DECIPHERING FLOW AT SIS ENERGIES: A LOOK THROUGH THE KEYHOLE

Tom Reichert

Institut für Theoretische Physik, Goethe-Universität Frankfurt In collaboration with Apiwit Kittiratpattana, Oleh Savchuk, Jan Steinheimer, Marcus Bleicher, et al.

9th Non-Equilibrium Dynamics Krabi, Thailand

Heavy Ion Collisions and Neutron Stars

- Remarkable resemblance
- Densities 2-6 ho_0
- Vorticity $10^{40}\hbar$
- Measure Equation-of-State $P(\varepsilon)$ of nuclear matter
- Binary Neutron Star mergers
 - Gravitational waves
- Heavy Ion Collisions
 - Harmonic flow

Ultra-relativistic Quantum Molecular Dynamics

- Hadron/String transport approach
- Based on propagation of hadrons
- Rescattering among hadrons fully included
- String excitation and decay (LUND modell, PYTHIA)
- Solution for the time dependent n-body distribution of hadrons
- Collision term includes more than 100 hadrons up to 4 GeV in mass
- Soft/Hard or CMF EoS can be switched on

UrQMD with Chiral Mean Field EoS

•
$$m_{b\pm}^* = \sqrt{\left[(g_{\sigma b}^{(1)}\sigma + g_{\zeta b}^{(1)}\zeta)^2 + (m_0 + n_s m_s)^2\right]}$$

 $\pm g_{\sigma b}^{(2)}\sigma$,

- $V_{CMF} = E_{\text{field}} / A = E_{\text{CMF}} / A E_{\text{FFG}} / A$
- CMF EoS hard up to $3\rho_0$ then soft
- Easy implementation of phase transition

What is flow?

- Fourier series of azimuthal angle distribution
- $\cdot \frac{dN}{d\varphi} = 1 + 2\sum_{n=1}^{\infty} v_n \cos(n(\varphi \Psi_{RP})) + \tilde{v}_n \sin(n(\varphi \Psi_{RP}))$
- Experiment: difficult due to fluctuating reaction plane
- Simulation: $\Psi_{RP} = 0$ and $\tilde{v}_n = 0$
- v_1 : Directed flow
- v_2 : Elliptic flow

Elliptic flow versus energy

- Elliptic flow is negative from $\sqrt{s_{NN}} = 2 4$ GeV
- Positive at higher energies
- Out-of-plane emission: Shadowing
- In-plane emission: Pressure gradient, transverse expansion

HADES, arXiv:2208.02740

HADES vs UrQMD

HADES vs UrQMD

Elliptic flow scaling with eccentricity

- LHC & RHIC: initial $\varepsilon_2 \rightarrow -\nabla n \rightarrow -\nabla P \rightarrow$ final v_2
- GSI: Negative scaling observed by HADES

10

Flow scaling: p_T

- v_2 scaling with ε_2 is negative
- p_T dependence observed
- Au collisions and Ag collisions behave similarly
- Similar shadowing strength at equal eccentricity
- → Probe hot and dense phase

Time development of v_1

Full system:

- Zero until compression is large
- Strong increase from 5 to 15 fm
- Saturates

Emitted:

- First negative (only unblocked direction)
- Then strongly increasing

T. Reichert et al., to be published

Time development of v_2

Full system:

- Zero until 7 fm
- Positive from 7 to 15 fm due to pressure gradient
- Momentum transfer to (semi-) spectators
- Turns negative
 Emitted:
- First highly negative
- Increasing towards final value

T. Reichert et al., to be published

Time development of v_1 and v_2

Flow is directly sensitive to the EoS

• Tight connection between v_1 and v_2

Time evolution

- Full system from 0 to 28 fm
- Spherical expansion after 17 fm (residues have passed)

Time evolution

- Nucleons emitted at time t
- Different freeze-out contours at different times

Dileptons

Tom Reichert

C. Gale et al. Nucl. Phys. B357 (1991) 65

•
$$\frac{\mathrm{d}N_{\ell^+\ell^-}}{\mathrm{d}^4 x \mathrm{d}^4 q} = -\frac{\alpha^2}{3\pi^3} \frac{q^2 + 2m_\ell^2}{(k^2)^2} \sqrt{1 - \frac{4m_\ell^2}{k^2}} \eta_{\mu\nu} \mathrm{Im} \Pi_{\mathrm{ret}}^{\mu\nu}(M, \vec{q}) n_{\mathrm{B}}(u \cdot q)$$

Spectral and thermal information

- UrQMD + coarse-graining
- Evaluate $\langle T^{\mu\nu} \rangle$ and $\langle j_B^{\mu} \rangle$ in each cell and obtain T, μ_B
- Calculate dileptons using Rapp spectral functions
- Shining method (collisional broadening included)

Dilepton spectra

- Peaks of ω and ϕ visible
 - *ρ* meson broadened at higher energies
 - Enhancement with phase transition

Decoupling time distribution

- Dileptons decouple mainly from 5 to 15 fm
- Narrow distribution
- Time when flow is positive
- Nucleons decouple from 10 to 35 fm
- Broad distribution

Decoupling time vs. flow

• Dileptons probe positive v_2 in hot and dense phase

• Hadrons probe negative v_2 at kinetic decoupling

Elliptic flow: p_T dependence

- Hadrons show negative
 v₂
- Simulation in line with HADES data
- Dileptons have positive v_2
- Dileptons show hydromass scaling
- Direct measurement of EoS

T. Reichert et al., to be published

Elliptic flow fluctuation

- Final v₂ fluctuates from -0.2 to 0.1
- Average $\langle v_2 \rangle \approx -0.05$ consistent with HADES data
- Where does the fluctuation come from?
- Connection to eccentricity?

 \rightarrow Investigate how flow develops during time evolution

T. Reichert, Eur. Phys. J. C 82, no.6, 510 (2022)

What about the fluctuation?

- Initial positive v₂ corresponds to final positive v₂
- Initial negative v₂ corresponds to final negative v₂
- Initial \varepsilon_2 fluctuation exerts different pressure gradients
- Initial fluctuation in zdirection

What about the fluctuation?

- More initial v_2 creates stronger bounce-off (v_1)
- Initial ε_2 fluctuation corresponds to fluctuation of shadowing strength
- Initial fluctuation in zdirection
- Tight connection of v₁
 and v₂ even on event-by event basis

T. Reichert et al., to be published

v_1 in different event classes

- Investigate v_1 to v_4 in different event classes
- Marginal influence on v_1 , driven by bounce-off
- Positive correlation of final
 v₂ with v₁
- Slope at midrapidity mainly unaffected

T. Reichert, Eur. Phys. J. C 82, no.6, 510 (2022)

v_2 in different event classes

- Trivial self-correlation
- Shape is independent of trigger
- Trigger shifts linearly

T. Reichert, Eur. Phys. J. C 82, no.6, 510 (2022)

v_3 in different event classes

- Strong correlation
- Positive v₂ correlated to positive v₃ slope
- Negative v₂ correlated to negative v₃ slope

• Scaling
$$v_3 \propto v_1 \cdot v_2$$
?

v_4 in different event classes

- Strong correlation
- Positive v_2 correlated to concave v_4 shape
- Negative v_2 correlated to convex v_4 shape

```
• Scaling v_4 \propto v_2^2
```

Flow scaling

- We understand flow development
- Thus scaling can be explained
- Initial ε₂ fluctuation drives built-up of v₁ and v₂
- Pressure gradient creates correlation:
 - $v_3 \propto v_1 \cdot v_2$
- Measure EoS!

- Curvature sensitive to v₂ trigger and EoS
- With increasing stiffness of the EoS curvature increases
- Skyrme potential: curvature increases for larger v₂ triggers

T. Reichert, Eur. Phys. J. C 82, no.6, 510 (2022)

- Clear linear dependence
- Pronounced sensitivity to EoS
- With increasing stiffness of the EoS, the incline becomes stronger
- Pin down EoS more precisely

T. Reichert, Eur. Phys. J. C 82, no.6, 510 (2022)

- Strong sensitivity even of v_4 curvature on v_2 trigger
- A harder EoS decreases the curvature in quadrangular flow
- Skyrme potentials: positive correlation of curvature with trigger

Pearson correlation

- Pearson correlation also non-zero
- However, Pearson measures only linear correlation
- Direct correlation via event selection is advantageous

Summary

- v₂ at SIS at full overlap is positive due to pressure gradient exerted by Equation-of-State
- Final v_2 at SIS energies is negative due to immense shadowing, momentum transfer to (semi-) spectators
- Explains connection between v_1 and v_2
- Measurement via dileptons
- Fluctuation of v_2 can be explained
- Event classes allow to pin down EoS

