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     Introduction: ”QCD” phase diagram ? 

Marlene 



Phase diagram of strongly-interacting 

matter –a dream or reality? 

RHIC/LHC experiments didn’t find any clear evidence for QCD critical 

point. On the other hand, the L-G phase transition is well established 

experimentally.  

-NICA 

? 



 



Chemical freeze-out parameters 

 At lower beam energies 

s<(7 AGeV)2 the freeze-

out points lie in the 

domain of nuclear 

physics: 

          T<100 MeV 

          mu>0.6 GeV 

 The critical behavior for 

liquid-gas phase 

transition may already 

show up! 



Few remarks about Liquid-Gas transition 



Liquid-gas phase transition in nuclear matter 

B.J.Strack, Phys. Rev. C35, 691 (1987)‏ 

B.J.Strack, Phys. Rev. C35, 691 (1987 

Follows from VdW character of nuclear forces: repulsion (r<rc)+attraction (r>rc)   



 



Multifragmentation as manifestation 
of a Liquid-Gas p. t. in finite nuclei 
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Nuclear caloric curve  

Predicted in 1985 within the SMM 
Bondorf, Donangelo, Mishustin, Schulz 
NPA 444 (1985) 460 

Experimental discovery 
Pochodzalla and ALADIN collaboration,   
PRL 75 (1995) 1040 

Theoretical prediction has been  

confirmed only 10 years later! 



Effective thermodynamic potential 

for 1st and 2nd order phase transitions 

 



Effects of fast dynamics 
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Effective thermodyn. potential for a 1st order phase transition  

 In rapidly expanding system, 1-st order phase transition is delayed until the 

barrier between two competing phases disappears - spinodal decomposition 
I. Mishustin, Phys. Rev. Lett.  82 (1999) 4779; Nucl. Phys.  A681 (2001) 56  
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 Equilibrium fluctuations of order parameter in 

1st order phase transition 

 f 1 
f 

P(f) T>Tc 

f 

P(f) T<Tc T=Tc 

P(f) 

Phase I Mixed phase Phase II 

In an equilibrated system fluctuations of the order parameter, i.e. Polyakov 
loop, should demonstrate bi-modal distributions (lattice calculations?); 
 
In a rapidly evolving system these fluctuations will be  out of equilibrium; 

 

During supercooling process strong fluctuations may develop in the form 
of droplets of a metastable phase. 
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Rapid expansion through a 1st order phase 

transition 

 The system is trapped in a metastable state until it enters the spinodal 

instability region, when Q phase becomes unstable and splits into  

droplets  
Csernai&Mishustin, 1995; Mishustin, 1999; Rafelski  et al. 2000; Randrup, 2003; 

Steinheimer&Randrup 2013; … 



Evolution of equilibrium fluctuations 

in 2nd order phase transition 
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Critical slowing down in the 2nd order 

phase transition 
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In the vicinity of the critical point  
the relaxation time for the order  

parameter diverges - no restoring force  

(Landau&Lifshitz, vol. X,  
Physical kinetics) 

 

rel

d

dt

f f


f 

W
   



“Rolling down” from the top of the potential  
is similar to  spinodal decomposition 

(Csernai&Mishustin 1995)  
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Fluctuations of the order parameter  
evolve according to the relaxation equation 



Critical slowing down 2 
B. Berdnikov, K. Rajagopal, Phys. Rec. D61 (2000) 

 

Correlation length as function of parameter h (characterizing the 

closeness to the critical point) for different expansion rates 

One can expect only a factor 2 enhancement in the correlation length even for  

slow cooling rate, dT/dt=10 MeV/fm. Critical fluctuations have not enough time  

to build up!  



Modeling fluctuations in dynamical 

environments 

 



Simple model for chiral phase transition 

                                                                                           

Linear sigma model (LσM) with constituent quarks 

 

 

 

 

Effective thermodynamic potential           Phase diagram for g=3.3 

contains contributions of mean field σ 

and quark-antiquark fluid: 

 

 

 

CO, 2nd and 1st order chiral transitions 

 can be obtained by choosing coupling g.  
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Scavenius, Mocsy, Mishustin&Rischke, Phys. Rev. C64 (2001) 045202 



Non-equilibrium Chiral Fluid Dynamics 

Fluid is formed by constituent quarks and antiquarks which 

interact with the chiral field via quark effective mass 

CFD equations are obtained from the energy momentum 

conservation for the coupled system “fluid+field” 

 

I.N. Mishustin, O. Scavenius, Phys. Rev. Lett. 83 (1999) 3134; 

K. Paech, H. Stocker and A. Dumitru, Phys. Rev. C 68 (2003) 044907; 

M. Nahrgang, C. Herold, S. Leupold, , C. Herold, M. Bleicher, Phys. Rev. C 84 (2011) 024912; 

M. Nahrgang, C. Herold, S. Leupold, I. Mishustin, M. Bleicher, J. Phys. G40  (2014) 055108. 
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Bjorken expansion through a phase transition 

Initial state: cylinder of length L with linear velocity profile in  

z  direction, ellipsoidal cross section  in x-y plane 
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Mean values and standard deviation of T  for the whole system and for a central 

cell (1 fm3) are shown as a function of time. Supercooling and reheating effects 

are clearly seen in the 1-st order transition. Fluctuations are much stronger in the 

case of 1st order phase transition (right) as compared with the critical point (left). 

Critical point (g=3.63) First order (g=5.5) 



Sigma fluctuations in expanding fireball 
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Fluctuations are rather weak at critical point (left), but increase strongly at 

the 1st order transition (right) after 4 fm/c 
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Extension to finite baryon densities 

 



Model 1: Polyakov-Quark-Meson Model (PQM) 

 Include µ-dependence in Polyakov loop potential,  

    (cf. Schäfer, Pawlowski, Wambach  Fukushima) 

 

 

 

 Calculate grand canonical potential for finite chemical potential 

 

 

 

 Propagate (net) baryon density in the hydro sector 

 

 

 Generate baryon number fluctuations via Langeven  

 

 

C. Herold, M. Nahrgang, I. Mishustin, M. Bleicher, Nucl. Phys. A 925 (2014) 14;  



Trajectories in the T-μ plane 

Isentropic expansion Hydrodynamic evolution 

Trajectories are close to isentropes for crossover and CP; 

 Non-equilibrium “back-bending” is clearly seen in FO case; 

 In the case of strong FO transition (solid lines, right) the system is 

trapped in spinodal region  for a significant time 

 
 

CFD calculations are done for spherical fireball of R=4 fm  



Dynamical simulation of fast expansion   
First order Critical point 



Splash of a milk drop 

Photo: HEE-NC-57001 

Dynamical droplet formation  



Observable signatures of   baryon 

density fluctuations 

Azimuthal fluctuations of net-B In 

single events: enhanced 

production of light nuclei (d, t,He) 

High harmonics of baryonic flow 

(averaged over many events): 

          vn=<cos[n(φ-φn)]> 



More realistic calculations 

 In the previous calculations the EOS had a P=0 

point at a finite baryon density (like the MIT bag 

model), that makes possible stable quark droplets 

 

 It is interesting to see what happens in a more 

realistic case when quark droplets are unstable at 

zero pressure (J. Steinheimer et al, PRC 89 (2014) 034901)  

 

 There exist several models which have such  a 

property, in particular so called  Quark-Hadron 

Model (S. Schramm et al. ) or Quark-Dilaton Model  
 (Ch. Sasaki and I. Mishustin. Phys. Rev.  C85, (2012) 025202). 

  

 



Model 2: SU(3) chiral quark-hadron (QH) model 

Includes: a) 3 quarks (u,d,s) plus baryon octet, 

                b) scalar mesons (σ, ς), vector meson (ω) 

                c)  Polyakov loop (l) 

Effective masses:  

V. Dexheimer, S. Schramm, Phys. Rev. C 81 (2010) 045201 



QHM predicts  two phase transitions 

1) Nuclear ground state at µN=3µ≈mN  reproduced correctly 

2) liquid-gas PT at µ≈300 MeV, and  

3) deconfinement/chiral PT at higher µ≈450 MeV 

Ch. Herold et al., Seam Pacific Conference 2014 



PQM vs. QHM: domain formation 

QH predicts domains with much higher densities! 

Herold, Limphirat, Kobodaj, Yan, Seam Pacific Conference 2014 



PQM vs. QHM: density moments 

In PQM density contrast grows towards freeze-out stage,  

but in QHM it has a maximum at the intermediate dense stage.  

But strong clustering effect is washed out at t>15 fm/c! 



Experimental signatures of metastable 

domains 

The bumps correspond to the  emission from individual 

domains.  

Look for bumpiness in distributions of net baryons in indi-

vidual events, i. e. in azimuthal angle or rapidity 





Higher-order cummulants 

 







Fluctuations in the HRG with hard-

core repulsion (QvdW) 

R. Poberezhnyak, V. Vovchenko,  A. Motornenko, M. Gorenstein, H.Stoecker, 

Chemical freeze-out conditions and fluctuations of conserved charges, arXiv:1906.01954 

Noticeable fluctuations persist even at temperatures of about 100 MeV, i.e. 

much higher than the critical point for L-G phase transition! This may explain 

some anomalies observed by BES STAR at RHIC. 



Conclusions 

 Nuclear L-G phase transition is well established in 

intermediate-energy HI collisions (slow expansion) 

 In relativistic heavy-ion collisions, because of rapid 

expansion, phase transitions will proceed out of equilibrium    

 2nd order phase transition (with CEP) is too weak to 

produce significant observable effects in fast dynamics 

 Non-equilibrium signatures of a1st order transition 

(dynamical domain formation) may show up in data only  

 if they occur close to freeze-out stage 

 At present there exist no convincing evidences for a critical 

point  or 1st order phase  transition above nuclear 

saturation density 

 

 







Calculation of damping term 
T.Biro and C. Greiner, PRL, 79. 3138 (1997) 

M. Nahrgang, S. Leupold, C. Herold, M. Bleicher, PRC 84, 024912 (2011) 

The damping is associated with the processes: 

 

 It has been calculated using 2PI effective action 

 
 

Around Tc the damping is due to the pion modes, η=2.2/fm  
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