerical result indicates that **chiral waves propagate at** ...

confirming conjectures and results in probe brane approach [Kharzeev, Yee; PRD (2011)]

Holographic result: hydrodynamic poles

Fluctuations around charged magnetic black branes

[Ammon, Kaminski et al.; JHEP (2017)]

- Weak B: holographic results are in "agreement" with hydrodynamics.
- Strong *B*: holographic result in agreement with thermodynamics, and numerical result indicates that **chiral waves propagate at** ...

confirming conjectures and results in probe brane approach [Kharzeev, Yee; PRD (2011)]

