

Properties of strongly interacting matter

Elena Bratkovskaya (GSI, Darmstadt & Uni. Frankfurt)

for the PHSD group

9th International Symposium on Non-equilibrium Dynamics (NeD-2022) 28 November - 2 December, 2022 Krabi, Thailand

The ,holy grail' of heavy-ion physics:

The phase diagram of QCD \rightarrow thermal properties of QCD in the (T, μ_B) plain

Dynamical Models -> PHSD

The goal:

to describe the dynamics of hadrons and partons in all phases of HICs on a microscopic basis

Realization:

a dynamical non-equilibrium transport approach

- □ applicable for strongly interacting systems,
- which includes a phase transition from hadronic matter to QGP

The tool: PHSD approach

Baryons Au + Au $\sqrt{s_{NN}} = 200 \text{ GeV}$ Antibaryons Image: Aution of the section view Mesons Image: Aution of the section view Quarks Image: Building of the section view

Degrees-of-freedom of QGP

For the microscopic transport description of the system one needs to know all degrees of freedom as well as their properties and interactions!

IQCD gives QGP EoS at finite μ_B

! need to be interpreted in terms of degrees-of-freedom

pQCD:

weakly interacting system

massless quarks and gluons

How to learn about the degrees-of-freedom of the QGP from HICs?
→ microscopic transport approaches
→ comparison to HIC experiments

Thermal QCD = QCD at high parton densities:

- strongly interacting system
- massive quarks and gluons
- ➔ quasiparticles
- = effective degrees-of-freedom

Thermal QCD ->

DQPM (Τ, μ_q)

finite T,µq

DQPM – effective model for the description of non-perturbative (strongly interacting) QCD based on IQCD EoS

Degrees-of-freedom: strongly interacting dynamical quasiparticles - quarks and gluons

Theoretical basis :

□ ,resummed' single-particle Green's functions → quark (gluon) propagator (2PI) :

gluon propagator: $\Delta^{-1} = P^2 - \Pi$ & quark propagator $S_q^{-1} = P^2 - \Sigma_q$ gluon self-energy: $\Pi = M_g^2 - i2\gamma_g \omega$ & quark self-energy: $\Sigma_q = M_q^2 - i2\gamma_q \omega$

Properties of the quasiparticles are specified by scalar complex self-energies:

 $Re\Sigma_q$: thermal masses (M_g, M_q); $Im\Sigma_q$: interaction widths (γ_g, γ_q)

→ spectral functions $\rho_q = -2ImS_q \rightarrow$ Lorentzian form:

$$\begin{split} \rho_j(\omega, \mathbf{p}) &= \frac{\gamma_j}{\tilde{E}_j} \left(\frac{1}{(\omega - \tilde{E}_j)^2 + \gamma_j^2} - \frac{1}{(\omega + \tilde{E}_j)^2 + \gamma_j^2} \right) \\ &\equiv \frac{4\omega\gamma_j}{\left(\omega^2 - \mathbf{p}^2 - M_j^2\right)^2 + 4\gamma_j^2\omega^2} \qquad \tilde{E}_j^2(\mathbf{p}) = \mathbf{p}^2 + M_j^2 - \gamma_j^2 \end{split}$$

ρ(ω,p) [GeV 15 10

0.5 p [GeV]

0.5 ω [GeV]

Parton properties

Modeling of the quark/gluon masses and widths (ansatz inspired by HTL calculations)

Masses:

Widths:

$$M_{q(\bar{q})}^{2}(T,\mu_{B}) = \frac{N_{c}^{2}-1}{8N_{c}}g^{2}(T,\mu_{B})\left(T^{2}+\frac{\mu_{q}^{2}}{\pi^{2}}\right)$$
$$M_{g}^{2}(T,\mu_{B}) = \frac{g^{2}(T,\mu_{B})}{6}\left(\left(N_{c}+\frac{1}{2}N_{f}\right)T^{2}+\frac{N_{c}}{2}\sum_{q}\frac{\mu_{q}^{2}}{\pi^{2}}\right)$$

➔ DQPM :

Fit lattice

15

10

0.15

P/T⁴ e/T⁴

s/T³

0.20

0.25

0.30

T [GeV]

only one parameter (c = 14.4) + (T, μ_B)- dependent coupling constant has to be determined from lattice results

EoS $\mu_B = 0$ from WB

0.35

Phys.Lett. B730 (2014) 99-104

0.40

0.45

$$\gamma_{q(\bar{q})}(T,\mu_B) = \frac{1}{3} \frac{N_c^2 - 1}{2N_c} \frac{g^2(T,\mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T,\mu_B)} + 1\right)$$
$$\gamma_g(T,\mu_B) = \frac{1}{3} N_c \frac{g^2(T,\mu_B)T}{8\pi} \ln\left(\frac{2c}{g^2(T,\mu_B)} + 1\right)$$

Coupling g: input - IQCD entropy density sfunction of T at μ_B =0

$$g^2(s/s_{SB}) = d\left((s/s_{SB})^e - 1\right)^f$$

 $s_{SB}^{QCD} = 19/9\pi^2 T^3$

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

0.50

DQPM at finite (T, μ_q): scaling hypothesis

□ Scaling hypothesis for the effective temperature T* for N_f = N_c = 3 W. Cassing, NPA 791 (2007) 365

$$\mu_u = \mu_d = \mu_s = \mu_q$$

$$T^{*2} = T^2 + \frac{\mu_q^2}{\pi^2}$$

Coupling:

$$g(T/T_c(\mu=0)) \longrightarrow g(T^{\star}/T_c(\mu))$$

Critical temperature T_c(μ_q) in crossover region: obtained by assuming a constant energy density ε along a critical line T=T_c(μ_q), where ε at T_c(μ_q=0)=156 GeV is fixed by IQCD at μ_q=0

$$\frac{T_c(\mu_q)}{T_c(\mu_q=0)} = \sqrt{1-\alpha \ \mu_q^2} \approx 1-\alpha/2 \ \mu_q^2 + \cdots$$

(MeV) 150 IQCD emperature 100 freeze-out [Becattini et.al., Cleymons et.al. 2005] -out parametrization [Andronic et.al. 2008] 50 odified statistical fit [Becattini et.al. 2012] out from fluctuations [Albo et.al. 2014] 200 400 Baryonic chemical potential (MeV) 0.18 0.16 0.14 0.12 -μ,=μ,=μ₀/3 **T[GeV]** 0.10 DQPM15 IQCD iµ 0.08 Cea et al. 1403.0821 0.06 μ **=0** IQCD Taylor-exp. 0.04 Endrodi et al. 1102.1356 0.02 0.00 <u>–</u> 0.0 0.2 0.4 0.6 μ_в[GeV]

$$\alpha \approx 8.79 \text{ GeV}^{-2}$$

! Consistent with lattice QCD:

IQCD: C. Bonati et al., PRC90 (2014) 114025

$$\frac{T_c(\mu_B)}{T_c} = 1 - \kappa \left(\frac{\mu_B}{T_c}\right)^2 + \cdots$$

IQCD $\kappa = 0.013(2)$

 $\leftarrow \sim \kappa_{DOPM} \approx 0.0122$

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

DQPM thermodynamics at finite (T, μ_q)

Entropy and baryon density in the quasiparticle limit (G. Baym 1998):

$$s^{dqp} = n^{dqp} = -\int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \left[d_g \frac{\partial n_B}{\partial T} \left(\operatorname{Im}(\ln - \Delta^{-1}) + \operatorname{Im} \Pi \operatorname{Re} \Delta \right) \right] = n^{dqp} = -\int \frac{d\omega}{2\pi} \frac{d^3p}{(2\pi)^3} \left[\int_{q=u,d,s} d_q \frac{\partial n_F(\omega - \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_q^{-1}) + \operatorname{Im} \Sigma_q \operatorname{Re} S_q \right) \right] = + \sum_{q=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial T} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = + \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = + \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega + \mu_q)}{\partial \mu_q} \left(\operatorname{Im}(\ln - S_{\bar{q}}^{-1}) + \operatorname{Im} \Sigma_{\bar{q}} \operatorname{Re} S_{\bar{q}} \right) = - \sum_{\bar{q}=\bar{u},\bar{d},\bar{s}} d_{\bar{q}} \frac{\partial n_F(\omega +$$

B. vanderneyden, G. Baym, J. Stat. Phys. 93 (1998) 843Blaizot, Iancu, Rebhan, Phys. Rev. D 63 (2001) 065003

DQPM: parton properties

Partonic interactions: matrix elements

DQPM partonic cross sections → leading order diagrams

H. Berrehrah et al, PRC 93 (2016) 044914, Int.J.Mod.Phys. E25 (2016) 1642003,

P. Moreau et al., PRC100 (2019) 014911

Differential cross sections

Plot by Ilia Grishmanovskii

DQPM: $M \rightarrow 0$, $\gamma \rightarrow 0 \rightarrow$ reproduces pQCD limits

Differences between DQPM and pQCD : less forward peaked angular distribution leads to more efficient momentum transfer

P. Moreau et al., PRC100 (2019) 014911

Total cross section

DQPM: Mean-field potential for quasiparticles

Space-like part of energy-momentum tensor $T_{\mu\nu}$ defines the potential energy density:

$$V_p(T,\mu_q) = T_{g-}^{00}(T,\mu_q) + T_{q-}^{00}(T,\mu_q) + T_{\bar{q}-}^{00}(T,\mu_q)$$

space-like gluons + space-like quarks+antiquarks

→ Mean-field scalar potential (1PI) for quarks and gluons (U_q , U_g) vs parton scalar density ρ_s :

$$U_s(\rho_s) = \frac{dV_p(\rho_s)}{d\rho_s} \qquad \rho_S = N_g^+ + N_q^+ + N_{\overline{q}}^+$$

$$Uq=Us$$
, $Ug\sim 2Us$

Quasiparticle potentials (Uq, Ug) are repulsive !

→ the force acting on a quasiparticle j:

$$F \sim M_j / E_j \nabla U_s(x) = M_j / E_j \ dU_s / d\rho_s \ \nabla \rho_s(x)$$
$$j = g, q, \bar{q}$$

$$\begin{split} \tilde{\mathrm{T}}\mathbf{r}_{\mathbf{g}}^{\pm} \cdots &= \mathbf{d}_{\mathbf{g}} \int \frac{\mathrm{d}\omega}{2\pi} \frac{\mathrm{d}^{3}\mathbf{p}}{(2\pi)^{3}} \, 2\omega \, \rho_{\mathbf{g}}(\omega) \, \mathbf{\Theta}(\omega) \, \mathbf{n}_{\mathbf{B}}(\omega/\mathbf{T}) \, \, \mathbf{\Theta}(\pm\mathbf{P}^{2}) \cdots \\ \tilde{\mathrm{T}}\mathbf{r}_{q}^{\pm} \cdots &= d_{q} \int \frac{\mathrm{d}\omega}{2\pi} \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \, 2\omega \, \rho_{q}(\omega) \, \mathbf{\Theta}(\omega) \, n_{F}((\omega-\mu_{q})/T) \, \, \mathbf{\Theta}(\pm P^{2}) \cdots \\ \tilde{\mathrm{T}}\mathbf{r}_{\bar{q}}^{\pm} \cdots &= d_{\bar{q}} \int \frac{\mathrm{d}\omega}{2\pi} \frac{\mathrm{d}^{3}p}{(2\pi)^{3}} \, 2\omega \, \rho_{\bar{q}}(\omega) \, \mathbf{\Theta}(\omega) \, n_{F}((\omega+\mu_{q})/T) \, \, \mathbf{\Theta}(\pm P^{2}) \cdots \end{split}$$

Cassing, NPA 791 (2007) 365: NPA 793 (2007)

DQPM (T, μ_q): transport properties at finite (T, μ_q)

QGP near equilibrium

The properties of QGP in HICs \rightarrow transport coefficients

Properties of the QGP near equilibrium are characterized by transport coefficients

Shear η , bulk viscosity ζ , ... are 'input' for the viscous hydrodynamic models!

The properties of QGP from HIC - shear viscosity

The shear viscosity of a system measures its resistance to 'deformation', i.e. to flow

Compilation of the ratio of shear viscosity to entropy density (η /s) for various substances:

Exp. data + IQCD: η /s near T_c is very small !

→ QGP : close to an ideal liquid, not a gas of weakly interacting quarks and gluons

→ QGP: strongly-interacting matter

Plot from R. Tribble et al., <u>http://science.energy.gov/np/nsac/reports</u>

pQCD: shear viscosity η

QCD: Pure Yang-Mills (only gluons)

LO (Leading order) perturbative QCD calculations: η/s > 0.5 at T near T_C 'AMY': P.B. Arnold, G.D. Moore and L.G. Yaffe,, JHEP 11 (2000) 001)

NLO (Next-to-leading order):J. Ghiglieri, G.D. Moore, D. Teaney, JHEP 1803 (2018) 179 :"The next-to-leading order corrections are large and bring η/s down by more than
a factor of 3 at physically relevant couplings.

The perturbative expansion is problematic even at T ~100 GeV"

Transport coefficients: shear viscosity η

Lattice QCD: N. Astrakhantsev et al, JHEP 1704 (2017) 101

P. Moreau et al., PRC100 (2019) 014911; O. Soloveva et al., PRC110 (2020) 045203 19

Transport coefficients: bulk viscosity ζ

20 P. Moreau et al., PRC100 (2019) 014911; O. Soloveva et al., PRC110 (2020) 045203

 κ_{qq}, (q; q' = B; S; Q) - diffusion coefficient matrix for the baryon (B), strange (S) and electric (Q) charges using Chapman-Enskog method (CE) & RTA

Baryon diffusion coefficient κ_B/T^2

J. A. Fotakis, O. Soloveva, C. Greiner, O. Kaczmarek and E. B., PRD 104 (2021), 034014

Electric conductivity σ_e/T

HRG: J. A. Fotakis et al, PRD 101 (2020) 7, 076007 AdS/CFT: T. Son and A. O. Starinets, JHEP 0603, 052 (2006)

 \Box Baryon diffusion coefficients decrease with μ_B

Transport coefficients: \hat{q}

Charm spatial diffusion coefficient D_s

• D_s for heavy quarks as a function of T for $\mu_q=0$ and finite μ_q assuming adiabatic trajectories (constant entropy per net baryon s/n_B) for the expansion

 $D_s = lim(\vec{p} \rightarrow 0) \frac{T}{M\eta_D}$ where $\eta_D = A/p$; A(p,T) = drag coefficient

L. Tolos , J. M. Torres-Rincon, PRD 88 (2013) 074019 V. Ozvenchuk et al., PRC90 (2014) 054909

H. Berrehrah et al, PRC 90 (2014) 051901, arXiv:1406.5322

attice QCD

T/T pc

Modeling of the 1st order phase transition: PNJL DQPM-CP(T, μ_q) – DQPM with critical end-point at hight μ_q

QGP in the Polyakov extended NJL model

D. Fuseau, T. Steinert, J. Aichelin PRC 101 (2020) 6 065203

- PNJL allows for prediction of macroscopic properties of QGP at finite T and large μ_B
- & QGP transport coefficients for $0 \le \mu_B \le 1.2$ GeV

PNJL: Shear viscosity at high μ_{R}

O. Soloveva, D. Fuseau, J. Aichelin and E. B., PRC 103 (2021) no.5, 054901

$$\eta^{\text{RTA}}(T,\mu_B) = \frac{1}{15T} \sum_{i=q,\bar{q},g} \int \frac{d^3p}{(2\pi)^3} \frac{\mathbf{p}^4}{E_i^2} \tau_i(\mathbf{p},T,\mu_B) d_q f_i^{\phi}$$

> CEP: (T, μ_B) = (110,960) MeV, μ_B/T = 8.73

In agreement with Nf=2 NJL results C. Sasaki et al., NPA 832 (2010)

 $\mathbf{I}\mathbf{Q}\mathbf{C}\mathbf{D}\mathbf{N}_{c}=\mathbf{0}^{T}$

μ_B=0

 $N_c = 2: - \cdot - \cdot LSM$

10⁰

u/s

DQPM-CP(T, μ_q) :

DQPM with critical end-point at hight μ_q

Quasiparticle model with CEP at high μ_B

- DQPM-CP for high μ_B, including the CEP region based on the scaling properties of the entropy density from the PNJL model
- DQPM-CP interpolates EoS and microscopic properties between two asymptotics high T ≫Tc, μ_B =0 and T >Tc, μ_B ≫ T
- EoS and transport coefficients of the QGP phase for the wide range of T >Tc, m_B

> CEP: (T ,
$$\mu_B$$
) = (100,960) MeV , μ_B/T = 9.6

EoS : for $\mu_B/T < 2$ agreement with IQCD for $\mu_B/T > 6$ agreement with pQCD

O. Soloveva, J. Aichelin and E. B., PRD 105 (2022) 054011

Speed of sound c_s and specific heat C_v

EoS : for μ_B/T <2 agreement with IQCD for μ_B/T >6 agreement with pQCD

 \succ

O. Soloveva, J. Aichelin and E. B., PRD 105 (2022) 054011

Shear and bulk viscosities near the CEP

Sudden rise of specific bulk viscosity approaching the CEP

O. Soloveva, J. Aichelin and E. B., PRD 105 (2022) 054011

Diffusion transport coefficients near the CEP

- B,Q,S diffusion coefficients have pronounced μ_B , μ_S -dependence
- Only small increase approaching the CEP

QGP: in-equilibrium -> off-equilibrium

Microscopic transport theory!

Parton-Hadron-String-Dynamics (PHSD)

PHSD is a non-equilibrium microscopic transport approach for the description of strongly-interacting hadronic and partonic matter created in heavy-ion collisions

Dynamics: based on the solution of generalized off-shell transport equations derived from Kadanoff-Baym many-body theory

Initial A+A collisions :

N+N \rightarrow string formation \rightarrow decay to pre-hadrons + leading hadrons

Partonic phase

Partonic phase - QGP:

Given Stage Formation of QGP stage if local $\varepsilon > \varepsilon_{critical}$:

dissolution of pre-hadrons \rightarrow partons

QGP is described by the Dynamical QuasiParticle Model (DQPM) matched to reproduce lattice QCD EoS for finite T and μ_B (crossover)

- Degrees-of-freedom: strongly interacting quasiparticles: massive quarks and gluons (g,q,q_{bar}) with sizeable collisional widths in a self-generated mean-field potential
 - Interactions: (quasi-)elastic and inelastic collisions of partons

Hadronic phase

Hadronization to colorless off-shell mesons and baryons: Strict 4-momentum and quantum number conservation

Hadronic phase: hadron-hadron interactions – off-shell HSD

UND string mo

Important: to be conclusive on charm observables, the light quark dynamics must be well under control!

PHSD provides a good description of ,bulk' observables (y-, p_T -distributions, flow coefficients v_n , ...) from SIS to LHC energies

Traces of the QGP at finite μ_q in observables in high energy heavy-ion collisions

PHSD: QGP evolution in HICs

Results for HICs from PHSD 4.0 and 5.0

Comparison between three different results:

> PHSD 4.0 : only $\sigma(T)$ and $\rho(T)$

 $\sigma(T)$ – parton interaction cross sections $\rho(T)$ – spectral function of partons (masses and widths)

new PHSD 5.0 : $\sqrt{s} + \mu_B$ + angular dependence of d σ /d cos θ

> PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B = 0)$ and $\rho(T, \mu_B = 0)$ with $d\sigma/d \cos\theta$

> PHSD 5.0 : with $\sigma(\sqrt{s}, m_1, m_2, T, \mu_B)$ and $\rho(T, \mu_B)$ with $d\sigma/d \cos\theta$

P. Moreau, O. Soloveva , L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, PRC 100 (2019) , 014911; O. Soloveva, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, Particles 3 (2020), 178-192

- No visible effects on p_T -spectra, dN/dy of μ_B -dependence
- Small effect of the angular dependence of $d\sigma/d\cos\theta$

P. Moreau, O. Soloveva, L. Oliva, T. Song, W. Cassing, E. Bratkovskaya, PRC 100 (2019), 014911; O. Soloveva, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, Particles 3 (2020), 178-192

Elliptic flow ($\sqrt{s_{NN}} = 200 \text{ GeV} - 27 \text{GeV}$)

- Weak μ_B –dependence small fraction of QGP or low μ_B
- Small effect of the angular dependence of $d\sigma/d\cos\theta$
- Strong flavor dependence •

O. Soloveva, P. Moreau, L. Oliva, V. Voronyuk, V. Kireyeu, T. Song, E. Bratkovskaya, Particles 3 (2020), 178-192

1.5

200GeV, 10-20% central

p+p

<u>+</u>

2.5

2.0

PHENIX

PHSD 4.0

PHSD 5.0 - µ_B=0

PHSD 5.0 - μ

0.15

> 0.10

- $\Box (T, \mu_B)$ -dependent partonic cross sections and masses/widths of quarks and gluons have been implemented in PHSD
- **High-** μ_B region is probed at low bombarding energies or high rapidity regions
- But, QGP fraction is small at low bombarding energies:
 → no effects of (T, μ_B)-dependent partonic cross sections and masses/widths seen in 'bulk' observables dN/dy, p_T-spectra
- □ Flow harmonics v_1 , v_2 show : visible sensitivity to the explicit \sqrt{s} -dependence of total partonic cross sections σ + angular dependence of $d\sigma/d\cos\theta$, however, weak dependence on μ_B

Outlook:

- > More precise EoS at large μ_B
- > Possible 1st order phase transition at even larger μ_B ?!

High- μ_B region of QCD phase diagram \rightarrow challenge for FAIR, NICA, BES RHIC