

Strangeness production at sub-threshold energies

Strangeness production in HICs in the SIS energy regime *Yvonne Leifels (GSI)*

Outline

- Introduction
- Strangeness production
 - yields
 - spectra
- Hyperons
 - bound states with strangeness
- Summary and Conclusion

KAOS collaboration FOPI collaboration in particular Chris Piasecki HADES collaboration HYPHI collaboration J. Aichelin, E. Bratkovskaya, C. Hartnack, A. LeFevre

Introduction

Strangeness production in heavyion collisions at energies below or close to the threshold in NN system

- Fermi momenta may contribute energy
- multistep processes can cumulate the energy needed
- intermediate resonances used as an energy reservoir
- production at high densities due to short life time of resonances

Introduction Experiments at GSI

Experiments at GSI

Y. Leifels - NED 2019

6/18/2019

Introduction

Production of strange particles in heavy-ion collisions at energies close to threshold energies:

- access to bulk properties to nuclear matter
- reaction dynamics
- interaction of particles in dense matter
 - relevant production processes
- in-medium properties
- exotic states
 - hyper-nuclei
 - K⁻, η' bound states

- K⁺ only weakly interacting
- K⁻ strongly absorbed (like pions)
 - Strangeness Exchange $\pi + \Lambda \leftrightarrow K^{-} + N$

Strangeness production within thermal models

And in Al+Al....

FOPI data for AI+AI at 1.91 AGeV Statistical model analysis with THERMUS code (K. Piasecki)

- Particle yields are described by Thermal models with reasonable parameters consistent over the complete energy range upto LHC. But at SIS energies:
 - Al+Al collisions are most probably not equilibrated
 - Phase space distributions are generally elongated beyond 400AMeV even in Au+Au
 - > Systems are not completely mixed
 - No equilibration within microscopic models
 - Microscopic models account for particles ratios

URQMD microscopic model predictions, including decay of heavy resonances

Xsi- production

Introducing branching ratios to Φ , Ξ for heavy resonances: constrained by elementary reactions (e.g. p+Nb or p+p data)

- small and consistent with OZI rule
- branching ratios needed in the tails of the resonances

J. Steinheimer, M. Bleicher, J. Phys. G43 (2016)015104

In medium properties strange mesons

In medium KN-Potential in pion induced reactions

In-medium KN Potential in heavy ion collisions

In-medium KN-potential from low momenta

KN $U_{pot} (\rho_0) = +40 \text{ MeV}$ both for IQMD and HSD

UrQMD no potential

In-medium KN potential K⁰ in Ni+Ni at 1.9A GeV

In-medium KN potential Heavy ion collisions C+C to Au+Au

In-medium KN potential HADES data on Au+Au

ΗA

П

ഗ

https

6/

ohvsletb

2019

03.065

Au+Au 1.23 GeV/u

ADES

In-medium potential at AGS Energies Side flow v_1

- very strong kaon antiflow signal,
 - as big as proton flow (opposite sign!)
- comparisons to microscopic transport models \rightarrow repulsive KN potential
- lambda flow signal consistent with attractive potential $\sim 2/3 V_{NN}$

Hyperon production in Au+Au 1.23 GeV/u

UrQMD describes shape of spectra best

production process (via resonances)

IQMD

- two and tree-body production mechanisms (NN, ΔN, πN)
- ΛN potential ~2/3 V_{NN}
- parametrization for AN rescattering fitted to experimental data

Constraints to Λ +p scattering at low energies

ANKE data constrains cross sections upto 25 MeV*

 "new" uses the parametrization suggested by the ANKE measurement with a constant high energy cross section of 12 mb

 $\Lambda \times 10^5$

 $\phi \times 10^6$

 $K_S^0 \times 4.10^2$

 $\pi^{-} \times 2.10^{-2}$

 $\pi^{+} \times 10^{-1}$

 $K^+ \times 10^2$

р

Hyperon production in Au+Au@1.23GeV/u

- described by employing higher Λp scattering cross section
- scattering leads to higher "temperature"

Y. Leifels - NED 2019

0

100 200 300 400 500 600 700 800

 $m_t - m_0$ [MeV/c²]

GSI

FOPI

IQMD

w KN pot

wo KN pot

Hyperon production in Ni+Ni 1.93 GeV/u

IQMD calculations with attractive $V_{\Lambda N}$ potential

- inconclusive
- experimental spectra less steep than model prediction
 - higher inverse slope parameter
- Note: experimental inverse slope parameter of Λ substantially lower than that of protons

2

 $\Lambda + \Sigma_0$

10

10

((MeV/c²)⁻³)

Hyperon production in Ni+Ni at 1.93 GeV/u

- Hyperons rather "cool" after production
- gain energy by rescattering
- attractive AN potential counteracting and reducing the average kinetic energy
- not enough collisions to reach the measured inverse slope parameters

Hyperon production in Ar+KCI 1.76 GeV/u

In-medium potential Hyperons

Lambda directed flow

- data consistent with
- re-scattering cross section
- can be constrained by
 - flow
 - spectra, rapidity distributions

Production of hypernuclei

As preferentially emitted at midrapidity but hyper-nuclei production might take place:

- more easily in the presence of spectator matter → crucial to get As in the region of the spectator matter
- by "coalescence" at mid-rapidity

FRIGA

Fragment Recognition In General Applications

Simulated Annealing Procedure:

PLB301:328,1993; later called SACA (Simulated Annealing Clusterisation Algorithm) + overal cluster binding energy minimization

- so far applied with various transport models: BQMD, IQMD, pHSD.
- describes spectator fragmentation
- prediction of (light and heavy) (hyper)isotope yields and full phase space distribution.

A. LeFevre, J. Aichelin, E. Bratkovskaya, C. Hartnack, V. Kireyeu, Y. Leifels

Germanic mythological goddess Frigg/Friga, spinning the clouds

FRIGA in short

Transport : IQMD (C. Hartnack et al., Eur. Phys. J. A 1 (1998) 151)

- + Clustering algorithm: FRIGA (A. Le Fèvre et al, 2016 J. Phys.: Conf. Ser. 668 012021)
 - simulated annealing with Minimum Spanning Tree coalescence as 1st step
 + overall cluster binding energy minimization

 $E_{bind} = E_{kin} + E_{Coul} + E_{m.f.} + E_{Yuk.}^{surf.} + E_{asy}^{pot} + E_{struct}$

- veto of unstable isotopes
- ³He+n; secondary decay of excited primary clusters (GEMINI);

Reconstruction of hyper nuclei

Soft EOS with m.d.i. no Kaon pot.

FRIGA ingredients:

- 1 Volume component: mean field (Skyrme, dominant), for NN, NA (hypernuclei). We consider the strange quark as inert as a first approach \Rightarrow U(NA) = 2/3·U(NN)
- 2 Surface effect correction: Yukawa term.

And optionally:

- (3) Symmetry energy E_{asy}
- (4) Extra « structure » energy (N,Z,p) = BMF(p).((Bexp-BBW)/(BBW-Bcoul-Basy))(p0)
- 5 ³ le+n recombination.
- G Secondary decay: GEMINI.
- ⑦ Rejection of « non-existing » isotopes and hyper-clusters.

IQMD+FRIGA 1.9GeV/u Ni+Ni

Hyper nuclei production in Ni+Ni collisions 1.91 Gev/u

Influence of Lambda re-scattering on hyper nuclei yield

- rescattering changes rapidity distribution of hyperons
- and consequently the overlapp region between hyperons and spectator nucleons
- huge influence on yields on hyper nuclei

Results on _{\lambda}t/t ratio in Ni+Ni collisions 1.91 GeV/u

IQMD*+FRIGA, ⁵⁸Ni+⁵⁸Ni @1.93A.GeV, b < 6 fm, t = 2.3 t_{pass}

FOPI result preliminary IQMD/FRIGA : d production in coll. (Remler ...)

Y. Zhang + A. LeFevre

Hyper nuclei production in the spectator region

HYPHI Experiment at GSI: Li+C 2A GeV

Hyper nuclei production in the spectator region

FRIGA predictions for hyper nuclei production in Li+C

IQMD+FRIGA ${}^{6}Li+{}^{12}C @ 2A.GeV$ (t = 2 - 4 t_{pass})

- formation of heavy hyper- nuclei predominantly in the spectator region
- crucially ingredient is the AN rescattering cross section
- cluster multiplicity in the mid-rapidity region depends on the clusterization time
- in contrast to spectator region (relatively stable)

FRIGA predictions for hyper nuclei production in Li+C

- experimental data slightly under predicted
- high pt part of spectra reproduced :
- hyperons gain large y by rescattering, but rescattering enhances also pT
- Iow pt stem from decay of heavier hyper nuclei ?*

Summary

- Strangeness production close to threshold
 - high intensity beams and high quality data and rare probes
 - sensitive probe
 - bulk properties and reaction dynamics
 - in medium potentials
 - production, re-scattering, absorption must be under control
 - repulsive K⁺N potential (U(ρ_0)= 20 40 MeV)
 - microscopic transport models crucial
 - access to lambda interactions in matter
 - more data is needed
 - flow data in heavier systems
 - elementary productions cross sections
- Study of hyper nuclei production in heavy ion collisions
 - reaction dynamics
 - hot versus cold clusterization

Outlook (short term)

Hyper nuclei production at FRS with WASA

GSI Helmholtzzentrum für Schwerionenforschung GmbH

Y. Leifels - NED 2019

6/18/2019