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The interesting part of the phase diagram
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The Strategy

Relying on experimental observations?

We want to understand QCD matter, not neutron star matter or heavy ion collision matter. The latter
are mere inputs for simulations.

@ Calculate/construct an EoS that can be used for finite temperature and density QCD matter.
Check consistency with known properties at small up/T and nuclear matter.
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The Strategy

Relying on experimental observations?

We want to understand QCD matter, not neutron star matter or heavy ion collision matter. The latter
are mere inputs for simulations.

@ Calculate/construct an EoS that can be used for finite temperature and density QCD matter.
Check consistency with known properties at small up/T and nuclear matter.

@ Implement EoS in a consistent dynamical model for HIC.
© Use this one EoS to calculate heavy ion observables. Emphasis here is on a complete picture.
@ Cross check with astrophysical observations.

© Reject unlikely EoS.
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1. The baryonic problem

Why do the methods break down?

@ Sudden change of isobaric lines at this
point.

@ From Boson (mesons/gluons)
dominated matter to fermionic matter
(nucleons/quarks).

@ Calculations seem to fail for matter
where (multi-) baryonic interactions
become important.

07 n T L L1 L L1 1
103 1072 10t 100 10

@ Positive: for the region of interest a
density dependent EoS may be enough.

A. Motornenko, JS, V. Vovchenko, S. Schramm and H. Stoecker, Nucl. Phys. A 1005 (2021), 121836
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Regions of access to the PD - BNSM

Using BNSM we can also turn on the heat.

@ During the post-merger T' < 40 MeV is reached
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E. R. Most, A. Motornenko, JS, V. Dexheimer, M. Hanauske, L. Rezzolla and
H. Stoecker, [arXiv:2201.13150 [nucl-th]].
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Regions of access to the PD - CCSN

@ Core Collapse Supernovae (CCSN) can reach even

higher S/A
@ GR Hydro simulation with same EoS (CMF model): 200 et
@D Neutron stars
I BNSM
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P. Jakobus, B. Mueller, A. Heger, A. Motornenko, JS and H. Stoecker,

[arXiv:2204.10397 [astro-ph.HE]]. 6/23



Regions of access to the PD - CCSN

@ Core Collapse Supernovae (CCSN) can reach even

higher S/A
@ GR Hydro simulation with same EoS (CMF model): 200 et
. @) Neutron stars
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How to study the equation of state using heavy ion collisions

Much of we today think about heavy ion dynamics is motivated by the fluid dynamic picture of HIC:

Final stage and particle
freeze-out

Pre-equilibrium phase Equilibrated? phase

UrQMD+Hydro Hybrid

p !

Freeze-out: chemical and

Non-equilibrium initial state Fluid dynamic evolution
thermal

H. Petersen, JS, G. Burau, M. Bleicher and H. Stécker, Phys. Rev. C 78 (2008) 044901
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How to study the equation of state using heavy ion collisions

Much of we today think about heavy ion dynamics is motivated by the fluid dynamic picture of HIC:
At low beam energies the initial compression is most relevant.

Pre-equilibrium phase Equilibrated? phase Final stage and particle
freeze-out

UrQMD+Hydro Hybrid
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UrQMD for the description

UrQMD is a microscopic transport model
@ In cascade mode: Particles follow a straight line until they scatter.

@ EoS resembles a hadron resonance gas.
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Dynamics in UrQMD

UrQMD is a microscopic transport model
@ Only2<»2,241,2— N and 1 — N interactions allowed.
@ Resonance decays according to PDG values + guesstimates.

@ Detailed balance. (Violated in string excitations, annihilations and some dacays)
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The Skyrme EoS in UrQMD

To implement any density dependent EoS in UrQMD:

In UrQMD the real part of the interaction is implemented by a density dependent
potential energy V(np).

Once the potential energy is known, the change of momentum of each baryon is
calculated as:

R OH oV; On; oV; Ony
= — = — . — - 2 1
Pi 8ri (Bm 8I'7; ) ; 8n]- 8!'7; ’ ( )
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. oH oV;  0On, oV 0On;
b= — :_( i z)_ ppar g I (1)
Bri 8n1‘ 8I’i i 67Lj 8”

For the potential energy V' often a Skyrme model was used that is based on a 2-term
expansion in density:

d(np - V(ng))

Ummp)=a-ng+pB-n} with U(np)=
8nB

)

Problem: Once saturation density and binding energy is fixed, only 1 d.o.f. left and
EoS likely becomes unphysical. No phase transition possible.
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A different effective model: the CMF

Application for cold compact stars

@ Compressibility of the CMF EoS is ko = 267 MeV and the symmetry energy is Sop = 31.9 MeV.

@ Speed of sound for neutron star matter.

@ Mass radius diagram consistent with astrophysical

constraints.
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2. Any EoS in UrQMD

To implement any density dependent EoS in UrQMD:

In UrQMD the real part of the interaction is implemented by a density dependent
potential energy V(np).

Once the potential energy is known, the change of momentum of each baryon is
calculated as:

. o0H oV On; oV; 0On;
p;=— :_( i 2>_ 27373 , (3)
Bri 8711' 8” i 6nj 8”‘

In CMF we can simply use the effective field energy per baryon Efge1q/A calculated
from the CMF model:

Vemr = Eged/A = Ecmr/A — Erra /A, (4)

A phase transition can be simply included by adding another minimum in the
potential energy: leading to (meta-)stable solutions at high density.

J. Steinheimer, A. Motornenko, A. Sorensen, Y. Nara, V. Koch and M. Bleicher, [arXiv:2208.12091 [nucl-th]].
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2. Any EoS in UrQMD

To implement any density dependent EoS in UrQMD:
In UrQMD the real part of the interaction is implemented by a

potential energy V(npg).
Once the potential energy is known, the change of momentum

calculated as:

P; = 872-7_

e

CoH (av;- on;
i

Bm- Bri

)

Disadvantage: Only density dependence + no change in d.o.f.

an]-

ov;  Ony

density dependent

of each baryon is

Advantage: Consistent description throughout, i.e. no change of model or d.o.f.

required.

— Focus on the effects of the equation of state and dynamic phase separation.

(5)

J. Steinheimer, A. Motornenko, A. Sorensen, Y. Nara, V. Koch and M. Bleicher, [arXiv:2208.12091 [nucl-th]].
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1. HIC UrQMD vs. hydro, regions of access

Including the CMF EoS in UrQMD vs. a hadron
resonance gas baseline.

Bulk evolution consistent with 341D hydro +
CMF

Initial compression from CMF model in UrQMD
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2. Results on flow

@ The CMF EoS gives good results on all flow coefficients.
@ Significant effects of a phase transition on all flow observables.
@ Minimum in the slope of the directed flow confirmed.

@ Sensitivity only up to & 4ng.

® mp = p7 +m?

@ v = pm/pT
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JS, A. Motornenko, A. Sorensen, Y. Nara, V. Koch and M. Bleicher, [arXiv:2208.12091 [nucl-th]].

15/23



2. Statistical analysis of available flow data

@ Using Bayesian inference methods we can try to
constrain the EoS from flow data

@ Use UrQMD as described but parameterize V(npg)
with a seventh order polynomial.

300

200

V [MeV]

100

Density np [n)

M. Omana Kuttan, JS. K. Zhou and H. Stoecker, in preparation
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2. Statistical analysis of available flow data

@ Using Bayesian inference methods we can try to
constrain the EoS from flow data @ Results depend strongly on the data used.

@ Use UrQMD as described but parameterize V(npg) @ If all data on the mean my and vy are used,
with a seventh order polynomial. constraints are similar to those from
astrophysics (NS and BNSM).
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M. Omana Kuttan, JS. K. Zhou and H. Stoecker, in preparation
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3. HBT

@ Hanbury-Brown-Twiss (HBT) correlations for charged pions are a tool to
measure the freezeout volume and time.

@ Pions that are emitted close in coordinate space are correlated in
momentum space.

Simulation with a PT show a clear maximum.

'Old’ data seem inconclusive, newest STAR data have much smaller error
and favor the no-PT scenario.

@ Sensitivity only up to & 4ng.

P. Li, T. Reichert, A. Kittiratpattana, JS, M. Bleicher, Q. Li
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4. Dileptons

Electromagnetic probes offer a chance to probe the whole time evolution of the fireball. )

In particular di-lepton pairs

created by the decay of hadrons
or quark annihilation. <] / ( \=

@ p—et+e

@ g+tg—et+e

Process sensitive to the medium
in which it takes place (T and
pB)-

F. Seck, T. Galatyuk, A. Mukherjee, R. Rapp, JS and J. Stroth, [arXiv:2010.04614 [nucl-th]].
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Process sensitive to the medium

Electromagnetic probes offer a chance to probe the whole time evolution of the fireball. )
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4. Dileptons

@ Dilepton emission is sensitive to the time-integrated bulk evolution properties.
@ Results from the UrQMD+CMF(+PT) transport model.

@ Effect due to extended lifetime.
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0. Savchuk, A Motornenko, JS, V. Vovchenko, M. Bleicher, M. Gorenstein, T. Galatyuk, [arXiv:2209.05267 [nucl-th]].
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4. Dileptons

@ Hydro simulations have suggested a strong increase (of

factor 2) of the dilepton yield for a phase transition:
F. Seck, T. Galatyuk, A. Mukherjee, R. Rapp, JS and J. Stroth,
[arXiv:2010.04614 [nucl-th]].

@ A significant increase of the low mass dilepton yield is
observed when a phase transition is included in the
UrQMD-CMF model.

0. Savchuk, A Motornenko, JS, V. Vovchenko, M. Bleicher, M. Gorenstein,
T. Galatyuk, [arXiv:2209.05267 [nucl-th]].
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5. Fluctuations

@ As we employ a QMD approach local clumping in the unstable phase can occur.

@ This leads to enhanced fluctuations of the baryon number in coordinate space,
already observed in the scaled variance.

T T T T T T T T T T

500 1.23 AGev 14 AGev 1 6AGev 110 AGev
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— PT
CMF
10 20 10 20 10 20
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0. Savchuk, et.al., in preparation
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5. Fluctuations

12f —— PT |
—— CMF
Binomial |

1.0

wlp]

0.8

@ As we employ a QMD approach local clumping in the unstable phase can occur. 0.6
041a) AuAu, 2AGeV, 0.4 < p[GeV] < 1.6

This leads to enhanced fluctuations of the baryon number in coordinate space,
already observed in the scaled variance.

Solpl

@ While in coordinate space the fluctuations/correlations are enhanced due to the
phase transition.

In momentum space no enhancement is observed.

@ The crossover scenario even shows an increased scaled variance. This is due to
the larger radial flow pushing into the spectators leading to larger volume
fluctuations.

ko2[p]

0. Savchuk, et.al., in preparation
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Summary and conclusions

- - 200 [
@ Can use HIC and BNSM to scan the high density QCD PD. Ew [AGeV] I BNSM
160 s 0 [ cosn
r «.w HIC 1
Especially for HIC in the FAIR-regime new ideas/methods for old E
and new models are necessary. S1z0f 1
. . . . =]
@ This work: Phase transitions in transport shown to influence ® SIA<4.0
observables. qé_ao
. oo - (3]
@ Best results obtained for model w/o phase transition, consistent = 40
with astrophysical observations (sensitivity only up to & 4nyg).
-
o

@ Only consistent models can be used for statistical analyses of 0123 456 7 8 91011121314
large datasets available now and in the future. Baryon density [n,]

@ Still room for development of critical phenomena, relativistic
treatment of transport models...

.

] WW‘;«:‘
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v @ The minimum of v; coincides with the
maximum of the dilepton emission.

@ The effect on HBT and maximum of the
fluctuation enhancement seems to occur
I at even lower beam energies.

™

@ Effects don't occur at the same beam
energy: Need consistent modeling!!

v
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4. Light nuclei production

0.8 T T T
@ The double ratio ¢ - p/(d?) is thought to be sensitive —O—CMF-PT2
to spatial baryon fluctuations at freeze-out. o
K. J. Sun, L. W. Chen, C. M. Ko, J. Pu and Z. Xu, Phys. Lett. B 781 061 o 1
(2018), 499-504 o—

O\o

@ Can be studies by coalescence in UrQMD.
P. Hillmann, K. Kafer, JS, V. Vovchenko and M. Bleicher,” J. Phys. G
49, no.5, 055107 (2022)

tp/(d?)
o
N

@ We see a very small enhancement in the scenario with
a phase transition. 0.2+ p

@ Important to use realistic EoS with proper
hadronic/nuclear matter.

0.0 1 1 1
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