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QCD phase diagram and sign problem

Towards cold and dense QCD:  effective lattice theories



The lattice-calculable region of the phase diagram

T

µ

confined

QGP

Color superconductor

Tc

!

Sign problem prohibits direct simulation, circumvented by approximate methods:
reweigthing, Taylor expansion, imaginary chem. pot., need

No critical point in the controllable region, some signals beyond 

µ/T <� 1 (µ = µB/3)

crossover weakens



Effective lattice theories for finite density

General idea: two-step treatment

1.  Derivation of effective theory from LQCD by expansion methods

Part of d.o.f ’s integrated out, sign problem becomes milder     

II. Simulate effective theory (flux rep. + worm algorithm, complex Langevin);  
 
or solve analytically by “high T expansion” techniques from Stat. Mech.

Two possibilities for effective degrees of freedom:

Z =

Z
DU0DUi (detQ)Nf eSg [U ] =

Z
DU0 eSeff [U0] =

Z
DL eSeff [L]
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Z =

Z
DUD ̄D eSg [U ]+Sf [ ̄, ,U ] =

Z
D ̄D eSeff [ ̄, ]
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Polyakov loops

Baryons and mesons

These formulations are, in principle, exact; in practice truncations of systematic expansions
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Polyakov loops: start from Wilson’s lattice action
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Figure 1. A graphical representation of the contributions in the strong coupling expansion and
the corresponding terms in the e↵ective action. The first term is the interactions of two nearest
neighbour Polyakov lines and the second one corresponds to the interaction of next-to nearest
neighbours with distance

p
2 on the lattice. From [14].

Here V
i

is related to the Jacobian when transforming the measure dU0(i) ! dL
i

. Usually
the e↵ective couplings are exposed in terms of the fundamental character expansion coe�cient
u = u(�) = �/18 + O(�2), which shows better convergence. The relation between u and � can
be computed to arbitrary precision, hence they can be used synonymously. The leading e↵ective
coupling has been computed to high orders,
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
N

⌧

✓
4u4+12u5�14u6�36u7+

295

2
u8+

1851

10
u9+

1055797

5120
u10+ . . .

◆�
.

(6)
Note that the next-to-nearest neighbour coupling starts only at �2 ⇠ u2N⌧+2 while the nearest
neighbour coupling of adjoint loops is �

a

⇠ u2N⌧ . Figure 1 illustrates how higher order
contributions arise in terms of additional contributions to the coupling constants of the nearest
neighbour interaction and next to nearest neighbour interactions.

2.2. Numerical results for the one-coupling theory

The e↵ective theory is 3d with complex scalars left as dynamical degrees of freedom,
corresponding to a 3d continuous spin model. It is obvious that this accounts for a drastic
reduction of numerical e↵ort for the simulation. The e↵ective theory exhibits an order-disorder
phase transition corresponding to the spontaneous breaking of the centre symmetry as a function
of its coupling, as shown in Figure 2 (left), which causes the Polyakov loop to rise. A finite size
analysis shows that this rise develops into a discontinuous jump, signalling the first-order nature
of the transition in the infinite volume limit, Figure 2 (right). This can also be seen in the
distribution of the Polyakov loop variable in the critical region. Figure 3 shows the double-peak
distribution of a first-order transition for SU(3) (left), whereas a single Gaussian distribution
moves smoothly as a function of the coupling for SU(2) (right), which has a second-order
continuous transition. Thus the e↵ective theory in its simplest form correctly describes the
order of the SU(N) transition.

Next the location of the phase transition, i.e. the critical coupling �
c

can be translated back
to the lattice gauge coupling � by inverting Equation (6) for every given N

⌧

. The result is
shown in Figure (4) (left) for di↵erent truncations of the series for the e↵ective coupling. The
computed orders are just about high enough for an appreciable convergence to set in. Note,
that a single simulation of the e↵ective theory provides the critical coupling �

c

, the predictions

 =
1

2am+ 8

Generates couplings over all distances, n-pt. couplings, higher reps…. :

Effective one-coupling theory for SU(3) YM
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In this paper we consider the corresponding e�ective theory for general colour gauge
group SU(Nc) in the cold and dense regime. In particular, we analyse the onset transition
to baryon matter as well as the thermodynamic functions for varying and large Nc. This
allows us to establish contact to several conjectures made in the literature regarding the
phase diagram at large Nc [3], with various phenomenological consequences for physical
QCD.

2 QCD with heavy quarks

2.1 E�ective lattice theory

Consider the partition function of lattice QCD with the standard Wilson action at finite
temperature, T = 1/(aN· ), realised by a compact euclidean time dimension with N· slices
and (anti-)periodic boundary conditions for (fermions) bosons. An e�ective theory in terms
of temporal lattice links only is obtained after performing the Gauss integral over the quark
fields and integrating the gauge links in spatial directions,

Z =
⁄

DU
0

DUi det Q e≠Sg [U ] ©
⁄

DU
0

e≠Se� [U0] =
⁄

DW e≠Se� [W ] . (2.1)

With the spatial links gone, the e�ective action depends on the temporal links only via
Wilson lines closing through the periodic boundary, or Polyakov loops,

W (x) =
N·Ÿ

·=1

U
0

(x, ·), L(x) = TrW (x) . (2.2)

This e�ective action is unique and exact. The integration over spatial links causes long-
range interactions of Polyakov loops at all distances and to all powers so that in practice
truncations are necessary. For non-perturbative ways to define and determine truncated
theories, see [5–8]. Here, we use an e�ective theory based on expanding the path integral
in a combined character and hopping parameter series, with interaction terms ordered
according to their leading powers in the coe�cient of the fundamental character u and the
hopping parameter Ÿ,

u(—) = —

18 + —2

216 + . . . < 1, Ÿ = 1
2amq + 8 . (2.3)

The dependence of u on the lattice gauge coupling — = 2Nc/g2 is known to arbitrary
precision, and u is always smaller than one for finite —-values. Since the hopping expan-
sion is in inverse quark mass, the e�ective theory to low orders is valid for heavy quarks
only. Both expansions result in convergent series within a finite radius of convergence [].
Truncating these at some finite order, the integration over the spatial gauge links can be
performed analytically to provide a closed expression for the e�ective theory. Going via an
e�ective action results in a resummation to all powers with better convergence properties
compared to a direct series expansion of thermodynamic observables as in [11, 12]. Since
the Polyakov loop L(x) contains the length N· of the temporal lattice extent implicitly, the
e�ective theory is three-dimensional. Note that in the case of 4d Yang-Mills theory, this

– 2 –

Pure gauge part: character expansion Fermion determinant: hopping expansion
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The effective 3d theory

Including heavy, dynamical Wilson fermions

Accuracy ~5%, predictions for Nt=6,8,... available!
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NLO:

12

Deconfinement transition for heavy quarkseffective couplings SA,S
i = SA,S

i [L,L⇤]

This is a 3d continuous spin model!

“Duality transformation”:
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representation by a 3d centre-symmetric e�ective theory is the basis for the Svetitsky-Ya�e
conjecture [13].

Including the quark determinant via the hopping expansion introduces centre symmetry
breaking terms and additional e�ective couplings hi [14],

≠S
e�

=
Œÿ

i=1

⁄i(u, Ÿ, N· )Ss
i ≠ 2Nf

Œÿ

i=1

Ë
hi(u, Ÿ, µ, N· )Sa

i + h̄i(u, Ÿ, µ, N· )Sa,†
i

È
. (2.4)

The ⁄i are defined as the e�ective couplings of the Z(3)-symmetric terms Ss
i , whereas the

hi multiply the asymmetric terms Sa
i . In particular, h

1

, h̄
1

are the coe�cients of L, Lú,
respectively, and to leading order correspond to the fugacity of the quarks and anti-quarks,

h
1

= (2Ÿ)N· eaµ(1 + . . .) = e
µ≠m

T (1 + . . .), h̄
1

= (2Ÿ)N· e≠aµ(1 + . . .) = e≠ µ+m
T (1 + . . .)

(2.5)
with m = ln(2Ÿ) the leading-order constituent quark mass in a baryon [? ], while h

2

=
Ÿ2N· /Nc(1 + . . .) is the leading order coe�cient of an L

x

L
y

interaction term. As an
example, we give the partition function including just these simplest interactions,

Z =
⁄

DW
Ÿ

<x,y>

Ë
1 + ⁄(L
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y

+ Lú
x

L
y

)
È

(2.6)
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2
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W
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1

W
x

Tr h
1

W
y

1 + h
1

W
y

B A

1 ≠ h
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Tr h̄
1

W †
x

1 + h̄
1

W †
x

Tr h̄
1

W †
y

1 + h̄
1

W †
y

B

◊ . . . .

In this expression the first line represents the pure gauge sector, the second line is the
static determinant and the third line the leading correction from spatial quark hops. This
partition function has a weak sign problem and can be simulated with either reweighting or
complex Langevin methods [14, 15]. Since the e�ective couplings correspond to power series
of the expansion parameters, they are themselves small in the range of validity. Hence,
the e�ective theory can also be treated by linked-cluster expansion methods known from
statistical physics, with results for thermodynamic observables in quantitative agreement
with the numerical ones [16]. In this way, full control over the sign problem is achieved.

2.2 The deconfinement transition

The phase diagram of QCD with heavy quarks is depicted schematically in figure 1. At zero
density, the thermal transition is a first-order deconfinement transition. It is a remnant
of the centre symmetry-breaking transition of the SU(3) pure gauge theory, which gets
weakened by explicitily center-breaking finite quark masses ≥ 1/m. In the e�ective theory,
this corresponds to spontaneous centre breaking at some set of critical couplings ⁄i,c =
⁄i(uc, Ÿc, N· ), hi,c(uc, Ÿc, N· ), which can be determined by numerical simulation. Inversion
of the e�ective couplings then gives predictions for —c(N· ), Ÿc(N· ), which can be compared
with the results from full QCD simulations.

For SU(3)-Yang-Mills theory, the simplest e�ective theory with only a nearest neighbour
coupling (first line in equation (2.6)) correctly reproduces the order of the deconfinement

– 3 –

….

L = TrW
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Numerical results for SU(3), one coupling
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Required generalization:  n-point interactions

4.3. Higher order couplings

At O(4) we are confronted with 3-point couplings. Fortunately, introducing higher n-
point interactions to the linked cluster expansion is straightforward. In our case we need a
generalised partition function

Z =

Z
D� e�S0[�]+
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which has a cluster expansion
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where the derivative with respect to ũ is once more given by the cumulants,
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The geometry of the interaction term is contained in u
ijk

(x, y, z). For example if we take �

as a two-component field, � =

�
W

1,1

,W
2,1

 
, the first O(4) term has an interaction tensor

u
1jk

(x, y, z) = 2h2
2

N
f

X

â,
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â,

ˆ

b
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corresponding to a wedge and a link, respectively. In this case the linked cluster expansion
of W is the sum of all diagrams which can be made out of these two components,

W = +

1

2

+

1

2

+

1

4

+

1

2

+

1

2

+O(v3) (4.18)

Where the two new diagrams come from the 3-point wedge term. Note that now directions
are necessary to distinguish a node W

2,1

from W 2

1,1

. This also changes the symmetry factor.
It is thus possible to go ahead and write down all graphs from combining elements up to a
certain order, carefully calculating symmetry factors as one goes along.

Alternatively and as an independent check, one can use the idea of embedding graphs
from the effective action onto the basic graph topologies of the cluster expansion. As an
example, consider the square graph

symmetry: 8 . (4.19)
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Analytic Calculations
N-point Linked Cluster Expansion
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Figure 4. Baryon number density as a function of pion mass.

4.1. General framework

We begin by summarising the basic features of the linked cluster expansion, for a more
thorough review, see [? ]. Consider an N -component scalar field with a 2-point coupling,
which may also extend over larger distances than nearest neighbour,

Z =

Z
D� e�S0[�]+

1
2
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i,j

�

i

(x)v

ij
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j

(y) . (4.1)

All information on the interaction is encoded in v
ij

(x, y), which we assume to be small. Our
goal is to study thermodynamic quantities, so we are interested in the free energy rather
than the partition function,

W = � lnZ . (4.2)

The linked cluster expansion is thus defined by the series expansion of W in powers of the
coupling,
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A systematic way of taking the derivatives with respect to the coupling is by introducing
source terms to define the generating functionals
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A derivative in v is now replaced by
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The derivatives of the free energy with respect to the sources are the cumulants or connected
n-point functions, e.g.

�2W

�J
i

(x)�J
j

(y)
= h�

i

(x)�
j

(y)i � h�
i

(x)ih�
j

(y)i . (4.6)
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The deconfinement transition for heavy quarks

Including heavy, dynamical Wilson fermions
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The deconfinement transition at finite density
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The cold and dense regime
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same for isospin, quark matter

silver blaze phenomenon binding energy between nucleons

different for isospin, baryon matter
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Figure 3. Continuum approach of the baryon number.

extending the range where our effective action is reliable. Fig. 2 (right) shows the same
exercise for the largest  considered in this work, this time increasing the orders of the
character expansion. We observe good convergence up to � ⇠ 6, which is a sufficiently
weak coupling to allow for continuum extrapolations. It is interesting to note that the
convergence properties are not determined by the size of the expansion parameters alone.
Even though the u(�)-values far exceed the -values employed in the figures, convergence
in u(�) appears to be faster. The gain in convergence region by the additional orders in
the effective action can be exploited to study the systematics of our effective theory.

3.2. Continuum approach

An important question for any lattice investigation concerns the continuum limit. Fig. 3
(left) shows the baryon number as a function of chemical potential and highlights a severe
issue of lattice QCD at finite baryon density, irrespective of the sign problem or the accuracy
of effective actions: cut-off effects at finite density cause not only quantitative systematic
errors, but alter the qualitative behaviour of the system. Because of the finite number
of lattice sites available, the Pauli principle leads to a saturation density of nsat

B

= 2N
f

baryons per site, which does not exist in the continuum. Once lattice saturation is reached,
a further increase of chemical potential makes no sense. Thus lattices have to be made
finer before higher densities can be addressed. On finer lattices the saturation density in
physical units grows and in the continuum limit moves to infinity. This lattice artefact
starts to make itself felt already quite early, as is also apparent in the numerical behaviour
of the Polyakov loop [8] and related to the half-filling symmetry of the static action [15].

The difficulty is also reflected in Fig. 3 (right), where the slopes of the continuum ap-
proach rapidly increase with growing chemical potential, such that a continuum extra-
polation is increasingly difficult to control. The figure shows results from our previous
simulations obtained with the 4 action at two values of µ > µ

c

, i.e. beyond the nuclear
onset transition, and compares it with the new 8 action. The baryon density just about
reaches the domain with leading cut-off effects linear in a, which are expected for standard
Wilson fermions. In this context it should prove particularly valuable to work with an im-
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Continuum approach  ~a  as expected for Wilson fermions  

Cut-off effects grow rapidly beyond onset transition: lattice saturation!

Finer lattice necessary for larger density to avoid saturation 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Continuum extrapolation
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... to be continued...

consistent with the location of the onset transition 

Minimum:  access to nucl. binding energy, nucl. saturation density!
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Result: 3d spin model of QCD, infinitely many couplings, ordered parametrically
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Step II:  sign problem milder: Monte Carlo, complex Langevin
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Experimentally established phase diagram:

B

Nuclear liquid gas transition with critical end point

Tc  ~ Nuclear binding energy

Nuclear matter

Tc(m)
m!1�! 0
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EoS fitted by polytrope, non-relativistic fermions!

Can we understand the pre-factor?   Interactions, mass-dependence… 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Continuum comparison
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Figure 1. The phase diagram of QCD with very heavy quarks.

and extend the results of [3] in two ways. First, we push the derivation of the effective
action for the cold and dense regime through order u58. Second and most importantly, we
apply linked cluster expansion methods [? ] to our effective theory and demonstrate that
its thermodynamic functions and equation of state can be computed entirely analytically
in the domain of its validity.

2. The effective theory

2.1. Derivation

The derivation of the effective theory has been discussed in previous publications [1–3] so
we only outline the procedure and give our results. Starting point is lattice QCD with the
Wilson plaquette and fermion actions on an N3

s

⇥N
⌧

lattice,
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Z
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with elementary plaquettes U
p

, the quark hopping matrix for the flavour f ,
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Linked cluster expansion of effective theory

4.3. Higher order couplings

At O(4) we are confronted with 3-point couplings. Fortunately, introducing higher n-
point interactions to the linked cluster expansion is straightforward. In our case we need a
generalised partition function

Z =

Z
D� e�S0[�]+

1
2

P
v

ij

(x,y)�

i

(x)�

j

(y)+

1
3!

P
u

ijk
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i
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j

(y)�

k

(z)+... (4.14)

which has a cluster expansion
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where the derivative with respect to ũ is once more given by the cumulants,
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The geometry of the interaction term is contained in u
ijk

(x, y, z). For example if we take �

as a two-component field, � =

�
W

1,1

,W
2,1

 
, the first O(4) term has an interaction tensor
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corresponding to a wedge and a link, respectively. In this case the linked cluster expansion
of W is the sum of all diagrams which can be made out of these two components,

W = +

1

2

+

1

2

+

1

4

+

1

2

+

1

2

+O(v3) (4.18)

Where the two new diagrams come from the 3-point wedge term. Note that now directions
are necessary to distinguish a node W

2,1

from W 2

1,1

. This also changes the symmetry factor.
It is thus possible to go ahead and write down all graphs from combining elements up to a
certain order, carefully calculating symmetry factors as one goes along.

Alternatively and as an independent check, one can use the idea of embedding graphs
from the effective action onto the basic graph topologies of the cluster expansion. As an
example, consider the square graph

symmetry: 8 . (4.19)
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The effective lattice theory approach II

Two-step treatment: 

1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  integrate over gauge links in strong coupling expansion, leave fermions  

                                                                           

Result: 4d “polymer” model of QCD (hadronic degrees of freedom!)
Valid for all quark masses (also m=0!), at strong coupling (very coarse lattices)                                    

Step II:  sign problem milder: Monte Carlo with worm algorithm

Numerical simulations without fermion matrix inversion,  very cheap! 

de Forcrand, Langelage, O.P., Unger
Phys.Rev.Lett. 113 (2014) 152002
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From strong coupling limit to finite coupling
QCD phase diagram from the lattice at strong coupling Wolfgang Unger
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Figure 1: The Phase diagram in the strong coupling limit (left), as measured in a Monte Carlo
simulation, compared to the standard expectation of the continuum QCD phase diagram (right).
Both diagrams are for massless quarks.

the Grassmann constraint:

nx + Â
n̂=±0̂,...,±d̂

✓
kn̂(x)+

Nc

2
|`n̂(x)|

◆
= 3. (2.2)

This constraint restricts the number of admissible configurations {kb,nx,`} in Eq. (2.1) such that
mesonic degrees of freedom always add up to 3 and baryons form self-avoiding loops not in contact
with the mesons. The weight w(`,µ) and sign s(`) = ±1 for an oriented baryonic loop ` depend
on the loop geometry. The partition function Eq. (2.1) describes effectively only one quark flavor,
which however corresponds to four flavors in the continuum (see Sec. 4). It is valid for any quark
mass. We will however restrict here to the theoretically most interesting case of massless quarks,
mq = 0. In fact, in this representation the chiral limit is very cheap to study via Monte Carlo,
in contrast to conventional determinant-based lattice QCD where the chiral limit is prohibitively
expensive.

For staggered fermions in the strong coupling limit, there is a remnant of the chiral symmetry
U55(1) ⇢ SUL(Nf )⇥ SUR(Nf ). This symmetry is spontaneously broken at T = 0 and is restored
at some critical temperature Tc with the chiral condensate hȳyi being the order parameter of this
transition. As shown in Fig. 1 (left), we find that this transition is of second order. This is analogous
to the standard expectation in continuum QCD with Nf = 2 massless quarks, where the transition is
also believed to be of second order. Moreover, both for our numeric finding at strong coupling and
for the expectation in the continuum, the transition turns into first order as the chemical potential is
increased. Thus the first order line ends in a tricritical point, which is the massless analogue of the
chiral critical endpoint sought for in heavy ion collisions.

In fact, at strong coupling, the zero temperature nuclear transition at µB,c ' mB is intimately
connected to the chiral transition, and they coincide as long as the transition is first order. The
reason for this is the saturation on the lattice due to the Pauli principle: in the nuclear matter

3

QCD phase diagram from the lattice at strong coupling Wolfgang Unger
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Figure 3: Phase boundary in the µ-T plane extended to finite b . The backplane corresponds to the
strong coupling limit b = 0. The second order phase boundary is lowered by increasing b . We
do not observe a shift of the chiral tricritical point. However, the nuclear critical endpoint (CEP),
determined from the baryon density, moves down along the first order line (extrapolated to T = 0
to guide the eye) as b is increased.

1. Baryons are point-like in the strong coupling limit, the lattice spacing is too coarse to re-
solve the internal structure of the baryon. Including the gauge correction, baryons become
extended objects, spread over one lattice spacing.

2. The nuclear potential in the strong coupling limit is of entropic nature, where two static
baryons interact merely by the modification of the pion bath. With the leading order gauge
correction, pion exchange is possible as the Grassmann constraint is relaxed: on excited
plaquettes, the degrees of freedom in Eq. (2.2) add up to 4 instead of 3.

These features will have an impact on the phase boundary. In Fig. 3, the effect of the gauge
corrections is shown. We find that the second order phase boundary is lowered, as expected because
the critical temperature in lattice units drops as the lattice spacing is decreased with increasing b .
However, we find the chiral tricritical point and the first order transition to be invariant under the
O(b ) corrections. We want to stress that there are actually two end points, which split due to
the gauge corrections: the second order end point of the nuclear liquid-gas transition is traced by
looking at the nuclear density as an order parameter. We expect the nuclear and the chiral first
order transition to split, such that at T = 0 there are three different phases instead of two phases (as

5
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1. Calculate effective theory analytically 
II. Simulate effective theory  

Step I.:  integrate over gauge links in strong coupling expansion, leave fermions  

                                                                           

Result: 4d “polymer” model of QCD (hadronic degrees of freedom!)
Valid for all quark masses (also m=0!), at strong coupling (very coarse lattices)                                    

Step II:  sign problem milder: Monte Carlo with worm algorithm

Numerical simulations without fermion matrix inversion,  very cheap! 

de Forcrand, Langelage, O.P., Unger
Phys.Rev.Lett. 113 (2014) 152002
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Strong coupling limit: � = 0 Including leading gauge corrections

Unrooted staggered fermions: Nf=4

Nucl. and chiral transition coincide!

Chiral limit:  m=0

[Kawamoto, Smit, NPB 81;…./Karsch, Mütter, NPB 89… ]



From the chiral limit to finite mass
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Equation of state
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Thermodynamics for finite mass
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Evolution towards the continuum

QCD phase diagram from the lattice at strong coupling Wolfgang Unger
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Figure 4: Top row: Various scenarios for extending the phase diagram in the strong coupling limit
(b = 0) toward the the continuum limit (b ! •). All three scenarios assume that the nuclear and
chiral transition split, and that at µ = 0 the chiral transition is of first order (since in the continuum
Nf = 4). In the strong coupling limit, the chiral transition at µ = 0 is second order (corresponding
to Nf = 1 and the doublers decoupled), hence there must be a tricritical point at some b (µ=0)

tric . It
is an open question whether the tricritical point at strong coupling is connected to this tricritical
point at b (µ=0)

tric (left), or connected to the speculated tricritical point in the continuum (center) or
terminates at some finite b at T = 0 (right).
Bottom row: the corresponding scenarios for the finite temperature chiral transition in the µ �Nf

phase diagram, showing the possible relation of the tricritical point at Nf = 4 with those at Nf =

2+1, assuming the chiral limit for the light quarks and a physical strange quark mass. The µ-Nf

is limited by the line µc(T = 0), beyond which chiral symmetry is restored. Left: For Nf = 4, the
transition is of first order for all values of µ . Center: The tricritical point at Nf = 4 is is connected
to the tricritical point at Nf = 2+ 1. This would be evidence for the existence of the critical end
point in the QCD phase diagram for physical quark masses. Right: The Nf = 4 first order region
does not extend to Nf = 2+ 1, where it remains second order. This second order transition turns
into a crossover immediately as mu,md > 0, so in this scenario there is no chiral critical end point
at physical quark masses.

Figure 5: The Columbia plot with the assumption mphys
s >mtric

s ,
which implies that the chiral transition is second order for
Nf = 2. The arrow points towards the Nf = 2+ 1 chiral light
quark masses and physical strange quark mass as denoted in the
bottom row of Fig. 4 in between Nf = 2 and Nf = 3.

7

In the continuum, without rooting, this theory describes 4 quark flavours

Still many possibilities, but number of anchor points and constraints is growing



QCD at large Nc

suppresses quark loops in Feynman diagrams

mesons are free;  
corrections: cubic interactions                  ,  quartic int. 

meson masses 

baryons:        quarks,  baryon masses 

baryon interactions: 

Definition, ’t Hooft 1974 : Nc �! 1, g

2
Nc = const.

⇠ 1/Nc⇠ 1/
p

Nc

⇠ ⇤QCD

Nc ⇠ Nc⇤QCD

⇠ Nc Witten 1979 



Implications on the phase diagram

McLerran, Pisarski 07:

To illustrate how quarks enter at large Nc, consider the gluon self energy
at nonzero T and µ. To lowest order in g2, at zero momentum this is gauge
independent, equal to the square of the Debye mass. For Nf massless flavors,
its trace equals

Πµµ(0) = g2

((
Nc +

Nf

2

)
T 2

3
+

Nfµ2

2π2

)
, (1)

Taking Nc → ∞, holding g2Nc fixed, we see that the gluon contribution,
∼ g2NcT 2 ∼ T 2, survives. This is the first in an infinite series of planar, gluon
diagrams at infinite Nc. In contrast, whether for T ̸= 0 and µ ̸= 0, the quark
contribution is only ∼ g2, and so suppressed by ∼ 1/Nc.

This is true order by order in perturbation theory, both in vacuum and
for all T and µ ∼ 1: holding Nf fixed as Nc → ∞, the effects of quarks
loops are suppressed by ∼ 1/Nc [1,2]. This is simply because there are ∼ N2

c

gluons in the adjoint representation, but only ∼ Nc quarks in the fundamental
representation. Since the quark contribution, relative to that of gluons, is
∼ Nf/Nc, it is essential to hold Nf fixed as Nc → ∞; i.e., to take of limit of
large Nc, but small Nf .

In this limit, we can immediately make some broad conclusions about the
phase diagram in the T −µ plane. At µ = 0, one expects that the deconfining
transition temperature Td ∼ ΛQCD [4], which appears to be confirmed by
numerical simulations on the lattice [5]. Since quarks don’t affect the gluons,
the deconfining transition temperature is then independent of µ, Td(µ) = Td(0)
for values of µ ∼ 1. This is illustrated in fig. (1): in the plane of T and µ,
the phase boundary for deconfinement is a straight line. The theory is in a
deconfined phase when T > Td, and in a confined phase for T < Td.

Fig. 1. Phase diagram at infinite Nc in the plane of temperature and quark chemical
potential. The blue line in the quarkyonic phase indicates a guess for the position
of the chiral phase transition.

In fact, consider the “box” in the lower, left hand corner of the T − µ

4

large Nc

Fig. 2. Possible phase diagram for QCD in the plane of temperature and baryon
chemical potential. The blue line in the quarkyonic phase indicates the chiral phase
transition. There is a critical end point for deconfinement.

A possible phase diagram is drawn in fig. (2); following phenomenology
[14], we plot this as as a function of the temperature and the baryon chemical
potential, µB. If large Nc is a reasonable guide to Nc = 3, this should look
something like fig. (1), except that the sharp edges are smoothed out. For
example, below the mass threshold, Td should change little with µ; this appears
to be true from numerical simulations on the lattice [18]. Similarly, at large
Nc nuclear matter rapidly goes from a dilute phase, to one which is dense and
quarkyonic. We indicate this in the figure by drawing the quarkyonic phase
slightly above MN , the nucleon mass.

We expect that the chiral phase transition occurs in the quarkyonic phase,
well above the mass threshold. For QCD, at present numerical simulations
on the lattice indicate that for small µ, the deconfining and chiral transitions
coincide, and are crossover. A chiral critical end point may exist in the plane
of T and µB [13]. One might conjecture that if such a critical end point
exists, that the deconfining and chiral transitions split from one another at
that point.

Speculating in this manner, in the quarkyonic phase, the latent heat asso-
ciated with the chiral transition might be relatively small. Certainly at large
Nc, the large increase in pressure, ∼ Nc, is not tied to the chiral transition.
The behavior of the chiral transition is very sensitive to the number of flavors,
and possible restoration of the axial U(1) symmetry, though.

Consider the deconfining phase transition, after it splits from the chiral
transition. At fixed µ, as T increases, one goes from a confined phase of
parity doubled baryons, to one of quarks and gluons. Deconfinement could
either remain crossover, or perhaps become first order again (from the splitting
point?). If it does turn first order, it will then have to end in a critical end
point, now for deconfinement. Alternately, a first order deconfining transition
could perist down to zero temperature. We indicate this uncertainty by the
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from Nucl. Phys. A 796 (2007)

QCD, conjectured

p ⇠ N0
c

p ⇠ N2
c

p ⇠ Nc
2

and develop a simple model for the EOS.
The key elements of the Quarkyonic picture are il-

lustrated in Fig. 1. Here fQ is momentum distribution

�B/3

quarks baryons
MQ � MN /3

quarks baryons

fQ(k)

EQ(k)

kB/3kQ

k

Fermi Sea of 
Quarks

kFQ

Fermi Shell of  
Baryons

�k F
= �

FIG. 1. The schematic shows the distribution of momentum
and energy of quarks and baryons. The di↵use distribution
of quarks in the right upper graph indicates they are confined
inside baryons.

function or quarks and EQ is their energy. The momen-
tum distribution is smeared at the surface because these
quarks are confined inside baryons which fill states with
momentum width �. Since baryons occupy states near
the Fermi surface they produce a gap in the quark excita-
tion spectrum. The absence of low energy quark excita-
tions will have implications for the transport properties
which we discuss later.

At extremely high density, Quarkyonic Matter is in-
ferred from the properties of QCD when Nc is large. In
this limit confining forces are important when the De-
bye screening mass generated by quark loops is less than
the confinement scale ⇤QCD. Since the color Debye mass
mD ' gµQ where µQ is quark chemical potential and
g is the gauge coupling, by noting that g2Nc is held
fixed when taking the large Nc limit we can conclude
that quarks are confined into baryons for µ .

p
Nc⇤QCD.

This observation that quark matter remains confined up
to a quark chemical potential parametrically large (by
the factor

p
Nc) compared to the confinement scale is

the central tenet of the Quarkyonic picture [19].
To realize these ideas in a concrete example we will

consider symmetric matter characterized by a finite
baryon chemical potential µB and the isospin chemical
potential µI = 0. Further, we assume that chiral symme-
try remains broken to set the quark mass MQ = MN/Nc

as in the constituent quark model, and the quark chemi-
cal potential µQ = µB/Nc. In the absence of interactions,
nucleons will appear in the ground state when µB > MN

and their number density will increase with µB until the
Fermi momentum kFB & ⇤QCD. Because MN is large, at
first, the nucleon number density increases rapidly with
µB . However, when quarks appear, and occupy low mo-
mentum states below the shell, the growth of the baryon

density with µB is reduced. In this model the baryon
number density

nB =
2

3⇡2

�
k3FB � (kFB ��)3 + k3FQ

�
, (2)

where kFB is the Fermi momentum of nucleons and the
Fermi momentum of quarks

kFQ =
(kFB ��)

Nc
⇥(kFB ��) . (3)

so that the contribution of quarks relative to nucleons is
suppressed by 1/N3

c . The energy density is given by

✏(nB) = 4

Z kFB

NckFQ

d3k

(2⇡)3
p

k2 +M2
n ,

+ 2⇥Nc

Z kFQ

0

d3k

(2⇡)3

q
k2 +M2

q . (4)

The chemical potential and pressure are obtained from
the familiar thermodynamic relations µB = @✏/@nB and
P = �✏+ µBnB , respectively.
From Eq. 2 we see that nB increases less rapidly in

the Quarkyonic phase. The resulting suppression of the
susceptibility �B = dnB/dµB leads to a rapid increase
in the speed of sound and is shown as the solid blue
curve in Fig. 2. The dashed blue curve shows c2s in non-
interacting nuclear matter for density nB . 3n0. The
black curves correspond to asymmetric matter containing
only neutrons and will be discussed later.
In our model we assume the thickness of quark Fermi

surface where nucleons reside to be given by

� =
⇤3

k2FB
+ 

⇤

N2
c

(5)

This choice is not entirely arbitrary. The first term
ensures that the nucleon density approximately satu-
rates when baryons dominate, and the second term is
needed to ensure that c2S < 1. It is useful to note
that when ⇤ < kFB < Nc⇤ the density of nucleons
nN / k2FB� ⇡ ⇤3 and when kFB > Nc⇤ the nucleon
density nN / k2FB� ⇡ ⇤k2Q. We set ⇤ = 300MeV
and  = 0.3 to obtain the results shown in Fig. 2. The
rapid increase in the sound velocity for kFB & ⇤ is a
robust prediction of the Quarkyonic phase but its evolu-
tion with density depends sensitively on the details. For
our ansatze the location of the maximum of cS is largely
determined by ⇤ and its magnitude depends both on ⇤
and .
The transition from nuclear matter to the Quarkyonic

phase is second-order in our simple model. The speed of
sound is continuous but its derivative is not. As quarks
appear, pressure remains a smooth, but a more rapidly
increasing function of the energy density. Quite the op-
posite of the behavior encountered in simple models of
the quark-hadron transition, where the transition from

Quarkyonic matter



The effective theory for large 

Disclaimer:  here we consider strong coupling limit, cannot yet keep g2Nc = const

1st step: recalculate previous results for general Nc

Static determinant: 

This determinant vanishes for q > 0 _ q < �2Nf , so from now on we write p = �q. To evaluate this determinant
we employ the techniques described in [2] to obtain an expression for

det
1i,jN

✓✓
A

Li � j

◆◆
. (28)

At first, we clear out all denominators

det
1i,jN

✓✓
A

Li � j

◆◆
= (�1)(

n
2)

NY

i=1

A!

(Li � 1)!(A� Li + n)!
det

1i,jn

0

@
nY

k=j+1

(Li � k �A)

jY

k=2

(Li � k + 1)

1

A.

(29)
Lemma 3 in [2] states that

det
1i,jN

0

@
NY

k=j+1

(Xi +Ak)

jY

k=2

(Xi +Bk)

1

A =
Y

1i<jN

(Xi �Xj)
Y

2ijn

(Bi �Aj), (30)

making the indentifications Xi = Li, Ak = �k �A and Bk = �k + 1 leads to

det
1i,jN

✓✓
A

Li � j

◆◆
= (�1)(

N
2 )

NY

i=1

(A+N � i)Li�i

(Li � 1)!

Y

1i<jN

(Li � Lj), (31)

where we have introduced the underline notation for the falling factorials

nk = n · (n� 1) · · · (n� k + 1). (32)

Up to a relative sign, eq. (31) is a special case of eq. (3.13) in [2], which has been proven in [3]. Indeed, eq. (3.13)
from [2] can be used to evaluate the determinant in (27), however, eq. (31) can be applied to the calculation of
determinants which come up when going beyond the static determinant. Setting A = 2Nf and Li = i + p in
eq. (31) and noting

Y

1i<jN

(i� j) = (�1)(
n
2)

NY

j=2

j�1Y

i=1

(j � i) (33)

= (�1)(
n
2)

N�1Y

j=1

j! (34)

we obtain

det
1i,jN

✓✓
2Nf

i� j + p

◆◆
=

NY

i=1

(i� 1 + 2Nf )
p

(i� 1 + p)p
(35)

=

pY

i=1

(i� 1 + 2Nf � p+N)2Nf�p

(i� 1 + 2Nf � p)2Nf�p , (36)

where the second line is especially advantageous for large N and small Nf . Summarizing these results one
obtains

Z

SU(N)

dU det(1 + h
1

U)
2Nf =

NfX

p=0

 
pY

i=1

(i� 1 + 2Nf � p+N)2Nf�p

(i� 1 + 2Nf � p)2Nf�p

!⇣
hpN
1

+ h
(2Nf�p)N
1

⌘✓
1�

�p,Nf

2

◆
. (37)

3 Calculation of corrections

To calculate the first correction from the hopping expansion one needs to evaluate the integral
Z

SU(N)

dU det(1 + h
1

U)
2Nf tr

✓
h
1

U

1 + h
1

U

◆
=
X

q2Q

Z

U(N)

dU det(U)
q
det(1 + h

1

U)
2Nf tr

✓
h
1

U

1 + h
1

U

◆
. (38)

In diagonal form, the integrand reads

NY

i=1

(1 + h
1

zi)
2Nf zqi

NX

µ=1

h
1

zµ
1 + h

1

zµ
=

NX

µ=1

0

@
Y

i 6=µ

(1 + h
1

zi)
2Nf zqi

1

A(1 + h
1

zµ)
2Nf�1h

1

zq+1

µ . (39)

3

And corrections: 

Although the integrand does not factorize with respect to the integration variables, we can apply eq. (14) and
then use the same logic which led to eq. (17) to arrive at

Z

U(N)

dU det(U)
q
det(1 + h

1

U)
2Nf tr

✓
h
1

U

1 + h
1

U

◆
= h

1

NX

µ=1

det
1i,jN

"(�
2Nf�1

i�j�q�1

�
hi�j�q�1

1

if i = µ�
2Nf

i�j�q

�
hi�j�q
1

else

#
. (40)

We currently do not know how to evaluate these determinants directly, so we choose an alternative approach.
A simple application of Jacobi’s formula shows that for h

1

6= 1 one has

@

@h
1

det(1 + h
1

U)
2Nf =

2Nf

h
1

det(1 + h
1

U)
2Nf tr

✓
h
1

U

1 + h
1

U

◆
(41)

and therefore

Z

U(N)

dU det(U)
q
det(1 + h

1

U)
2Nf tr

✓
h
1

U

1 + h
1

U

◆
=

2NfX

p=0

det
1i,jN

✓
2Nf

i� j + p

◆�
pN

2Nf
hpN
1

, (42)

where the determinant on the right hand side of the equation is the same as in the static case.
The next class of integrals that have to be solved to get higher order corrections are for n,m � 1:

Z

SU(N)

dU det(1 + h
1

U)
2Nf tr

✓
(h

1

U)n

(1 + h
1

U)m

◆
. (43)

Upon expanding the denominator in the trace (and therefore assuming |h
1

| < 1) one can use the same strategy
as for the static determinant to obtain

Z

SU(N)

dU det(1 + h
1

U)
2Nf tr

✓
(h

1

U)n

(1 + h
1

U)m

◆

=

2Nf+1X

p=0

NX

µ=1

u+p�mX

r=max(0,µ�m)

(�1)r
✓
r + n� 1

r

◆
hNp
1

det
1i,jN

"(�
2Nf

i�j+p�m�r

�
if i = µ�

2Nf

i�j+p

�
else

#
(44)
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2Nf+1X
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NX
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r=max(0,µ�m)

(�1)r+µ+1
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◆
hNp
1
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Y
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(2Nf +N � i)p
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(45)

= h
N(2Nf+1)

1

2Nf+N�mX
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(�1)r+N+1

✓
N + r � 1

r
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(2Nf )
2Nf+1�r�m
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2NfX
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hNp
1

det
1i,jN
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2Nf

i� j + p

◆� NX
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µ+p�mX
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(�1)r
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⇥ (�1)µ+1
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(r +m� µ)!(µ� 1)!
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(N + 2Nf � p+ r +m� µ)r+m . (46)

4 Observables for Nf = 2

Including the first correction from the hopping expansion the free energy density reads

w = log(z
0

) +
2Nt

N
(�6Nf )

✓
z
11

z
0

◆
2

, (47)

where

z
0

=

Z

SU(N)

dU det(1 + h
1

U)
2Nf , (48)

z
11
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Z

SU(N)

dU det(1 + h
1

U)
2Nf tr

✓
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1

U
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1

U

◆
. (49)

4

Although the integrand does not factorize with respect to the integration variables, we can apply eq. (14) and
then use the same logic which led to eq. (17) to arrive at

Z

U(N)

dU det(U)
q
det(1 + h

1

U)
2Nf tr

✓
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1

U
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◆
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We currently do not know how to evaluate these determinants directly, so we choose an alternative approach.
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where the determinant on the right hand side of the equation is the same as in the static case.
The next class of integrals that have to be solved to get higher order corrections are for n,m � 1:
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Upon expanding the denominator in the trace (and therefore assuming |h
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4 Observables for Nf = 2

Including the first correction from the hopping expansion the free energy density reads
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Implications for phase diagram
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Figure 5: Left: Onset transition for different values of Nc. Right: Arrows indicate the smooth change of the
phase transition lines with growing Nc.

5.3 Large Nc

Next we extract the terms dominating the thermodynamic functions at large Nc. In this analysis
we have to carefully distinguish between the leading and subleading term in the hopping expan-
sion. Beyond the onset of baryon condensation, the leading term represents the lattice saturation,
which is an unphysical artefact of discretisation. Interestingly, correction terms do not contribute
to saturation, but rather modify the smooth shape of the curves entering their low and high density
asymptotes. We then analyse the behaviour of these terms to the left and the right of the onset
transition.
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For chemical potentials below the onset transition, the fugacity h1 to the power of some Nc always
overwhelms the prefactor, leading to an exponential suppression of both pressure and baryon den-
sity, thus pushing the silver blaze phenomenon further to the right, causing part of the observed
steepening of the onset transition. Note, how our calculation fully reproduces the physics argument
based on the statistical mechanics of a weakly interacting baryon gas. For chemical potentials larger
than the onset transition, the analysis is more tricky. The first term, representing lattice saturation
due to Pauli blocking, trivially scales with Nc, but is unphysical and should disappear to infinity in
the continuum, as discussed above. Intriguingly however, we also find the first correction term to
the pressure to have a leading linear Nc dependence. This term does not end up in lattice saturation
and thus contributes to continuum physics. Taken at face value, this would suggest that, immedi-
ately after the onset transition, quarkyonic matter and baryonic matter are the same. Clearly, this
preliminary investigation should be supplemented by gauge and possibly higher order corrections,
as well as an analysis of the possible caveats mentioned before.
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Conclusions

QCD at finite density possible with effective lattice theories

Full deconfinement transition for heavy quarks near continuum

Chiral transition in strong coupling region

Nuclear liquid gas transition, endpoint as function of quark mass

Tool development to move on to physically interesting parameter space



Conclusions

Finite density QCD enormous challenge, but urgently needed

QCD description of nuclear densities now possible for  
 
-heavy quarks near continuum  
 
-chiral quarks on coarse lattices

Can this be pushed far enough to cover light quarks near the continuum?
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Convergence of the effective theory  
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Figure 2. Left: Convergence of the baryon density as a function of h2, computed with effective
actions of different orders in the hopping expansion. Right: Convergence in u.

3. Simulation of the effective theory

Our first task is to assess the range of validity of this new action. One expects the additional
orders in  to extend the convergence region, within which the description of thermodynamic
functions by the effective action is reliable. We test this by computing the baryon number
density at fixed values of temperature and chemical potential slightly beyond the onset
transition. We begin by investigating the hopping expansion in the strong coupling limit.
(left) shows the results obtained with effective actions of increasing order in . One observes
clearly how two adjacent orders stay together for larger values of h2 as the order is increased,
thus extending the range where our effective action is reliable. Fig. 2 (right) shows the
same exercise for the larges  considered in this work, this time increasing the orders of
the character expansion. We observe good convergence up to � ⇠ 6, which is a sufficiently
weak coupling to allow for continuum extrapolations. It is interesting to note that the
convergence properties are not determined by the size of the expansion parameters alone.
Even though the u(�)-values far exceed the -values employed in the figures, convergence
in u(�) appears to be faster.

The gain in convergence region can be exploited in two ways. Firstly, at fixed temperature
and quark masses it allows for the use of finer lattices, which can be employed in a continuum
extrapolation. Fig. 3 shows results from our previous simulations obtained with the 4

action at two values of µ > µ
c

. The baryon density just about reaches the domain with
leading cut-off effects linear in a, as expected for Wilson fermions. The break-off from this
behaviour (circled data points) is due to truncation errors and indicates the limit of validity
of the effective action. The new data generated with the 8-action indeed smoothly extends
the linear section towards the continuum limit. We conclude that the hopping expansion is
systematic and controlled, with additional orders in the action allowing for simulations on
finer lattices. For sufficiently heavy masses a continuum extrapolation appears possible.

Fig. 3 highlights an important issue regarding simulations of finite baryon density, irre-
spective of algorithms and full vs. effective actions. Because of the finite number of lattice
sites available, the Pauli principle leads to a saturation density of nsat

B

= 2N
f

baryons per

– 6 –

hopping expansion in strong coupling limit strong coupling expansion at 8



Resummations + reach in mass range
a3
n
B

h
2

O(2
)

O(4
)

O(6
)

O(8
)

a3
n
B

h
2

O(2
)

O(4
)

O(6
)

O(8
)

n
B
/m

3 B

m⇡[GeV]

T = 10

a = 0.1

µB = 0.999nB

4

6

8

Figure 9. Left: Convergence of the resummation-improved results. Right: Baryon number density
as a function of pion mass including chain resummation. The convergence region is extended
compared to Fig. 4.
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Figure 10. Baryon number density as a function of pion mass obtained analytically with the chain
resummation. Error bars reflect different orders in the expansion as well as varying number of
points used in the continuum extrapolation.

one sees a comparable increase in convergence to that from the Padé approximation. This
is both expected and reassuring as both approaches produce rational expressions, and the
superior convergence of the Padé is expected due to the fact that it is not restricted to a
particular class of diagrams and might therefore predict higher order behaviour.

In Fig. 9 (right) we have repeated the pion mass convergence plot and one can see that
the resummation extends the convergence region in a natural way.

We now give our final result, the equation of state for nuclear matter with heavy quarks
calculated fully analytically, Fig. 10. The error bars represent the uncertainty resulting
from continuum extrapolations including a varying number of points. The line represents
a fit to a polytropic equation of state for non-relativistic fermions,

p

m4

B

⇠ 0.0429(29)

✓
n
B

m3

B

◆
5/3

. (5.6)
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Resumming long range non-overlapping chains, gain in mass range ‘’sobering’’  
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3.3 The static strong coupling limit for Nf = 2 at finite baryon density

For β = 0, the partition function consists of the static determinant factors only

Z(β = 0) =
[

∫

[dW ]
∏
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(1 + huLx⃗ + h2
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∗
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dLx⃗ + h̄3
d)

2
]V

= zV0 .

We again consider the zero temperature limit at µ > 0, for which the anti-quark
contributions vanish. After the gauge integration the result reads

z0 = (1 + 4h3
d + h6

d) + (6h2
d + 4h5

d)hu + (6hd + 10h4
d)h

2
u + (4 + 20h3
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d)h
5
u + (1 + 4h3

d + h6
d)h

6
u . (3.11)

All exponents of hn
uh

m
d come in multiples of three, n + m = mod 3. Just as in the

one-flavour case (with hd = 0), this has the form of a free baryon gas where the
prefactors give the degeneracy of the spin multiplets. Note that for Nf = 2 we also

find the standard spin 1/2 nucleons and many more combinations. To illustrate the
prefactors, consider the example h2

uhd. There is the spin 1/2 doublet, the proton,

as well as a spin 3/2 quadruplet, the ∆+, i.e. six states altogether. The states
corresponding to h2

dhu are the neutron and the ∆0, while h3
u, h

3
d are the ∆++,∆−

quadruplets, respectively. It continues with six-quark states. For example, h4
uh

2
d has

10 allowed spin-flavour combinations, corresponding to three spin 1 triplets and one
spin 0 singlet. These are consistent with an interpretation as di-baryon states built of

∆++∆0 or pp. Thus, eq. (3.11) contains all baryonic spin-flavour multiplets that are
consistent with the Pauli principle, i.e. up to a maximum of 12 constituent quarks.

The quark density reads

nB =
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. (3.12)

In the high density limit numerator and denominator are dominated by the term
with the highest power and we obtain

lim
µ→∞

(a3n) = 2 · 2 ·Nc ≡ 4(a3nB,sat) . (3.13)
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Free gas of baryons: complete spin flavor structure of vacuum states!


