
The hidden gauge symmetry of relativistic dissipative hydrodynamics

or... Hydrodynamics with 50 particles. What does it mean and

how to think about it?

G.Torrieri

2007.09224 (JHEP),
2109.06389 (Annals of Physics, With T.Dore,M.Shokri,L.Gavassino,D.Montenegro)
Answers somewhat speculative... but I think I am asking good questions!
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Cover of PRL!!!!

We all know we created the perfect fluid... what does this mean?



Conventional widsom: hydro EFT of gradients of conserved currents

∂µT
µν = 0;Tµν = Tµν

eq︸︷︷︸
Thermal

+ Πµν︸︷︷︸
Relax

≡ Tµν = Tµν
0 (e, u)+ηO (∂u)+τO

(
∂2u

)
+...

η = lim
k→0

1

k
Im

∫
dx

〈
T̂xy(x)T̂xy(y)

〉
exp [ik(x− y)] , τ ∼ ∂2

∂k2

∫
eikx 〈TT 〉 , ...

This is a classical theory , T̂µν → 〈Tµν〉 Correlators 〈Tµν(x)...Tµν〉 play
role in coefficients, not in EoM (if you know initial conditions, you
know the whole evolution!) Kubo formula w → 0 cuts out thermal
fluctuations. Implicitly assumed≪ mean free path

Both top-down ultimately derived from ”microscopic” theories
(Boltzmann equation,AdS/CFT), not ”bottom up” statistical mechanics
(”universality”, independent from microscopic physics)!



CMS  1606.06198

1606.06198 (CMS) : When you consider geometry differences and multi-
particle cumulants (remove momentum conservation), hydro with O (20)
particles ”just as collective” as for 1000. Also cold atom fluids with

10,000 particles ∼ 1mm3. Controversial (A.Bilandzic et al) but AFAIK
no evidence collectivity goes down with A,N ! Little understanding of this
in ”conventional widsom”. What si the smallest possible fluid?



Hydrodynamics in small systems: “hydrodynamization”/”fake equilibrium”
A lot more work in both AdS/CFT and transport theory about
”hydrodynamization”/”Hydrodynamic attractors”

Kurkela et al
1907.08101. .

Fluid-like systems far from equilibrium (large gradients )! Usually from 1D
solution of Boltzmann and AdS/CFT EoMs! “hydrodynamics converges
even at large gradients with no thermal equilibrium”

But I have a basic question: ensemble averaging!



Ensemble averaging , 〈F ({xi} , t)〉 6= F ({〈xi〉} , t)
suspect for any non-linear theory. molecular chaos in Boltzmann, Large
Nc in AdS/CFT, all assumed . But for O (50) particles?!?! For water, a
cube of length η/(sT ) has O

(
109

)
molecules,

P (N 6= 〈N〉) ∼ exp
[
−〈N〉−1

(N − 〈N〉)2
]
≪ 1

. EoS is given by p = T lnZ but ∂2 lnZ/∂T 2, dP/dV ?? NB: nothing
to do with equilibration timescale . Even ”things born in equilibrium”
locally via Eigenstate thermalization have fluctuations!

How does dissipation work in such a “semi-microscopic system”? If
Tµν → T̂µν what is Π̂µν Second law fluctuations? Sometimes because of
a fluctuation entropy decreases! What is the role of microstates?

The obvious conclusion is Fluctuations only help dissipation, they are

random . Can lmfp ≥ O (1) (V/Ndof)
1/3

be wrong?



???

Bottom line: Either hydrodynamics is not the right explanation for these
observables (possible! But small/big systems similar! ) or we are not
understanding something basic about what’s behind the hydrodynamics!
What do fluctuations do? Just a lower limit to dissipation?
more fundamentally , the relationship between hydrodynamics and
statistical mechanics is not as understood as one might think!



Perhaps even related to everyday physics?

The
Brazil
nut effect



Statistical mechanics in small systems
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Smaller
energies
Cleymans
Oeschler
Redlich

with   s

GSI

AGS
SPS

RHIC

Smaller sizes (p−p,e−e)
Becattini

If you consider chemistry (particle ratios), statistical mechanics does seem
to work reasonably well to smallest systems! What is the relationship
between this,hydrodynamics and microscopic theory?



Statistical behavior is actually not surprising

|φ><ψ|

Berry/Bohigas/Eigenstate thermalization hypothesys: En>>1 of quantum
systems whose classical correspondent is chaotic have density matrices
that look like pseudo-random. If off-diagonal elements oscillate fast or
observables simple, indistinguishable from Micro-canonical ensemble!



What we lack...

....
vs.:

We need to build a hydrodynamics from such a picture away from the
many particle limit So fluctuations are included. Boltzmann,AdS/CFT
both assume s−1/3 ≪ η/(sT ) Can intuition that fluctuations ”only add
dissipation” away from thermalization be wrong? actually in Gauge theory
the opposite happens! Fluctuations ”add to equilibrium”!



What is a gauge theory,exactly?

Z =

∫
DAµ exp [S[Fµν] ≡

∫
DAµ

1DAµ
2 exp [S[A

µ
1 ]

Aµ
1,2 can be separated since physics sensitive to derivatives of lnZ

lnZ = Λ+ lnZG , ZG =

∫
DAµδ (G(Aµ)) exp [S(Aµ)]

Ghosts come from expanding δ(...) term. In KMS condition/Zubarev

Z =

∫
Dφ , ”S” → dΣνβµT

µν

Multiple Tµν(φ) → Gauge-like configuration . Related to Phase space
fluctuations of φ



A proposal for a different point of view: Inverse (”Bayesian”) attractor

Close to local equilibrium is not on gradient expansion but the
approximate applicability of fluctuation-dissipation
These are not automatically the same!

For smaller fluctuating systems many equivalent definitions of Tµν
0 ,Πµν

Different Boltzmannian entropy but all counted as Gibbsian entropy

If many equivalent choices of Πµν likely in one its ”small”! Ideal hydro
behavior.

So indeed Ambiguity from fluctuations makes system look like a fluid.



So could fluctuations help thermalize? A key insight is redundances
Some qualitative developments: Tµν

0 ,Πµν, uµ are not actually experimental
observables! Only total energy momentum tensor

T̂µν = T̂µν
0 + Π̂µν

and its correlators are! Changing dΣµ in Zubarev ≡ changing Πµν, Tµν
0 !

Analogy to choosing a gauge in gauge theory?



This is relevant for current hydrodynamic research
Causal relativistic hydrodynamics still contentious, with many definitions

Israel-Stewart Relaxing Πµν .
Causal, but up to 9 additional DoFs (not counting conserved charges),
blow-up possible (M.Disconzi, 2008.03841). Πµν ”evolving” microstates!

BDNK,earlier Hiscock,Lindblom,Geroch,... Πµν ∼ ∂u At a price

• Arbitrary (up to causality constaints) uµ .
• Entropy ”temporarily decreases” with perturbations (Gavassino et al,
arXiv:2006.09843 ). Kovtun in 2112.14042 derives BDNK from
a truncation of the Boltzmann equation generally violating the H-
theorem



For phenomenology because of conservation laws “any” ∂µT
µν “can be

integrated” but lack of link with equilibration and multiple definitions of
“near-equilibrium” problematic.

If you care about statistical mechanics, price is steep!
“special” time foliation from ergodic hypothesis/Poncaire cycles!

But entropy decrease physically reasonable from Zubarev definition. But
not from H-theorem!

Fluctuations come with redundances in Tµν
0 ,Πµν

Could these definitions of uµ be just “Gauge” choices?



How to make physics fully “gauge”-invariant? Ergodicity/Poncaire cycles
meet relativity slightly away from equilibrium!
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Gibbs entropy level+relativity : Lack of equilibrium is equivalent to “loss
of phase” of Poncaire cycles. one can see a slightly out of equilibrium cell
either as a “mismatched uµ” (fluctuation) or as lack of genuine equilibrium
(dissipation)



How to make physics fully “gauge”-invariant?

(intensive)

Hydrostatic System (extensive)

Subsystems

(statistical mechanics only)

Fluctuation
<f(x,t)f(x’,t’)>

Hydrodynamic System

Evolution
<f(x,t)f(x’,t’)>

Fluctuation-dissipation at the cell level could do it! We don’t know if a
”step” is fluctuation (Tµν

0 or evolution (Πµν )-driven!



(intensive)

Hydrostatic System (extensive)

Subsystems

(statistical mechanics only)

Fluctuation
<f(x,t)f(x’,t’)>

Hydrodynamic System

Evolution
<f(x,t)f(x’,t’)>

But in hydro Tµν
0 ,Πµν treated very differently! “Sound-wave”

u ∼ exp[ikµx
µ] or “non-hydrodynamic Israel-Stewart mode?”

DΠµν +Πµν = ∂u
Only in EFT 1/T ≪ lmfp they are truly different!



Infinitesimal transformation dMµν such that dMµν(x)
δ lnZE[βµ]
dgαµ(x) = 0

Change in microscopic fluctuation lnZ → lnZ + d lnZ

d lnZ =
∞∑

N=0

∫ N∏

j=1

d4pjδ


EN(p1, ...pj)−

∑

j

p0j


√

|dM | exp
(
−dM0µp

µ

T

)

Change in macroscopic dissipative term

Πµν → Παγ

(
gαµg

γ
ν − gαµdM

γ
ν − gγνdM

α
µ

)
, uµ → uα

(
gαµ − dMα

µ

)

For 1/T ≪ lmfp probability→ 0, 1/T ∼ lmfp many ”similar” probabilities!



The “gauge-symmetry” in practice
Generally dMµν = Λ−1

αµdU
αβΛβµ

d [lnΠαβ] Λ
αµ

(
Λβν

)−1
= ηµνdA+

∑

I=1,3

(
dαIĴ

µν
I + dβIK̂

µν
I

)

K1 =




0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0


 , K2 =




0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


 , K3 =




0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0




which move components from Πµν to Qµ as well as K1,2,3

J1 =




0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0


 , J2 =




0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0


 , J3 =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0






An example... bulk viscosity

µν

T
µν

T
µν

T
µν

BDNK:

IS:

0 0

δ 0

µν
T  + δΠ

0
δΠT  +

0

µν µν

eIS → e+ (e+ p)τ
ė

e+ p
+
(
(e+ p)τ +

cV
s
ζ
)
∂µu

µ , pIS → p+Π

Considering cV controls energy fluctuations, shift from IS to BDNK
equivalent to relabeling Π dynamics as interaction with a fluctuation-
generated sound wave.



Characterizing these gauge redundancies
Grossi,Floerchinger, 2102.11098 (PRD) Let us define a J co-moving with
uµ and use the ”exact” (before coarse-graining) partition function to build

Γ(φ) = SupJ

(∫
J(x)φ(x)− i lnZ [J ]

)

uµ → u′µ non-inertial and does not change 〈Tµν〉, so one can define

Jµνγ =
1√
g

δ lnZ [J ′]

δΓανγ
, DµJ

µνγ = 0

Setting the gauge at the level of the microscopic approximately thermalized
partition function equivalent adding auxiliary field DµMαβ = 0 to

Z [Jαβγ] =

∫
DφDMαβ exp

[∫
det[M ]d4xL (φ, ∂µ + Γ...) +

∫
dΣγMαβJαβγ

]



Cool but what about thermalization in small systems?
Initial and final state described by many equivalent trajectories

One of them could be close to an ideal-looking one. “reverse” attractor Few
particles with strong interaction (Eigenstate thermalization? ) correspond
to many hydro like-configurations {uµ,Πµν} with fluctuations , within same
Gibbs entropy class. some closer to ideal? No symmetries necessary!

Irrelevant in everyday liquids since lmfp ≫ 1/T or AdS/CFT since Nc ≪ ∞
but perhaps not for QGP!



Every statistical theory needs a ”state space” and an ”evolution dynamics”
The ingredients

State space:Zubarev hydrodynamics Mixes micro and macro DoFs

Dynamics: Crooks fluctuation theorem provides the dynamics via a
definition of Πµν from fluctuations

T̂µν is an operator, so any decomposition, such as T̂µν
0 + Π̂µν must be

too!



Zubarev partition function for local equilibrium: think of Eigenstate
thermalization...
Let us generalize the GC ensemble to a co-moving frame E/T → βµT

µ
ν

ρ̂(Tµν
0 (x),Σµ, βµ) =

1

Z(Σµ, βµ)
exp

[
−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

Z is a partition function with a field of Lagrange multiplies βµ , with
microscopic and quantum fluctuations included.

Effective action from ln[Z] . Correction to Lagrangian picture?

All normalizations diverge but hey, it’s QFT! (Later we resolve this! )

This is perfect global equilibrium. What about imperfect local? Two vectors,
dΣµuµT

µν
0 dΣµ foliation. We can coarse-grain and gradient expand, but

Kubo already proven ,can we do better?



An operator formulation T̂µν = T̂µν
0 + Π̂µν

and T̂µν
0 truly in equilibrium! Each microscopic particle “does not know“ if

it ”belongs” to T̂µν
0 , Π̂µν

ρ̂(Tµν
0 (x),Σµ, βµ) =

1

Z(Σµ, βµ)
exp

[
−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

describes all cumulants and probabilities

〈Tµν
0 (x1)T

µν
0 (x2)...T

µν
0 (xn)〉 =

∏

i

δn

δβµ(xi)
lnZ

Equilibrium at ”probabilistic” level and KMS Condition obeyed by ”part
of density matrix” in equilibrium, “expand” around that! An operator
constrained by KMS condition is still an operator! ≡ time dependence in
interaction picture



Entropy/Deviations from equilibrium

nν∂ν (su
µ) = nµ

Παβ

T
∂αββ , ≥ 0

• If nµ arbitrary cannot be true for “any” choice

• 2nd law is true for “averages” anyways, sometimes entropy can decrease

We need a fluctuating formulation!

• “Statistical” (probability depends on “local microstates”)

• Dynamics with fluctuations, time evolution of βµ distribution



Gabriel Landi

P(W)/P(−W)=e
∆ s

Crooks fluctuation theorem From talk

Relates fluctuations, entropy in small fluctuating systems (Nano,proteins )

P(W) Probability system doing work in its usual thermal evolution

P(-W) Probability of the same system “running in reverse” and decreasing
entropy due to a thermal fluctuation

∆S Entropy produced by P (W )

Valid far from equilibrium,proven for non-Boltzmannian processes



How is Crooks theorem useful for what we did? Guarnieri et al,
arXiv:1901.10428 (PRX) derive Thermodynamic uncertainity relations from

ρ̂ness ≃ ρ̂les(λ)e
Σ̂ Zles

Zness
, ρ̂les =

1

Zles
exp

[
−Ĥ
T

]

ρ̂les is Zubarev operator while Σ is calculated with a Kubo-like formula

Σ̂ = δβ∆Ĥ+ , Ĥ+ = lim
ǫ→0+

ǫ

∫
dteǫte−Ĥt∆ĤeĤt

Relies on

lim
w→0

〈[
Σ̂, Ĥ

]〉
→ 0 ≡ lim

t→∞

〈[
ˆΣ(t), Ĥ(0)

]〉
→ 0

This “infinite” is “small” w.r.t. hydro gradients. ≡ Markovian as in Hydro
with lmfp → ∂ but with operators→ carries all fluctuations with it!



Applying Crooks theorem to Zubarev hydrodynamics: Stokes theorem

Wσ∼ Ω

−W

−
∫

Σ(τ0)

dΣµ

(
T̂µνβν

)
= −

∫

Σ(τ ′)

dΣµ

(
T̂µνβν

)
+

∫

Ω

dΩ
(
T̂µν∇µβν

)
,

true for “any” fluctuating configuration.



Wσ∼ Ω

−W

Let us now invert one foliation so it goes “backwards in time” assuming
Crooks theorem means

exp
[
−
∫
σ(τ)

dΣµβνT̂
µν
]

exp
[
−
∫
−σ(τ)

dΣµβνT̂µν
] = exp

[
1

2

∫

Ω

dΩµ
µ

[
Π̂αβ

T

]
∂ββα

]



Small loop limit
〈
exp

[∮
dΣµω

µνβαT̂αν

]〉
=

〈
exp

[∫
1
2dΣµβ

µΠ̂αβ∂αββ

]〉

A non-perturbative operator equation,divergences cancel out...

Π̂µν

T

∣∣∣∣∣
σ

=

(
1

∂µβν

)
δ

δσ

[∫

σ(τ)

dΣµβνT̂
µν −

∫

−σ(τ)

dΣµβνT̂
µν

]

Ω

t

dV

A sanity check: For a an equilibrium spacelike dΣµ = (dV,~0) (left-panel)

we recover Boltzmann’s Πµν ⇒ ∆S = dQ
T = ln

(
N1
N2

)
, for an analytically

continued ”tilted” panel, Kubo’s formula



A sanity check

t
Kubo

When η → 0 and s−1/3 → 0 (the first two terms in the hierarchy), Crooks
fluctuation theorem gives P (W ) → 1 P (−W ) → 0 ∆S → ∞ so Crooks
theorem reduces to δ-functions of the entropy current

δ (dΣµ (su
µ)) ⇒ nµ∂µ (su

µ) = 0

We therefore recover conservation equations for the entropy current, a.k.a.
ideal hydro



A numerical formulation

Define a field βµ field and nµ

Generate an ensemble of

lnZ|t+dt =

∫
Dgµν(x)Tµν|t+dt , βµ|t+dt =

δ lnZ|t+dt

δTµν
nν

According to a Metropolis algorithm ran via Crooks theorem

Reconstruct the new β and Πµν . The Ward identity will make sure
βµβ

µ = −1/T 2

Computationally intensive (an ensemble at every timestep), but who
knows?



Conclusions

• Linking hydrodynamics to statistical mechanics is still an open problem
Only top-down models (Boltzmann,AdS/CFT) rather than bottom-up
theory
Is hydro universal? what are its limits of applicability? still open question

The observation of hydro-like behavior in small systems liable to
fluctuations makes this explicit!

• Crooks fluctuation theorem could provide such a link!

• redundances play crucial role in fluctuations, could mean small systems
achieve ”thermalization” quicker! inverse attractor!



SPARE SLIDES



PS: transfer of micro to macro DoFs experimentally proven!

Polarization by vorticity
in heavy ion collisions

NATURE
August 2017

STAR
collaboration

1701.06657

Could give new talk about this, but will mention hydro with spin not
developed and a lot of conceptual debates Pseudo-gauge dependence if
both spin and angular momentum present in fluid? Gauge symmetry
“ghosts”? GT,1810.12468 (EPJA) . redundances?



Polarization by vorticity
in heavy ion collisions

NATURE
August 2017

STAR
collaboration

1701.06657

Pseudo-gauge symmetries physical interpretation: T.Brauner, 1910.12224

xµ → xµ + ǫζµ(x) , ψa → ψa + ǫψ′

a → L → L

lnZ Invariant, but 〈O〉 generally is not. Spin ↔ fluctuation, need equivalent
of DSE equations! D 〈O〉 = 0 → D 〈O〉 = 〈OIOJ〉



Statistical mechanics: This is a system in global equilibrium, described
by a partition function Z(T, V, µ) , whose derivatives give expectation
values 〈E〉 ,fluctuations

〈
(∆E)2

〉
etc. in terms of conserved charges. All

microstates equally likely, which leads to preferred macrostates!

Fluid dynamics: This is the state of a field in local equilibrium which
can be perturbed in an infinity of ways. The perturbations will then
interact and dissipate according to the Euler/N-S equations. many issues
connecting to Stat.Mech. Wild weak solutions, millenium problem!



The problem with general ”transport thinking”

= ?

Let’s solve the simplest transport equation possible: Free particles

pµ

m
∂µf(x, p) = 0 → f(x, p) = f

(
x0 +

p

m
t, p

)

obvious solution is just to propagate
What is weird is that ”hydro-like” solution possible too (eg vortices)!

f(x, p) ∼ exp [−βµpµ] , ∂µβν + ∂νβµ = 0

But obviously unphysical, no force! What’s up?



+ +

=

8+...

...

This paradox is resolved by remembering that f(x, p) is defined in an
ensemble average limit where the number of particles is not just “large” but
uncountable . curvature from continuity!

BUt this suggests Boltzmann equation disconnected from any finite number
of particles!

What if e−βµp
µ
used to sample strongly coupled particles in ”many finite

events”? Thermal fluctuations,Vlasov correlations and Boltzmann scattering
”mix these words”. Many ways to mix,some wrong! What is appropriate?



How ”different events” correlated is crucial
Villani , https://www.youtube.com/watch?v=ZRPT1Hzze44

Vlasov equation contains all classical correlations. Relativistically numer
of particles varies in each event but ”evolves” deterministically. but
instability-ridden, “filaments”, cascade in scales.
NDOF → ∞ invalidates KAM theorem stability

Boltzmann equation “Semi-Classical UV-completion” ov Vlasov
equation, first term in BBGK hyerarchy, written in terms of Wigner
functions.

Infinitely unstable jerks on infinitely small scales Random scattering
Statistical behavior emerges from both instabilities (chaos, Poncaire cycles)
and scattering (H-theorem) but interplay non-trivial. Strong coupling away
from molecular chaos not understood!

https://www.youtube.com/watch?v=ZRPT1Hzze44


B.Betz,D.Henkel,D.Rischke
There is more
to hydro
than the 
Knudsen number

0812.1440

What if these are ~?

lmicro︸ ︷︷ ︸
∼s−1/3,n−1/3

≪ lmfp︸︷︷︸
∼η/(sT )

≪ Lmacro

Second inequality was developed so far, but first is suspect! experimentally



lmicro︸ ︷︷ ︸
∼s−1/3,n−1/3

≪ lmfp︸︷︷︸
∼η/(sT )

≪ Lmacro

Weakly coupled: Ensemble averaging in Boltzmann equation good up to
O
(
(1/ρ)1/3∂µf(...)

)

Strongly coupled: classical supergravity requires λ ≫ 1 but λN−1
c =

gY M ≪ 1 so

1

TN
2/3
c

≪ η

sT

(
or

1√
λT

)
≪ Lmacro

QGP: Nc = 3 ≪ ∞ ,so lmicro ∼ η
sT . Cold atoms: lmicro ∼ n−1/3 > η

sT ?



Why is lmicro ≪ lmfp necessary? microscopic fluctuations (which have

nothing to do with viscosity ) will drive fluid evolution. ∆ρ/ρ ∼ C−1
V ∼ N−2

c

System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

A classical low-viscosity fluid is turbulent. Typically, low-k modes cascade
into higher and higher k modes In a non-relativistic incompressible fluid

η/(sT ) ≪ Leddy ≪ Lboundary , E(k) ∼
(
dE

dt

)2/3

k−5/3

For a classical ideal fluid, no limit! since limδρ→0,k→∞ δE(k) ∼ δρkcs → 0
but quantum E ≥ k so energy conservation has to cap cascade.



More fundamentally: take stationary slab of fluid at local equilibrium.

System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

Statistical mechanics: This is a system in global equilibrium, described
by a partition function Z(T, V, µ) , whose derivatives give expectation
values 〈E〉 ,fluctuations

〈
(∆E)2

〉
etc. in terms of conserved charges. All

microstates equally likely, which leads to preferred macrostates!

Fluid dynamics: This is the state of a field in local equilibrium which
can be perturbed in an infinity of ways. The perturbations will then
interact and dissipate according to the Euler/N-S equations. Smaller η/s
, the closer to local equilibrium (SM applies to cell) but the longer the
timescale to global equilibrium (SM applies to system).



System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

• Provided state is localized, local equilibrium is ”global equilibrium in
every cell”, global equilibrium with spin, forces ”non-local” A.Palermo
et al,2007.08249,2106.08340 ”global” equilibrium not necessarily stable
against hydro perturbations I think ”real” global equilibrium built up
from local equilibria

• Dissipation scale in local equilibrium η/(Ts) , global equilibration
timescale (Ts)/η .turbulence drastically changes this ,but ”when does a
small perturbation become a microstate?”



Some insight from maths
Millenium problem: existence and smoothness of the Navier-Stokes
equations

Important tool are “weak solutions” , similar to what we call “coarse-
graining”.

F

(
d

dx
, f(x)

)
= 0 ⇒ F

(∫
d

dx
φ(x)..., f(x)

)
= 0

φ(x) “test function”, similar to coarse-graining!



Existance of Wild/Nightmare solutions and non-uniqueness of weak solutions
shows this tension is non-trivial, coarse-graining “dangerous”

I am a physicist so I care little about the ”existence of ethernal solutions” to
an approximate equation, Turbulent regime and microscopic local equilibria
need to be consistent

Thermal fluctuations could both ”stabilize” hydrodynamics and
”accellerate” local thermalization
But where do microstates,”local” microstates fit here?



of the entropies

the battle

Boltzmann entropy is usually a property of the ”DoF”, and is ”kinetic”
subject to the H-theorem which is really a consequence of the not-so-
justified molecular chaos assumption. Gibbsian entropy is the log of the
area of phase space, and is justified from coarse-graining and ergodicity ,
but hard to define it in non-equilibrium . The two are different even in
equilibrium, with interactions! Note, Von Neumann 〈lnρ̂〉 Gibbsian



The problem with general ”transport thinking”

= ?

Let’s solve the simplest transport equation possible: Free particles

pµ

m
∂µf(x, p) = 0 → f(x, p) = f

(
x0 +

p

m
t, p

)

obvious solution is just to propagate
What is weird is that ”hydro-like” solution possible too (eg vortices)!

f(x, p) ∼ exp [−βµpµ] , ∂µβν + ∂νβµ = 0

But obviously unphysical, no force! What’s up?



+ +

=

8+...

...

This paradox is resolved by remembering that f(x, p) is defined in an
ensemble average limit where the number of particles is not just “large” but
uncountable . curvature from continuity!

BUt this suggests Boltzmann equation disconnected from any finite number
of particles! e.g. vn{M ≫ 1}? Vorticity/polariation link?

What if e−βµp
µ
used to sample strongly coupled particles in ”many finite

events”? Thermal fluctuations,Vlasov correlations and Boltzmann scattering
”mix these words”. Many ways to mix,some wrong! What is appropriate?



Connection to transport
Villani , https://www.youtube.com/watch?v=ZRPT1Hzze44

Vlasov equation contains all classical correlations, instability-ridden,
“filaments”, cascade in scales.
NDOF → ∞ invalidates KAM theorem stability. High T: Debye screening
kills potentials

Boltzmann equation “Semi-Classical UV-completion” of Vlasov
equation, first term in BBGK hyerarchy, written in terms of Wigner
functions. pQCD@high T Boltzmann of quasi-particles,potentials
”absorbed”. AMY,Giglieri,.. first order, convergence unknown

Infinitely unstable jerks on infinitely small scales Random scattering .

But if number of particles N ≪ ∞ Correlations important! .

https://www.youtube.com/watch?v=ZRPT1Hzze44


Boltzmann equation,BBGKY and limits

n

h

.....  (divergence)

Boltzmann

BBGKY
expansion

Kadanoff
Baym

Wigner function

....

Mrowczynski/
Mullerhydro

Fluctuating

<f (x,p)>

<f (x,p)>
1−

n

Boltzmann equation emerges as a double limit from microscopic correlations,
h̄→ 0 Relaxing the latter limit would destroy statistical independence CHSH
relations , so probably not relevant (phases ”chaotic”). But fluctuating
hydro ”non-perturbative” in correlations



Finite number of particles: f(x, p) not a function but a functional
(F(f(x, p)) →︸︷︷︸

Boltzmann

δ (f ′ − f(x, p)) ), incorporating continuum of

functions and all correlations. Perhaps solvable!

pµ

Λ

∂

∂xµ
f(x, p) =

〈
Ĉ[W̃ (f̃1, f̃2)]− g

pµ

Λ
F̂µν[f̃1, f̃2]

δ

δf̃1,2
W̃

(
f̃1, f̃2

)

︸ ︷︷ ︸
How many A−B=0?

〉

Wigner functional to O
(
h0
)
. What is the effect? If only Boltzmann term

not much!



If Both Vlasov and Boltzmann terms, redundancy-ridden!

f(p)

f(x)

δ

δ

Boltzmann−Vlasov=0

δf(p) or δf(x)

One can deform f(x, p) by δf(x) or δf(p) so that Ĉ − Ŵ cancels. In
ensemble average deformation makes no sense, but away from it it does!



f(x, p) → f ′(x, p) , Ĉ (f(x, p), f ′(x, p))︸ ︷︷ ︸
limf→f ′∼∂f/∂x

= V̂ µ (f(x, p), f ′(x, p))
∂f

∂pµ︸ ︷︷ ︸
limf→f ′∼∂f/∂p

Infinite number of redundances! Close to local equilibrium limit...

{
f(x, p)
f ′(x, p)

}
∼ exp

[
−
{
βµ(x, t)
β′

µ(x, t)

}
pµ

]
, lim

f→f ′

{
Ĉ[f, f ′]

V̂ [f, f ′]

}
∼

{
〈∂β〉〈
β2

〉
}

and these redundances look like the hydro ones


