Characterizing the Bulk Properties of Dense Baryonic Matter

9th International Symposium on Non-Equilibrium Dynamics

> Krabi, Thailand Nov. 28. – Dec. 2., 2022

Dense Baryonic Matter

Physics Topics

Open questions

Origin of hadron masses Role of of condensates QCD-Confinement Equation-of-state of dense matter

Super-dense matter in the laboratory

Neutron Star Merger

Observation via gravitational waves GW170817: B.P. Abott et al. (LIGO + VIRGO) PRL 119 (2017) 1611001

Sensitivity to equation-of-state

Super-dense matter in the universe

Density profile across a merging NS binary system. Taken t = 1.4 ms (t = 0 see below).

M. Hanauske, L. Rezzolla et al. J.Phys.Conf.Ser. 878 (2017) no.1, 012031

Dense Baryonic Matter Relation to Neutron Star Mergers

Dense Baryonic Matter

Topics of this Talk

Collective effects Proton, deuteron and triton flow results up to 4^{th} order (v_1 , v_2 , v_3 , v_4)

Femtoscopy Fireball size and dynamics from two-pion correlations

Vorticity Global A polarization

Baryon number fluctuations Proton fluctuations at low energies

Principle

NeD-Workshop Krabi, Thailand, 2022

Event Plane

Collective Effects Energy Dependence

Compilation of world data

Good agreement of integrated dv_1/dy (directed flow) and v_2 (elliptic flow)

Out-of-plane v_2

Long spectator passing time $\tau_{\text{passing}} \approx \tau_{\text{expansion}} \Longrightarrow$ "squeeze-out"

Results on v_1 , v_2 , v_3 and v_4 for Protons, Deuterons and Tritons

Christoph Blume

NeD-Workshop Krabi, Thailand, 2022

Results on $v_1 - v_6$ for Protons, Deuterons and Tritons

Christoph Blume

NeD-Workshop Krabi, Thailand, 2022

3D-Representation

Complete picture of flow pattern in three dimensions

Shape determined by flow coefficients $v_1 - v_6$

Complex evolution of shape as function of rapidity

Relation between v_2 and v_4

Scaling properties Prediction for ideal fluid: $\frac{v_4(p_t)}{v_2^2(p_t)} = \frac{1}{2}$

P.F. Kolb, PRC **67** (2003) 031902 N. Borghini and J.-Y. Oliitrault, PLB **642** (2006) 227 C. Gombeaud and J.-Y. Ollitrault, PRC **81** (2010) 014901 Slightly higher values (~ 0.6) expected in more realistic scenario

Observed ratios for p, d and t

Independent of p_t Close to predicted value of ~ 0.6

Hydro-like matter at SIS energies?

Scaling Properties of v_2 and v_4 at Mid-Rapidity

Geometry Scaling

Scaling with Initial Eccentricities Calculated for overlap zone with Glauber MC

 $v_2 / \langle \varepsilon_2 \rangle$ and $v_4 / \langle \varepsilon_2 \rangle^2$ almost independent of centrality $(v_4 / \langle \varepsilon_4 \rangle$ is not) \Rightarrow Fixed relation between v_2 and v_4 (different to high energies)

Model Comparisons to Proton Data

Determination of EOS

New level of precision Additional information from higher orders

Models:

JAM 1.9 NS3 (hard EOS, mom.-indep.) JAM 1.9 MD1 (hard EOS, mom.-dep.) JAM 1.9 MD4 (soft EOS, mom.dep.) UrQMD 3.4 (hard EOS, mom.-indep.) GiBUU Skyrme 12 (soft EOS)

Conclusions

Overall trend reasonably described, but no model works everywhere

Several systematic deviations

Unified description of cluster production missing

Femtoscopy

Principle

Femtoscopy Charged Bion Correlatio

Charged-Pion Correlations

R. Greifenhagen, QM19 HADES Phys. Lett. **B795** (2019) 446 Eur. Phys. J. **A56** (2020) 140

Femtoscopy Radius Parameters

Energy dependence R_{out} , R_{side} and R_{long}

HADES result follows trend from higher energies (SPS, RHIC) Room for structures at low energies as indicated by E895 data?

1st observation of charge sign difference

HADES Phys. Lett. **B795** (2019) 446 Eur. Phys. J. **A56** (2020) 140

Femtoscopy Radius Parameters

Energy dependences

Freeze-out volume: HADES result follows trend from higher energies (SPS, RHIC) Room for structures at low energies as indicated by E895 data?

HADES Eur. Phys. J. **A56** (2020) 140

Difference between R_{out} and R_{side} close to zero (HADES), maximal for intermediate energies (top-SPS, RHIC)

Christoph Blume

NeD-Workshop Krabi, Thailand, 2022

Femtoscopy Azimuthal Dependence

Fits relative to event plane

Rotation of osl-system relative to EP-system Formulas: PLB **496** (2000) 1, PRC **57** (1998) 266 Corrected for EP-resolution

 \Rightarrow Access to event shape parameters

Eccentricity ε in xy-plane

Compare to initial participant eccentricity $\varepsilon_{\rm initial}$ from Glauber MC

Early stage (high $p_{t,12}$): $\varepsilon_{\text{final}} \approx \varepsilon_{\text{initial}}$ Late stage (low $p_{t,12}$): $\varepsilon_{\text{final}} \rightarrow 0$

Femtoscopy Azimuthal Dependence

HADES Eur. Phys. J. **A56** (2020) 140

Christoph Blume

NeD-Workshop Krabi, Thailand, 2022

Vorticity Principle of Global A Polarization

Global polarization Large angular momenta $|L| \sim 10^5 \hbar$ Extreme vorticities possible ($\omega \approx 10^{21} \text{ s}^{-1}$)

Observable via polarization of spins relative to event plane (spin-orbit coupling, e.m.-coupling)

Observable

Weak decay: $\Lambda \rightarrow p + \pi^-$ Proton preferentially in spin direction \Rightarrow Polarization P_{Λ} :

$$P_{\Lambda} = \frac{8}{\pi \, \alpha_{\Lambda}} \, \frac{\langle \sin(\Psi_{EP} - \phi_p^*) \rangle}{R_{EP}}$$

Λ decay parameter: $a_{\Lambda} = 0.643 \pm 0.013$ $\Psi_{\text{EP}} = \text{event plane angle}, R_{\text{EP}} = \text{EP-resolution}$ $Φ^*_p = \text{proton azimuth angle relative to EP}$

Z. Liang and X.N. Wang, PRL **94** (2005) 102301

F. Becattini et al, PRC **95** (2017) 054902

STAR Collaboration, PRC **76** (2007) 024915

HADES Collaboration PLB **835** (2022) 137506

Vorticity

Measurements in Au+Au ($\sqrt{s_{NN}}$ = 2.42 GeV) and Ag+Ag ($\sqrt{s_{NN}}$ = 2.55 GeV)

Analysis procedure EP estimation from spectators Optimized Λ reconstruction with ANN

Results (10–40 % cent.) $P_{\wedge}(Au+Au) = (5.3 \pm 1.0 \text{ (stat.)} \pm 1.3 \text{ (syst.)}) \%$ $P_{\wedge}(Ag+Ag) = (4.4 \pm 0.3 \text{ (stat.)} \pm 0.4 \text{ (syst.)}) \%$

Highest values measured at strangeness production threshold $\sqrt{s_{NN}} = 2.55 \text{ GeV}$ (should vanish around $\sqrt{s_{NN}} \sim 2 m_N \approx 1.9 \text{ GeV}$)

Agrees with 3D-fluid-dynamical model AMPT underestimates data

HADES Phys. Lett. **B835** (2022) 137506

Vorticity

Measurements in Au+Au ($\sqrt{s_{NN}}$ = 2.42 GeV) and Ag+Ag ($\sqrt{s_{NN}}$ = 2.55 GeV)

Centrality dependence

Increase towards less central events Same trend as in STAR data (different phase space!)

Phase space dependence

No strong dependence on *pt* and *y* observed

Model comparison

Good agreement with UrQMD + thermal vorticity O. Vitiuk et al., Phys. Lett. **B803** (2020) 135298

HADES Phys. Lett. **B835** (2022) 137506

Vorticity Outlook

Baryon Number Fluctuations Motivation

(proxy for baryon number)

Baryon Number Fluctuations Corrections

Baryon Number Fluctuations

Energy Dependence of Scaled Cumulants

Extension of STAR-BES results Skewness (K_3/K_2): smooth trend Kurtosis (K_4/K_2): change of sign (0-10(5)%)

Contribution from spectators Fluctuation sources: fireball ↔ spectators Relative admixture energy dependent!

⇒ Two rapidity intervals shown: $y_0 \pm 0.2$ and $y_0 \pm 0.4$ (STAR: $y_0 \pm 0.5$) HADES, Phys. Rev. C102 (2020) 024914

Outlook Include bound protons (d, t, He) Ag+Ag data

Baryon Number Fluctuations

Energy Dependence of Scaled Cumulants

Extension of STAR-BES results

Kurtosis (K_4 / K_2): change of sign (0-10(5)%)

Agrees with STAR fixed target result at $\sqrt{s_{NN}} = 3$ GeV

Current situation

Non-monotonous vs. smooth behavior? Evidence for critical point?

Large corrections \Rightarrow large systematic uncertainties Systematic measurements at low energies needed

CBM physics program (first three years):

Complete excitation function of $\kappa_4(p)$, First results on $\kappa_6(p)$, Extension into strangeness sector $\kappa_4(\Lambda)$


```
HADES,
Phys. Rev. C102 (2020) 024914
```

STAR, Phys. Rev. Lett. **128** (2022) 202303

NeD-Workshop Krabi, Thailand, 2022

Conclusions

High precision flow data will provide constraints on EOS

Bayesian analysis (similar to: Kuttan et al., arXiv:2211.11670 or Huth et al., Nature **606** (2022) 276) ? Consistent modeling of cluster formation essential

Smooth evolution of femtoscopic radius parameter Difference between R_{out} and R_{side} close to zero at low energies

Vorticity maximal close to strangeness threshold

Effect measured via global A polarization Driving mechanism for the coupling of orbital momentum to spin not yet fully understood

Baryon number fluctuations: kurtosis negative at low energies Evidence for any non-monotonic behavior?

Precision measurements at low energies needed \Rightarrow CBM physics program

BACKUP

Dense Baryonic Matter

Heavy-Ion Collisions

Model Comparisons to Proton Data

Determination of EOS New level of precision Additional information from higher orders

Next Steps towards EOS

More detailed comparisons \Rightarrow Bayesian analysis

Other models, e.g. PHQMD

Same recipe for cluster formation (?) Exploit also data on d and t in unified manner

Combination with other observables and results from astrophysics

Results on v_1 , v_2 , v_3 and v_4 for Protons, Deuterons and Tritons

Results on v_1 , v_2 , v_3 and v_4 for Protons, Deuterons and Tritons

HADES Au+Au √s_{NN} = 2.4 GeV HADES Au+Au √S_{NN} = 2.4 GeV ۰1 <u>م</u> 0.6 < p_t < 0.9 GeV/c
 1.5 < p_t < 1.8 GeV/c Protons 0.6
 1.5 dv₃/dy'|_{y'=} Protons dv₁/dy'| 1.6 - • Deuterons Deuterons 0 Tritons Tritons 1.2 1 0 [2] • • -0.1 • • • -0.2 0.8 e e 0.6 ٠ • -0.3 **•**• 0.4 • -0.40.2 -0.5 0_____ For a farme for a 20 35 30 35 5 10 15 25 30 40 0 5 10 15 20 25 40 Centrality (%) Centrality (%) Au+Au √S_{NN} = 2.4 GeV HADES Au+Au √s_{NN} = 2.4 GeV HADES 2 $^{\mathsf{2}}_{\mathsf{4}}$ 0.6 • 0.6 < p, < 0.9 GeV/c Protons Protons 1.5 0.1 o 1.5 < p < 1.8 GeV/c ----0.08 Deuterons Deuterons Tritons Tritons 0.06 **.** . . B 0.04 -0.1 o P r 🕄 0.02 -0.2 0 0 -0.3 똉 ly_{cm}l < 0.05 ly__l < 0.05 -0.02 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 Centrality (%) Centrality (%)

HADES, arXiv:2208.02740

Christoph Blume

Centrality

Dependence

NeD-Workshop Krabi, Thailand, 2022

Results on v_1 , v_2 , v_3 and v_4 for Protons, Deuterons and Tritons

HADES, arXiv:2208.02740

Christoph Blume

NeD-Workshop Krabi, Thailand, 2022

Proton Number Fluctuations NNLO Volume Corrections

 $\tilde{\kappa}_1 = \kappa_1 + v_2 \kappa_1' \,,$ $\tilde{\kappa}_{2} = \kappa_{2} + \kappa_{1}^{2} v_{2} + \kappa_{2}' v_{2} + 2\kappa_{1} \kappa_{1}' V_{2} + 2\kappa_{1} \kappa_{1}' v_{3} + 2\kappa_{1}'^{2} v_{2} V_{2} + \kappa_{1}'^{2} V_{1} V_{2} + 2\kappa_{1}'^{2} V_{3} + \kappa_{1}'^{2} v_{4}$ $\tilde{\kappa}_3 = \kappa_3 + \kappa_1^3 v_3 + 3\kappa_1 \kappa_2 v_2 + 3(\kappa_1 \kappa_2' + \kappa_1' \kappa_2) v_3 + 6\kappa_1' (\kappa_1^2 + \kappa_2') v_2 V_2 + 3\kappa_1' (\kappa_1^2 + 2\kappa_2') V_3$ $+3\kappa_{1}'(\kappa_{1}^{2}+\kappa_{2}')v_{4}+12\kappa_{1}\kappa_{1}'^{2}V_{2}^{2}+3\kappa_{1}\kappa_{1}'^{2}V_{1}V_{3}+24\kappa_{1}\kappa_{1}'^{2}v_{2}V_{3}+6\kappa_{1}\kappa_{1}'^{2}V_{4}+3\kappa_{1}\kappa_{1}'^{2}v_{5}$ $+3(\kappa_1\kappa_2'+\kappa_1'\kappa_2)V_2+8\kappa_1'^3v_2V_2+6\kappa_1'^3V_1V_2+10\kappa_1'^3v_3V_3+\kappa_1'^3V_1^2V_3+24V_2V_3\kappa_1'^3$ $+3\kappa_{1}^{\prime 3}V_{1}V_{4}+12\kappa_{1}^{\prime 3}v_{2}V_{4}+3\kappa_{1}^{\prime 3}V_{5}+\kappa_{1}^{\prime 3}v_{6}+3\kappa_{1}^{\prime}\kappa_{2}^{\prime}V_{1}V_{2}+\kappa_{2}^{\prime}v_{2}$ $\tilde{\kappa}_{4} = \kappa_{4} + \kappa_{1}^{4} v_{4} + 6\kappa_{1}^{2} \kappa_{2} v_{3} + (4\kappa_{1}\kappa_{3} + 3\kappa_{2}^{2})v_{2} + 24(\kappa_{1}^{3}\kappa_{1}' + 4\kappa_{1}\kappa_{1}'\kappa_{2}' + 2\kappa_{1}'^{2}\kappa_{2})v_{2}V_{3}$ $+4(\kappa_1^3\kappa_1'+6\kappa_1\kappa_1'\kappa_2'+3\kappa_1'^2\kappa_2)V_4+2(2\kappa_1^3\kappa_1'+6\kappa_1\kappa_1'\kappa_2'+3\kappa_1'^2\kappa_2)v_5$ + $48(\kappa_1^2\kappa_1'^2 + \kappa_1'^2\kappa_2')v_2V_2^2 + 12(4\kappa_1^2\kappa_1'^2 + 5\kappa_1'^2\kappa_2')v_3V_3 + 72(\kappa_1^2\kappa_1'^2 + 2\kappa_1'^2\kappa_2')V_2V_3$ $+ 6(\kappa_1^2 \kappa_1^{\prime 2} + 3\kappa_1^{\prime 2} \kappa_2^{\prime})V_1 V_4 + 72(\kappa_1^2 \kappa_1^{\prime 2} + \kappa_1^{\prime 2} \kappa_2^{\prime})v_2 V_4 + 6(2\kappa_1^2 \kappa_1^{\prime 2} + 3\kappa_1^{\prime 2} \kappa_2^{\prime})V_5$ $+ 6(\kappa_1^2 \kappa_1'^2 + \kappa_1'^2 \kappa_2')v_6 + 2(6\kappa_1^2 \kappa_2' + 12\kappa_1 \kappa_1' \kappa_2 + 4\kappa_1' \kappa_2' + 3\kappa_2'^2)v_2 V_2$ $+2(3\kappa_1^2\kappa_2'+6\kappa_1\kappa_1'\kappa_2+4\kappa_1'\kappa_2'+3\kappa_2'^2)V_3+2(3\kappa_1^2\kappa_2+2\kappa_1\kappa_2'+2\kappa_1'\kappa_3+3\kappa_2\kappa_2')v_3$ + $(6\kappa_1^2\kappa_2' + 12\kappa_1\kappa_1'\kappa_2 + 4\kappa_1'\kappa_3' + 3\kappa_2'^2)v_4 + 96\kappa_1\kappa_1'^3V_2^3 + 96\kappa_1\kappa_1'^3V_2^2 + 288\kappa_1\kappa_1'^3v_3V_2^2$ $+72\kappa_{1}\kappa_{1}^{\prime3}V_{1}V_{2}V_{3}+4\kappa_{1}\kappa_{1}^{\prime3}V_{1}^{2}V_{4}+144\kappa_{1}\kappa_{1}^{\prime3}V_{2}V_{4}+128\kappa_{1}\kappa_{1}^{\prime3}v_{3}V_{4}+12\kappa_{1}\kappa_{1}^{\prime3}V_{1}V_{5}$ $+72\kappa_1\kappa_1'^3v_2V_5+12\kappa_1\kappa_1'^3V_6+4\kappa_1\kappa_1'^3v_7+24(2\kappa_1\kappa_1'\kappa_2'+\kappa_1'^2\kappa_2)V_2^2+6(2\kappa_1\kappa_1'\kappa_2'+\kappa_1'^2\kappa_2)V_1V_3$ $+2(2\kappa_1\kappa_2'+2\kappa_1'\kappa_3+3\kappa_2\kappa_2')V_2+48\kappa_1'^4v_2V_2^3+48\kappa_1'^4V_1V_2^3+48\kappa_1'^4V_1V_2^2+240\kappa_1'^4v_2V_2^2$ $+32\kappa_{1}^{\prime4}v_{4}V_{4}+288\kappa_{1}^{\prime4}V_{2}^{2}V_{3}+24\kappa_{1}^{\prime4}V_{1}^{2}V_{2}V_{3}+\kappa_{1}^{\prime4}V_{1}^{3}V_{4}+144\kappa_{1}^{\prime4}v_{4}V_{2}^{2}+72\kappa_{1}^{\prime4}V_{1}V_{2}V_{4}$ $+ 128\kappa_1^{\prime 4}V_3V_4 + 4\kappa_1^{\prime 4}V_1^2V_5 + 72\kappa_1^{\prime 4}V_2V_5 + 56\kappa_1^{\prime 4}v_3V_5 + 6\kappa_1^{\prime 4}V_1V_6 + 24V_2V_6\kappa_1^{\prime 4}v_2V_6 + 4\kappa_1^{\prime 4}V_7$ $+\kappa_{1}^{\prime 4}v_{8}+36\kappa_{1}^{\prime 2}\kappa_{2}^{\prime}V_{1}V_{2}^{2}+6\kappa_{1}^{\prime 2}\kappa_{2}^{\prime}V_{1}^{2}V_{3}+4\kappa_{1}^{\prime}\kappa_{2}^{\prime}V_{1}V_{2}+3\kappa_{2}^{\prime 2}V_{1}V_{2}+\kappa_{4}^{\prime}v_{2}.$

Proton Number Fluctuations Reduced Proton Cumulants (Fully Corrected)

