Phi meson properties in nuclear matter in a transport approach

Philipp Gubler (JAEA)

H.J. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020).P. Gubler, E. Bratkovskaya and T. Song, in progress.

Talk at NeD-2022, Krabi, Thailand, December 1, 2022 Work done in collaboration with: HyungJoo Kim (Yonsei U.) Elena Bratkovskaya (Frankfurt/GSI) Taesoo Song (GSI)

Interest

Hadrons as components of spectral functions

M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Nucl. Phys. B147, 385 (1979); B147, 448 (1979).

QCD sum rules

 $\langle ST \overline{s} \gamma^{\alpha} i D^{\beta} i D^{\gamma} i D^{\delta} s \rangle_{\rho}$

q²

Makes use of the analytic properties of the correlation function:

$$\Pi^{\mu\nu}(q^2) = i \int d^4x e^{iqx} \langle T[j^{\mu}(x)j^{\nu}(0)] \rangle_{\rho}$$

spectral function

$$\rightarrow \prod^{\mu\nu}(q^{2}) = \frac{1}{\pi} \int_{0}^{\infty} ds \frac{\operatorname{Im} \Pi^{\mu\nu}(s)}{s - q^{2} - i\epsilon} \langle \overline{s}s \rangle_{\rho}, \langle G^{a}_{\mu\nu} G^{a\mu\nu} \rangle_{\rho}, \langle \overline{s}\sigma_{\mu\nu} \frac{\lambda^{a}}{2} G^{a\mu\nu} s \rangle_{\rho}, \langle \overline{s}r \overline{s}\gamma^{\alpha} i D^{\beta} s \rangle_{\rho}, \langle ST \overline{s}\gamma^{\alpha} i D^{\beta} s \rangle_{\rho}, \\ \langle ST G^{a\alpha}_{\mu} G^{a\mu\beta} \rangle_{\rho}, \end{cases}$$
 non-scalar condensates:

non-trivial dispersion relation

φ meson at rest in nuclear matter

The ϕ meson mass in nuclear matter probes the strange quark condensate at finite density!

 $|\langle \overline{ss} \rangle_{\rho}|$

P. Gubler and K. Ohtani, Phys. Rev. D 90, 094002 (2014).

?

 m_d

A typically used reaction

Proton induced generation of vector mesons in nuclei

However, things are not so simple...

Proton induced generation of vector mesons in nuclei

R. Muto et al. (E325 Collaboration), Phys. Rev. Lett. 98, 042501 (2007).

More recent results

ALICE: pp

Measurement of ϕN correlation

HADES: 1.7 GeV π^{-} A-reaction

K⁺K⁻ - invariant mass spectrum

Phys. Rev. Lett. 123, 022002 (2019).

φ meson at rest in nuclear matter

The ϕ meson mass in nuclear matter probes the strange quark condensate at finite density!

What does lattice QCD say about the strange sigma term?

http://flag.unibe.ch/2021/

$$\sigma_{sN} = m_s \langle N | \overline{s}s | N$$

φ meson at rest in nuclear matter

The ϕ meson mass in nuclear matter probes the strange quark condensate at finite density!

φ meson **moving** in nuclear matter

φ meson properties depend on the spin polarization (longitudinal or transverse)

Broken Lorentz symmetry

Non-trivial, polarization dependent dispersion relations

Potential effect on mass shift measurement?

The ϕ meson with non-zero momentum

$$\frac{1}{\omega^2 - \vec{q}^2 - m_{\phi,L}^2(\vec{q}^2)} \quad \begin{array}{l} \text{longitudinal} \\ \text{part} \end{array}$$

$$\frac{1}{\omega^2 - m_{\phi}^2(0)} \quad \begin{array}{l} \frac{1}{\omega^2 - \vec{q}^2 - m_{\phi,T}^2(\vec{q}^2)} \quad \begin{array}{l} \text{transverse} \\ \text{part} \end{array}$$

zero momentum

non-zero momentum \vec{q}

Results for the ϕ meson mass with non-zero momentum

H.J. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020).

The angle-averaged di-lepton spectrum

1.2 |q|=2.0 GeV ····· ho_{vac} Γ=15. MeV Γ=40. MeV 0.8 Γ=65. MeV A double peak? 0.4 1.06 0.98 1.02 1.04 0.96 \sqrt{s} [GeV]

H.J. Kim and P. Gubler, Phys. Lett. B 805, 135412 (2020).

The angle-averaged di-lepton spectrum

Even without a double peak, momentum effects can be observed

How compare theory with experiment?

- Mass at normal nuclear matter density
- Decay width at normal nuclear matter density

Realistic simulation of pA reaction is needed!

Our tool: a transport approach PHSD (Parton Hadron String Dynamics)

E.L. Bratkovskaya and W. Cassing, Nucl. Phys. A 807, 214 (2008).W. Cassing and E.L. Bratkovskaya, Phys. Rev. C 78, 034919 (2008).

Off-shell dynamics of vector mesons and kaons is included (dynamical modification of the mesonic spectral function during the simulated reaction)

off-shell terms

$$\begin{split} \frac{d\vec{X}_{i}}{dt} &= \frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_{i}} \bigg[2\vec{P}_{i} + \vec{\nabla}_{P_{i}} \operatorname{Re} \Sigma_{(i)}^{\text{ret}} + \frac{\varepsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \vec{\nabla}_{P_{i}} \vec{\Gamma}_{(i)} \bigg] \\ \frac{d\vec{P}_{i}}{dt} &= -\frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_{i}} \bigg[\vec{\nabla}_{X_{i}} \operatorname{Re} \Sigma_{i}^{\text{ret}} + \frac{\varepsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \vec{\nabla}_{X_{i}} \tilde{\Gamma}_{(i)} \bigg], \\ \frac{d\varepsilon_{i}}{dt} &= \frac{1}{1 - C_{(i)}} \frac{1}{2\varepsilon_{i}} \bigg[\frac{\partial \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\partial t} + \frac{\varepsilon_{i}^{2} - \vec{P}_{i}^{2} - M_{0}^{2} - \operatorname{Re} \Sigma_{(i)}^{\text{ret}}}{\tilde{\Gamma}_{(i)}} \frac{\partial \tilde{\Gamma}_{(i)}}{\partial t} \bigg], \end{split}$$

Testparticle approach:

Advantage: vector meson spectra can be chosen freely

Our choice: a Breit-Wigner with density dependent mass and width

$$A_{\phi}(M,\rho) = C \frac{2}{\pi} \frac{M^2 \Gamma_{\phi}^*(M,\rho)}{[M^2 - M_{\phi}^{*2}(\rho)]^2 + M^2 \Gamma_{\phi}^{*2}(M,\rho)} \quad \text{with} \quad \begin{cases} M_{\phi}^*(\rho) = M_{\phi}^{\text{vac}} \left(1 - \alpha^{\phi} \frac{\rho}{\rho_0}\right) \\ \Gamma_{\phi}^*(M,\rho) = \Gamma_{\phi}^{\text{vac}} + \alpha_{\text{coll}}^{\phi} \frac{\rho}{\rho_0} \end{cases}$$

$$\overset{\text{vacuum}}{\swarrow} \overset{4.3}{\checkmark} \overset{15.3}{\checkmark} \overset{26.3}{\checkmark} \overset{37.3}{\checkmark} \overset{\text{vacuum}}{\checkmark} \overset{4.3}{\checkmark} \overset{15.3}{\checkmark} \overset{26.3}{\checkmark} \overset{37.3}{\checkmark} \overset{\text{vacuum}}{\checkmark} \overset{4.3}{\checkmark} \overset{\text{vacuum}}{\ast} \overset{4.3}{\checkmark} \overset{\text{vacuum}}{\ast} \overset{4.3}{\checkmark} \overset{\text{vacuum}}{\ast} \overset{4.3}{\ast} \overset{\text{vacuum}}{\ast} \overset{\text{vacuum}}{\ast} \overset{4.3}{\ast} \overset{\text{vacuum}}{\ast} \overset{\text{vacuum}}{\ast} \overset{4.3}{\ast} \overset{\text{vacuum}}{\ast} \overset{\text{vacuum}}{\ast} \overset{4.3}{\ast} \overset{\text{vacuum}}{\ast} \overset{\text{$$

What density does the φ feel in the reaction (p+Cu at 12 GeV)?

Preliminary

How do experimental rescattering and QED effects modify the dilepton spectrum?

Fit to experimental Copper target data (E325)

(including elemag. and rescattering effects)

Need momentum dependent mass shift??

Fit to experimental Copper target data (E325)

(χ^2 /d.o.f. values)

Fit to experimental Copper target data (E325)

(all βγ-bins combined)

Conclusion of the E325 Collaboration

X

Outlook

 A lot of new experimental information about the φN interaction is becoming available (LHC, J-PARC, HADES)

Many opportunities for theorists !

Summary and Conclusions

Relating modification of QCD condensates with hadron properties in nuclear matter is a non-trivial multi-step process

QCD condensates Hadronic spectrum Experimental data

 \star The ϕ meson mass shift in nuclear matter constrains the strangeness content of the nucleon

 $\sigma_{sN} <$ 35 MeV \bullet $\sigma_{sN} >$ 35 MeV \bullet

 $\sigma_{sN} < 35 \text{ MeV}$ increasing φ meson mass in nuclear matter

 $\sigma_{sN} > 35$ MeV \checkmark Decreasing φ meson mass in nuclear matter

For studying the modification of the φ meson spectral function experimentally at finite density, a good understanding of the underlying reactions is needed

★ We conducted numerical simulations of the pA reactions measured at the E325 experiment at KEK, using the PHSD transport code

The E325 data are consistent with a wide range of mass shift and broadening scenarios

Backup slides

The non-zero momentum case:

Disentangling longitudinal and transverse components

 $\Pi^{\mu\nu}(\omega^2,\vec{q}^{\,2})$

 $\Pi_L(\omega^2, \vec{q}^{\,2}) = \frac{1}{\vec{q}^{\,2}} \Pi_{00}$

 $\Pi_T(\omega^2, \vec{q}^{\,2}) = -\frac{1}{2} \left(\frac{1}{\vec{q}^{\,2}} \Pi_{00} + \frac{1}{q^2} \Pi^{\mu}_{\mu} \right)$

Experimental di-lepton spectrum

The importance of off-shell contributions

Taken from: E.L. Bratkovskaya and W. Cassing, Nucl. Phys. A 807, 214 (2008).

Relation between optical potential and scattering length

More on the operator product expansion (OPE)

Perturbative part

Non-perturbative (condensate) part

All intermediate four-momenta are in the perturbative ("hard") regime

"Soft", non-perturbative contributions are treated as condensates

The strangeness content of the nucleon: $\sigma_{sN}=m_s\langle N|\overline{s}s|N
angle$

A. Bottino, F. Donato, N. Fornengo and S. Scopel, Asropart. Phys. 18, 205 (2002).

A simple example of dilepton decay of a longitudinally polarized $\boldsymbol{\phi}$

A simple example of K^+K^- decay of a transeversely polarized ϕ

$$\frac{1}{\Gamma}\frac{d\Gamma}{d\Omega} = \frac{3}{16\pi} \left[(|a_{+1}|^2 + |a_{-1}|^2)(1 + \cos^2\theta) + 2|a_0|^2(1 - \cos^2\theta) + 2Re(a_{+1}a_{-1}^*)\sin^2\theta\cos 2\phi + \dots \right]$$

other ϕ -dependent terms

Full angular distribution of dilepton decay

 θ : polar angle ϕ : azimuthal angle

Full angular distribution of K⁺K⁻ decay

