

Nuclei and hypernuclei production in pion induced reactions around threshold energies

Outline:

- Hypernuclei
- Small system size
- Cluster formation mechanisms
- Results

Apiwit Kittiratpattana

Suranaree University of Technology, Thailand Goethe-Universität Frankfurt, Germany

Based on: Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

Hypernuclei: Equation of State (EoS)

Why are hypernuclei interesting?

- \rightarrow Cluster formation (EoS)
- \rightarrow YN-Interaction (dense matter EoS)

Talks on Monday

EoS for dense matter (neutron stars):

- The presence of hypernuclei softens the EoS
- Stiffer EoS
	- 3-body repulsive potential

Lonardoni, D., Lovato, A., Gandolfi, S., & Pederiva, F. (2015). Physical Review Letters, 114(9).

10th NeD-2024, Krabi, Thailand Apiwit Kittiratpattana 10th NeD-2024, Krabi, Thailand

Hypernuclei: Heavy-ion Collisions

Hypertriton $^{3}_{\Lambda}$ H

- Strongly attractive \rightarrow Soft EoS (deeply bound)
- More repulsive \rightarrow Stiff EoS (less bound)

Can coalescence help us study the AN-interaction?

- Coalescence works (may reflect internal structure)
- Does it work with hypernuclei and different system?

Hypernuclei

What happens when the coalescence size is larger than the system size?

- Suppression at small system
	- Δr and ΔP are less correlated
	- (Maybe) reflect soft/stiff EoS?
- Study ³He in diff. system
	- (Maybe) help for EoS?
	- Pin down the mechanism
	- More data is needed!

Note: Coalescence parameter may not directly connect to the wavefunction size

Small system size

New particle production in $p + A$: Lambda is produced with a large forward momentum

- \rightarrow Less favorable for hypernuclei production
- → Hypernuclei will be produced outside

Small system size

New particle production in $p + A$: Lambda is produced with a large forward momentum

- \rightarrow Less favorable for hypernuclei production
- \rightarrow Hypernuclei will be produced outside

New particle production in $\pi^- + A$:

 \rightarrow Hypernuclei will be formed with the target! (Allow for large hypernuclei $A \gg 3$)

Hyperon production

- $\pi^- + N \to N^*$ (up to 4 GeV)
- $N^* \to AK$ (or even EKK)

UrQMD

Ultra-relativistic Molecular Dynamics (UrQMD)

Based on the relativistic Boltzmann transport:

- $p^{\mu} \cdot \partial_{\mu} f_i(x^{\nu}, p^{\nu}) = C_i$
- Binary interactions + Re-scattering are treated
- Cross sections are taken from data or models
- Resonances/decays are implemented
- History of all 4-coordinates and 4-momenta

Cluster formation mechanisms

Wigner functions

- Projection on Hulthen wave function
- No free parameters
- No orthogonality of states

M. Kachelriess et al. Eur.Phys.J.A 57 (2021) M. Gyulassi et al. Nucl.Phys.A 402 (1983)

- Introduce explicit processes, e.g. $np\pi \rightarrow d\pi$
- Dynamical treatment

J. Staudenmaier et al. Phys.Rev.C 104 (2021) 3, 034908 D. Oliinychenko et al. Phys.Rev.C 99 (2019) 4, 044907 G. Coci et al., Phys.Rev.C 108 (2023) 014902

Potential + MST

- Hamiltonian which binds cluster
- Momentum dependent potential with soft EoS

J. Aichelin et al., PRC 101 (2020) 044905 S. Gläßel et al., PRC 105 (2022) 1

Talk by J. Aichelin on Monday

Coalescence

- Employ cut-off parameters
- Event-by-event possible
- 2 free, energy-independent parameters

Talk by M. Bleicher on Monday

Thermal emission

- Clusters in partition sum
- No free parameter

P. Braun-Munzinger, et al. Phys.Lett.B 344 (1995) 43-48 A. Andronic, et al. Nature 561 (2018) 7723, 321-330 V. Vovchenko, et al. Phys.Lett. B (2020) 135746

Multifragmentation

- Break up of thermal nuclear system
- Microcanonical ensembles
- Deexcitation via \bullet Fermi break up

Bondorf et al. Phys.Rept. 257 (1995) 133-221

Talk by N. Buyukcizmeci on Thursday

Cluster formation mechanisms

Coalescence Mechanism (UrQMD)

• Phase-space coalescence:

$$
dN/d\vec{P} = g \int \frac{f_A(\vec{r}_1, \vec{p}_1) f_B(\vec{r}_2, \vec{p}_2) \rho_{AB}(\vec{r}_1, \vec{r}_2, \vec{p}_1, \vec{p}_2)}{\delta(\vec{P} - \vec{p}_1 - \vec{p}_2) d^3 r_1 d^3 r_2 d^3 p_1 d^3 p_2}
$$

- Box coalescence: ρ_{AB}
	- $\Delta \vec{P} \leq \Delta \vec{P}_{max}$, $\Delta \vec{R} \leq \Delta \vec{R}_{max}$

Statistical Multifragmentation (SMM)

Assume a larger excited nuclear system which subsequently fragments into small clusters

- All participants (and spectators) from UrQMD (at 20 fm) are given to SMM
- Coalesce to heavier nuclei and decays into fragmented nuclei

p_T spectra of protons and Λ hyperons

Protons:

- The slope parameters agree well
- Observe the residue free protons at $p_T \leq$ 0.4 GeV ($y \le 0.1$)
	- More apparent in larger system.

Λ hyperons:

• Also agree well

 π^- + **C**: 0 < *b* < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb $\pi^{-} + \mathbf{W}$: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^{-} + \mathbf{W}} = 1327.32$ mb Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

10th NeD-2024, Krabi, Thailand Apiwit Kittiratpattana Apiwit Kittiratpattana and the state of the state

Protons:

p_T spectra of protons and Λ hyperons

 π^- + **C**: 0 < *b* < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb $\pi^{-} + \mathbf{W}$: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^{-} + \mathbf{W}} = 1327.32$ mb Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

 π ⁻ + W (UrQMD v3.5)

 -10^{19}

 -110^{15}

 10^{11}

 -110^{-1}

 $p_{lab} = 1.7 \text{ GeV}$

 $-$ 0.75 \leq y $<$ 0.90 (\times 10¹⁰)

 $-$ 0.90 < y < 1.05 (\times 10¹²)

 p_T [GeV]

min. bias

The slope parameters agree well.

• Observe the residue free protons at $p_T \leq$ 0.4 GeV ($y \le 0.1$)

> • More apparent in larger system.

hyperons:

• Agree well.

This leads to slightly difference in the extrapolated rapidity densities at $y \approx 0$ (target)

10th NeD-2024, Krabi, Thailand Apiwit Kittiratpattana 10/16

 π^- + **C**: 0 < *b* < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb $\pi^{-} + \mathbf{W}$: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^{-} + \mathbf{W}} = 1327.32$ mb Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

Rapidity distribution of protons and Λ hyperons

Protons:

- The extrapolated (UrQMD) and HADES agree well
	- Need adjustment for exponential fit
- All protons are at the target
	- Good for cluster formation

Λ hyperons:

- Agree well in general
- Ξ^- hyperons:
	- Detectable
	- $\text{ENN} \rightarrow \text{AAN}$?

 π^- + **C**: 0 < *b* < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb $\pi^{-} + \mathbf{W}$: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^{-} + \mathbf{W}} = 1327.32$ mb Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

p_T distribution of light nuclei

Similar to the residue protons, the light cluster yields also has a bump at $y \approx 0$

Rapidity distribution of light nuclei

Most cluster are centered around target rapidity where (residue) nucleons are located/fragmented.

- $\rightarrow A \leq 4 \sim \mathcal{O}(10)$ per event
- Deceleration:
	- Deuterons are much more pronounce at forward rapidity
	- π^- is more likely to knock $1-2$ nucleons from the target
	- Larger nucleus decelerates stronger

 π^- + **C**: 0 < *b* < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb $\pi^{-} + \mathbf{W}$: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^{-} + \mathbf{W}} = 1327.32$ mb Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

 π^- + **C**: 0 < *b* < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb $\pi^{-} + \mathbf{W}$: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^{-} + \mathbf{W}} = 1327.32$ mb Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

Rapidity distribution of hypernuclei

- More clusters formation at $y \approx 0$
- $O(10^{-3})$ of $^{3}_{\Lambda}$ H /events
- $N\Xi$ signal
- Deceleration: $A < 3$
- In small system (πC) , SMM differs from UrQMD by a factor of 10
	- Suppression $^{3}_{\Lambda}$ H in small system

Total abundance for larger (hyper)nuclei

Signal extractions by HADES (~10⁹ events**)**

- **Nuclei** $A > 3 \to 10^{-4} 10$ / event
- **• Hypernuclei** $A \geq 3 \to 10^{-6} 10^{-3}$ / event

HADES with $p_{lab} = 2.5$ GeV?

- Ξ-hypernuclei might be seen $(N^* \rightarrow \Xi + K + K)$
- Double-Λ $(\Xi + N + N \rightarrow \Lambda + \Lambda + N)$

 π^- + **C**: 0 < *b* < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb $\pi^{-} + \mathbf{W}$: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^{-} + \mathbf{W}} = 1327.32$ mb Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

Total abundance for larger (hyper)nuclei

Signal extractions by HADES (~10⁹ events**)**

- **Nuclei** $A > 3 \to 10^{-4} 10$ / event
- **• Hypernuclei** $A \geq 3 \to 10^{-6} 10^{-3}$ / event

HADES with $p_{lab} = 2.5$ GeV?

- E-hypernuclei might be seen $(N^* \rightarrow \Xi + K + K)$
- Double-Λ $(\Xi + N + N \rightarrow \Lambda + \Lambda + N)$

 π^- + **C**: 0 < *b* < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb $\pi^{-} + \mathbf{W}$: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^{-} + \mathbf{W}} = 1327.32$ mb Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

UrQMD is employed to simulate $\pi^- + C$ and $\pi^- + W$ at $p_{\text{lab}} = 1.7 \text{ GeV}$

We predict clusters with coalescence and SMM

- Nuclei $A > 3 \rightarrow 10^{-4} 10$ / event
- Hypernuclei $A \geq 3 \rightarrow 10^{-6} 10^{-3}$ / event
- $O(10^{-3})$ of $^{3}_{\Lambda}$ H per event

ENFHF

GOETHE

UNIVERSIT

- Large targets are favorable (more stopping)
- Strong suppression supports coalescence

 E and double- $Λ$ at higher beam momenta?

Summary

