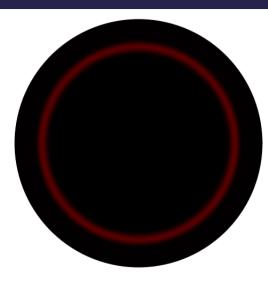
Real time evolution of scalar fields in semiclassical gravity

Phys. Rev. D **105** (2022) no.10, 105010 [arXiv:2010.13215 [gr-qc]]

Jana N. Guenther, Christian Hölbling, Lukas Varnhorst

01. Dec. 2022



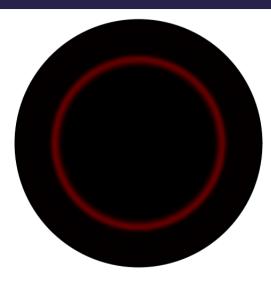
Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?



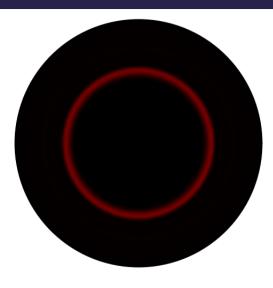
Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?



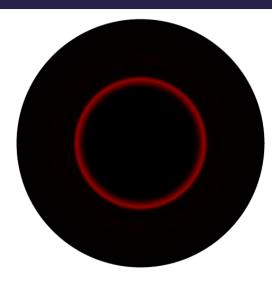
Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?



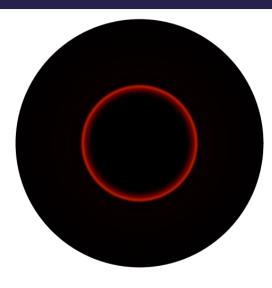
Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?



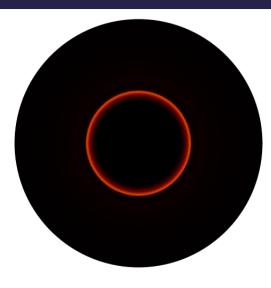
Consider the collapse of a free, massless scalar field to a black hole

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?



Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?

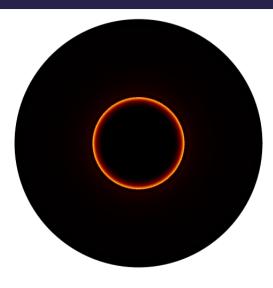
Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?



Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?

Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?

Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?

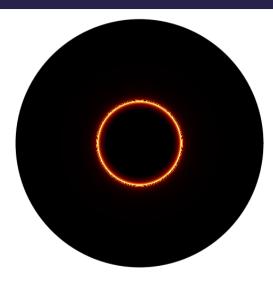
Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?



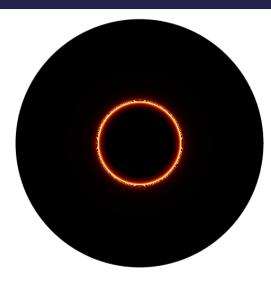
Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?



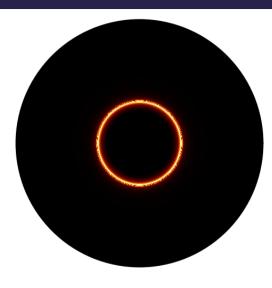
Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?



Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?

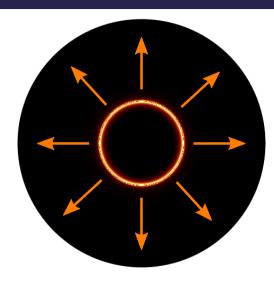
Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?



Consider the collapse of a free, massless scalar field to a black hole.

Semiclassical gravity predicts Hawking radiation for late times.

Hawking [1]

One would expect this calculation to be very messy and to depend on the detailed nature of the gravitational collapse. However, as I shall show, one can derive an asymptotic form [...] which depends only on the surface gravity of the resulting black hole.

Can we numerically determine the field evolution during the collapse phase including back reaction?

spherical harmonics

[1] M. W. Choptuik, "Universality and scaling in gravitational collapse of a massless scalar field," Phys. Rev. Lett. $\bf 70~(1993), 9-12$

Semiclassical Einstein equation:

$$R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} = \langle \psi \mid T_{\mu\nu} \mid \psi \rangle$$

Choose state $|\psi\rangle$ such that:

- Close to a classical state \rightarrow Coherent state.
- Expectation value is spherically symmetric.

Choose spherical symmetric coordinate system [1]

$$g_{\mu
u}=egin{pmatrix} lpha^2(t,r) & & & & & \ & -a^2(t,r) & & & & \ & & -r^2 & & \ & & & -r^2\cos^2 heta \end{pmatrix}$$

Semiclassical approximation

Metric $(a(t, r), \alpha(t, r))$ is classical, scalar field is fully quantum.

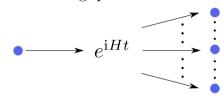
Scalar field has no self interaction \rightarrow Hamiltonian is quadratic.

Time evolution with constant metric does not change particle number. \rightarrow Full time evolution can be calculated.

Still non-trivial effects by time dependend metric possible.

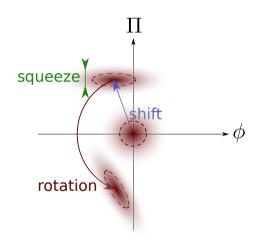
Real time evolution with **non-equilibrium dynamics** accessible via lattice calculations.

interacting quantum fields



semiclassical gravity





System can be understood in terms of gaussian states.

Gaussian states: State that can be written as

$$\exp(\mathrm{i}F)\mid 0\rangle$$

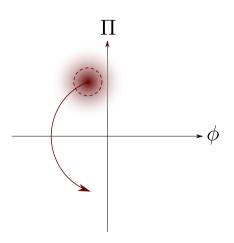
where $| 0 \rangle$ is the ground state a harmonic Osz. and F is a quadratic function of a^{\dagger} and a.

Operation can be decomposed into

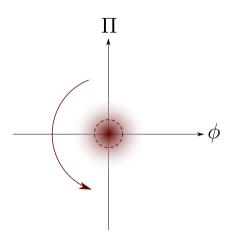
- shift
- rotation
- squeeze

State can be described by mean value $\vec{\mu}$ and covariance matrix C.

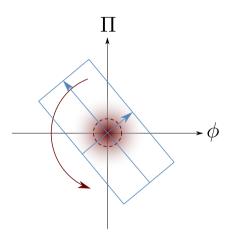
Formalism important in quatum optics.



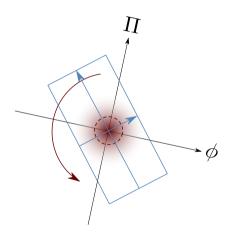
 Gaussian state parametrized by classical central value and covariance matrix



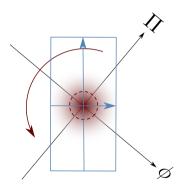
- Gaussian state parametrized by classical central value and covariance matrix
- Time evolution given by rigid rotation in phase space



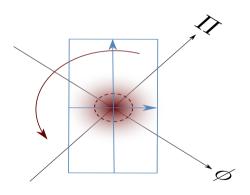
- Gaussian state parametrized by classical central value and covariance matrix
- Time evolution given by rigid rotation in phase space
- ullet Evolution of metric o Change of the oscillator parameters



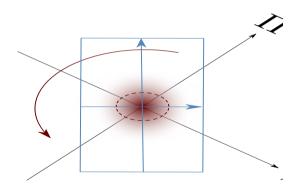
- Gaussian state parametrized by classical central value and covariance matrix
- Time evolution given by rigid rotation in phase space
- Evolution of metric → Change of the oscillator parameters
- Reinterpret same state in new oscillator basis



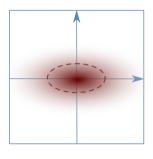
- Gaussian state parametrized by classical central value and covariance matrix
- Time evolution given by rigid rotation in phase space
- Evolution of metric → Change of the oscillator parameters
- Reinterpret same state in new oscillator basis



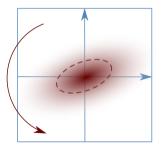
- Gaussian state parametrized by classical central value and covariance matrix
- Time evolution given by rigid rotation in phase space
- \bullet Evolution of metric \to Change of the oscillator parameters
- Reinterpret same state in new oscillator basis



- Gaussian state parametrized by classical central value and covariance matrix
- Time evolution given by rigid rotation in phase space
- Evolution of metric → Change of the oscillator parameters
- Reinterpret same state in new oscillator basis

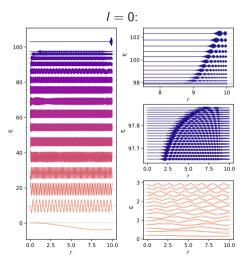


- Gaussian state parametrized by classical central value and covariance matrix
- Time evolution given by rigid rotation in phase space
- ullet Evolution of metric o Change of the oscillator parameters
- Reinterpret same state in new oscillator basis
- System is in a squezed coherent state



- Gaussian state parametrized by classical central value and covariance matrix
- Time evolution given by rigid rotation in phase space
- ullet Evolution of metric o Change of the oscillator parameters
- Reinterpret same state in new oscillator basis
- System is in a squezed coherent state
- Field evolution not trivial

Scalar field decomposition



Hamiltonian of the field can be written as

$$\mathcal{H} = \sum_{I=0}^{\infty} (2I+1) \left(rac{lpha a_0}{alpha_0} \Pi_I \Pi_I^\dagger + \phi_I^\dagger \sqrt{rac{alpha_0}{lpha a_0}} K \sqrt{rac{alpha_0}{lpha a_0}} \phi_I
ight)$$

with

$$K = q^T q + \frac{I(I+1)}{r^2} \alpha^2$$

where

$$q = \sqrt{\frac{\alpha}{a}} r \partial_r \sqrt{\frac{\alpha}{a}} \frac{1}{r}$$

Eigenmodes decomposition:

$$K = V\omega^2 V^T$$

- V: Mode functions.
- ω : Mode frequency

Phase space evolution

$$H=\Pi A\Pi^\dagger +\phi^\dagger A^{-\frac{1}{2}}KA^{-\frac{1}{2}}\phi=ec{x}^\dagger Mec{x} \quad x=\left(\Pi_1^\dagger \quad \Pi_2^\dagger \quad \dots \quad \phi_1 \quad \phi_2 \quad \dots \right)^T$$

Scalar field time evolution: $\vec{\mu}(t+\Delta t)=S\vec{\mu}(t)$ and $C(t+\Delta t)=SC(t)S^T$ where $S=T^{-1}RT$

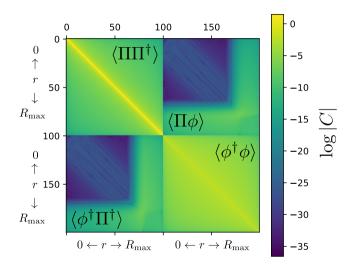
$$T = \begin{pmatrix} \frac{1}{\sqrt{\omega}} V^T \sqrt{A} & \\ & \sqrt{\omega} V^T \frac{1}{\sqrt{A}} \end{pmatrix} \quad A = \frac{\alpha a_0}{a \alpha_0}$$

$$R = \left(egin{array}{cccc} \cos(\omega_1 \Delta t) & & \sin(\omega_1 \Delta t) & & & & \\ & \cos(\omega_1 \Delta t) & & & \sin(\omega_1 \Delta t) & & & & \\ & & \ddots & & & & \ddots & & \\ -\sin(\omega_1 \Delta t) & & & \cos(\omega_1 \Delta t) & & & & \\ & & -\sin(\omega_1 \Delta t) & & & \cos(\omega_1 \Delta t) & & & & \\ & & & \ddots & & & \ddots & & \end{array}
ight)$$

- T transforms from position space to oscillator basis
- R is a rigid rotation in phase space for each oscillator

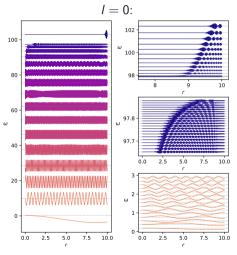
Metric change enters only through $\,T\,$ and $\,\omega\,$

Covariance matrix



- Covariance matrix contains full information of the state
- Blocks are the equal time correlation functions
- Entanglement is contained in that matrix

Bogolyubov transformation



Alternative formulation: Write Hamiltonian as

$$\mathcal{H} = b_+ W_r b_+^{\dagger} + b_-^{\dagger} W_r b_- + b_+ X_r b_- + b_-^{\dagger} X_r b_+^{\dagger}.$$

 $b_{\pm}^{\dagger}/b_{\pm}$ are the creation/annihilation operators with frequencies $\omega.$ In the Heisenberg picture:

$$b_{+}(t) = rac{1}{\sqrt{2}}(b_{u}(t) + b_{v}(t)) \quad b_{-}(t) = rac{1}{\sqrt{2}}(b_{u}^{\dagger}(t) - b_{v}^{\dagger}(t))$$

$$b_-^\dagger(t)=rac{1}{\sqrt{2}}(b_u(t)-b_v(t)) \quad b_+^\dagger(t)=rac{1}{\sqrt{2}}(b_u^\dagger(t)+b_v^\dagger(t))$$

$$b_u(t) = \frac{1}{\sqrt{2}}(b_+u(t) + b_i^{\dagger}u^*(t))V\sqrt{\omega}$$

$$b_u(t)=rac{1}{\sqrt{2}}(b_+v(t)-b_-^\dagger v^*(t))V\sqrt{\omega^{-1}}$$

 \rightarrow Determine time evolution of u(t) and v(t).

Bogolyubov transformation

Initialization:

$$u(0) = \frac{1}{\sqrt{\omega}} V^T$$
 and $v(0) = \sqrt{\omega} V^T$

As long as the metric is constant, the time evolution can be solved exactly

$$egin{aligned} ig(u(t+\Delta t) & v(t+\Delta t)ig) = ig(u(t) & v(t)ig) \exp\left(-\mathrm{i}igg(egin{aligned} 0 & \sqrt{rac{\partial \alpha_0}{lpha \partial_0}} K\sqrt{rac{\partial \alpha_0}{lpha \partial_0}} \\ rac{\alpha \partial_0}{\partial lpha_0} & 0 \end{matrix}
ight) \Delta t \end{aligned}$$

Exponential can be explicitly evaluated by using SVD $K = V\omega^2 V^T$.

Time evolution is a Bogolyubov transformation.

1-to-1 mapping between covariance matrix C and Bogolyubov coefficients.

Metric evolution

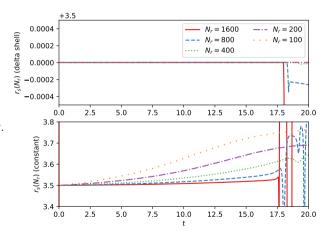
For integration of metric: Denstiy distribution of hamilton density must be defined.

Two choices:

- $lack \delta$ -distribution arround lattice points
- Constant between lattice points Both choices lead to regular behaviour.

Check validity of Birkhoff's theorem.

ightarrow Use δ shells.



Metric evolution

$$g_{\mu
u} = egin{pmatrix} \hat{lpha} = lpha & \hat{lpha} = lpha a \ & -rac{r}{d} & \ & -r^2 & \ & & -r^2\cos^2 heta \end{pmatrix} \qquad egin{matrix} \hat{lpha} = lpha a \ & d = rac{r}{a^2} \ & \ln'(\hat{lpha}) = \langle\psi\mid h_r^0\mid\psi
angle \ & d'+dh_r^0 = 1-r\langle\psi\mid m_r\mid\psi
angle \end{pmatrix}$$

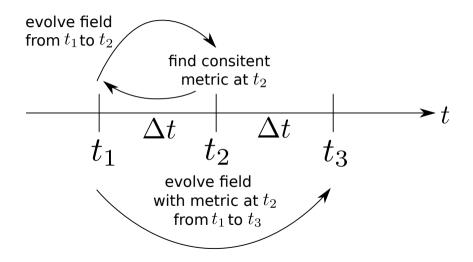
 h_r^0 and m_r are field operators:

$$\langle h_r^0 \rangle_{\psi} = \frac{1}{d^0 \hat{a}^0} \left(|I_{ur}|^2 + |I_{vr}|^2 + \sum_{l=0}^{\infty} (2l+1) \left((v_l^{\dagger} v_l)_r r + (q^0 u_l^{\dagger} u_l q^{0T})_r r) \right) \right)$$

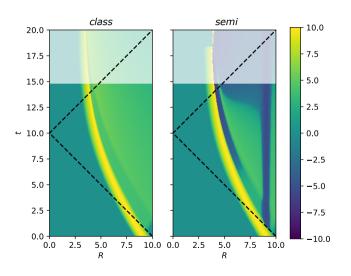
$$\langle m_r \rangle_{\psi} = \frac{d^0 \hat{\alpha}^0}{r^2} \sum_{l=0}^{\infty} (2l+1) \left(\frac{I(l+1)}{r^2} + M^2 \right) (u_l^{\dagger} u_l)_{rr}$$

- $|I_{ur}|^2 + |I_{vr}|^2$: Classical contribution
- u_l , v_l : Coefficient of creation and anihilation operators
- $q^0 = \sqrt{\hat{\alpha} dr} \partial_r \sqrt{\hat{\alpha} dr^{-3}}$ Discretized "derivative"

Combined evolution



I = 0 approximation



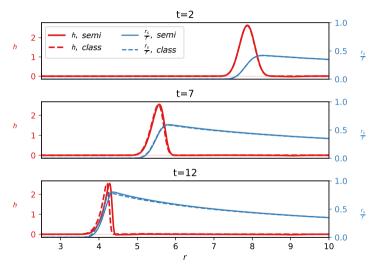
Consider only the I = 0 modes.

ightarrow Divergences of $\langle T_{\mu\nu} \rangle_{\psi}$ can be cancelled by normal ordering

Back reaction effects can be included.

Horizon seems to form earlier due to quantum effects.

I = 0 approximation

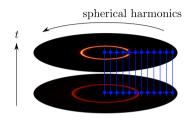


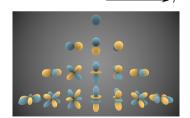
Consider only the I=0 modes.

 \rightarrow Divergences of $\langle T_{\mu\nu}\rangle_{\psi}$ can be cancelled by normal ordering

Back reaction effects can be included.

Horizon seems to form earlier due to quantum effects.





Inigo.quilez, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia

Classically, l > 0 modes break spherical symmetry.

In the quantum case, $\langle \psi \mid T_{\mu\nu} \mid \psi \rangle$ can be spherically symmetric even if I > 0 modes are excited.

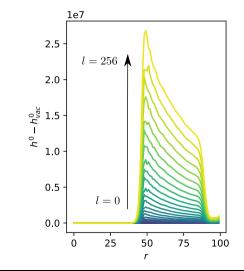
 \rightarrow These modes must be included.

$$\mathcal{H} = \sum_{l=0}^{\infty} (2l+1) \left(\frac{\alpha a_0}{a \alpha_0} \Pi_l \Pi_l^{\dagger} + \phi_l^{\dagger} \sqrt{\frac{a \alpha_0}{\alpha a_0}} K \sqrt{\frac{a \alpha_0}{\alpha a_0}} \phi_l \right)$$

with

$$K = q^T q + \frac{I(I+1)}{r^2} \alpha^2$$

Additional divergence due to large / modes.



Classically, I > 0 modes break spherical symmetry.

In the quantum case, $\langle \psi \mid T_{\mu\nu} \mid \psi \rangle$ can be spherically symmetric even if I > 0 modes are excited.

 \rightarrow These modes must be included.

$$\mathcal{H} = \sum_{l=0}^{\infty} (2l+1) \left(\frac{\alpha a_0}{a \alpha_0} \Pi_l \Pi_l^{\dagger} + \phi_l^{\dagger} \sqrt{\frac{a \alpha_0}{\alpha a_0}} K \sqrt{\frac{a \alpha_0}{\alpha a_0}} \phi_l \right)$$

with

$$K = q^T q + \frac{I(I+1)}{r^2} \alpha^2$$

Additional divergence due to large / modes.

Divergence structure

Energy momentum tensor in curved space time can be calculated from the coincidence limit of the two-point function G(x, x').

For well behaved Hadamard states $|\psi\rangle$, the divergence structure is [1]

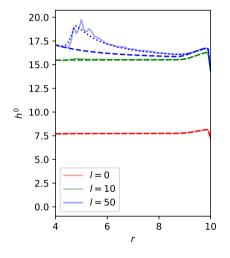
$$\lim_{x' \to x} \langle \psi \mid \textit{G}(\textbf{x}, \textbf{x}') \mid \psi \rangle = \frac{\textit{u}(\textbf{x}, \textbf{x}')}{\sigma(\textbf{x}, \textbf{x}')} + \textit{v}(\textbf{x}, \textbf{x}') \ln \sigma(\textbf{x}, \textbf{x}') + \textit{w}(\textbf{x}, \textbf{x}')$$

Here, $\sigma(x, x')$ is the geodesic distance between x and x' and u(x, x'), v(x, x') are state-independent function that depend only on the metric and w(x, x') is regular.

How does that translate to the sum of angular / modes?

Can one use a 1/I expansion to relate them? \rightarrow Work in progress.

[1] S. A. Fulling, M. Sweeny and R. M. Wald, "Singularity Structure of the Two Point Function in Quantum Field Theory in Curved Space-Time," Commun. Math. Phys. **63** (1978), 257-264



Solid lines: h^0 without subtraction.

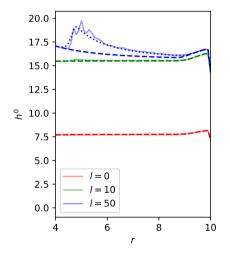
Dashed line: Normal ordering at t = 0.

Dotted line: Instantaneous normal ordering (Adiabatic approximation)

Approaches:

- Normal ordering at initial time
- Point splitting in θ direction [1]
- Subtraction of adiabtic time evolution
- Subtracting the evolution with $K = \frac{l(l+1)}{r^2}\alpha^2$

[1] A. Levi and A. Ori, "Mode-sum regularization of $\langle \phi^2 \rangle$ in the angular-splitting method," Phys. Rev. D **94** (2016) no.4, 044054 [arXiv:1606.08451 [gr-qc]].



Solid lines: h^0 without subtraction.

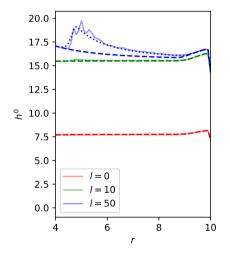
Dashed line: Normal ordering at t = 0.

Dotted line: Instantaneous normal ordering (Adiabatic approximation)

Approaches:

- Normal ordering at initial time
- Point splitting in θ direction [1]
- Subtraction of adiabtic time evolution
- Subtracting the evolution with $K = \frac{l(l+1)}{r^2}\alpha^2$

[1] A. Levi and A. Ori, "Mode-sum regularization of $\left<\phi^2\right>$ in the angular-splitting method," Phys. Rev. D **94** (2016) no.4, 044054 [ar-Xiv:1606.08451 [gr-qc]].



Solid lines: h^0 without subtraction.

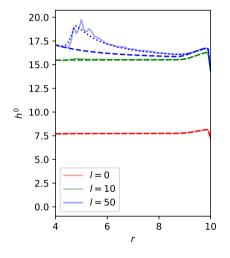
Dashed line: Normal ordering at t = 0.

Dotted line: Instantaneous normal ordering (Adiabatic approximation)

Approaches:

- Normal ordering at initial time
- Point splitting in θ direction [1]
- Subtraction of adiabtic time evolution
- Subtracting the evolution with $K = \frac{l(l+1)}{r^2}\alpha^2$

[1] A. Levi and A. Ori, "Mode-sum regularization of $\left<\phi^2\right>$ in the angular-splitting method," Phys. Rev. D **94** (2016) no.4, 044054 [ar-Xiv:1606.08451 [gr-qc]].



Solid lines: h^0 without subtraction.

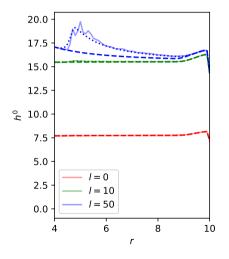
Dashed line: Normal ordering at t = 0.

Dotted line: Instantaneous normal ordering (Adiabatic approximation)

Approaches:

- Normal ordering at initial time
- Point splitting in θ direction [1]
- Subtraction of adiabatic time evolution
- Subtracting the evolution with $K = \frac{l(l+1)}{r^2}\alpha^2$

[1] A. Levi and A. Ori, "Mode-sum regularization of $\left<\phi^2\right>$ in the angular-splitting method," Phys. Rev. D **94** (2016) no.4, 044054 [ar-Xiv:1606.08451 [gr-qc]].



Solid lines: h^0 without subtraction.

Dashed line: Normal ordering at t = 0.

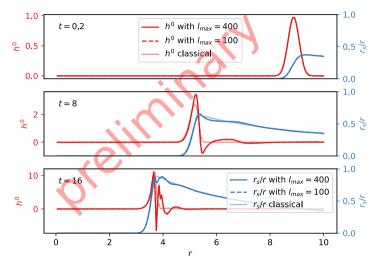
Dotted line: Instantaneous normal ordering (Adiabatic approximation)

Approaches:

- Normal ordering at initial time
- Point splitting in θ direction [1]
- Subtraction of adiabatic time evolution
- Subtracting the evolution with $K = \frac{l(l+1)}{r^2}\alpha^2$

[1] A. Levi and A. Ori, "Mode-sum regularization of $\langle \phi^2 \rangle$ in the angular-splitting method," Phys. Rev. D **94** (2016) no.4, 044054 [arXiv:1606.08451 [gr-qc]].

Pauli-Villars fields



As suggested by [1], using Pauli-Villars fields with alternating signs and masses

$$m_2^2 + m_4^2 = m_1^2 + m_3^2 + m_5^2$$

 $m_2^4 + m_4^4 = m_1^4 + m_3^4 + m_5^4$

removes divergences for finite values of the masses.

Left side:
$$m_1 = 1$$
.

[1] B. Berczi, P. M. Saffin and S. Y. Zhou, "Gravitational collapse of quantum fields and Choptuik scaling," JHEP **02** (2022), 183 doi:10.1007/JHEP02(2022)183 [arXiv:2111.11400 [hep-th]].

Conclusion

- Free scalar field evolution can be solved exactly in a static metric.
- In varying metric a leap-frog-like algorithm allows to determine the evolution.
- In the I=0 approximation, the back reaction can be calculated.
- Including higher I modes is work in progress, preliminary results with Pauli-Villars regularization.

Thank you!