

Nuclei and hypernuclei production in pion induced reactions around threshold energies

Outline:

- Hypernuclei
- Small system size
- Cluster formation mechanisms
- Results

Apiwit Kittiratpattana

Suranaree University of Technology, Thailand Goethe-Universität Frankfurt, Germany

Based on: Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

Hypernuclei: Equation of State (EoS)

Why are hypernuclei interesting?

- \rightarrow Cluster formation (EoS)
- → *YN*-Interaction (dense matter EoS)

Talks on Monday

EoS for dense matter (neutron stars):

- The presence of hypernuclei softens the EoS
- Stiffer EoS
 - 3-body repulsive potential

Lonardoni, D., Lovato, A., Gandolfi, S., & Pederiva, F. (2015). Physical Review Letters, 114(9).

Apiwit Kittiratpattana

2/16

Hypernuclei: Heavy-ion Collisions

Hypertriton $^{3}_{\Lambda}$ H

- Strongly attractive → Soft EoS (deeply bound)
- More repulsive → Stiff EoS (less bound)

Can coalescence help us study the ΛN -interaction?

- Coalescence works (may reflect internal structure)
- Does it work with hypernuclei and different system?

Hypernuclei

What happens when the coalescence size is larger than the system size?

- Suppression at small system
 - Δr and ΔP are less correlated
 - (Maybe) reflect soft/stiff EoS?
- Study $^{3}_{\Lambda}$ He in diff. system
 - (Maybe) help for EoS?
 - Pin down the mechanism
 - More data is needed!

Note: Coalescence parameter may not directly connect to the wavefunction size

Small system size

New particle production in p + A: Lambda is produced with a large forward momentum

- \rightarrow Less favorable for hypernuclei production
- \rightarrow Hypernuclei will be produced outside

Small system size

New particle production in p + A: Lambda is produced with a large forward momentum

- \rightarrow Less favorable for hypernuclei production
- \rightarrow Hypernuclei will be produced outside

New particle production in $\pi^- + A$:

→ Hypernuclei will be formed with the target! (Allow for large hypernuclei $A \gg 3$)

Hyperon production

- $\pi^- + N \rightarrow N^*$ (up to 4 GeV)
- $N^* \to \Lambda K$ (or even $\Xi K K$)

UrQMD

Ultra-relativistic Molecular Dynamics (UrQMD)

Based on the relativistic Boltzmann transport:

- $p^{\mu} \cdot \partial_{\mu} f_i(x^{\nu}, p^{\nu}) = C_i$
- Binary interactions + Re-scattering are treated
- Cross sections are taken from data or models
- Resonances/decays are implemented
- History of all 4-coordinates and 4-momenta

nucleon	Δ	Λ	Σ	Ξ	Ω
N_{938}	Δ_{1232}	Λ_{1116}	Σ_{1192}	Ξ_{1317}	Ω_{1672}
N_{1440}	Δ_{1600}	Λ_{1405}	Σ_{1385}	Ξ_{1530}	
N_{1520}	Δ_{1620}	Λ_{1520}	Σ_{1660}	Ξ_{1690}	
N_{1535}	Δ_{1700}	Λ_{1600}	Σ_{1670}	Ξ_{1820}	
N_{1650}	Δ_{1900}	Λ_{1670}	Σ_{1775}	Ξ_{1950}	
N_{1675}	Δ_{1905}	Λ_{1690}	Σ_{1790}	Ξ_{2025}	
N_{1680}	Δ_{1910}	Λ_{1800}	Σ_{1915}		
N_{1700}	Δ_{1920}	Λ_{1810}	Σ_{1940}		
N_{1710}	Δ_{1930}	Λ_{1820}	Σ_{2030}		
N_{1720}	Δ_{1950}	Λ_{1830}			
N_{1900}		Λ_{1890}			
N_{1990}		Λ_{2100}			
N_{2080}		Λ_{2110}			
N_{2190}					
N_{2200}					
N_{2250}					
0^{-+}	1-	-	0^{++}		1++

Cluster formation mechanisms

Wigner functions

- Projection on Hulthen wave function
- No free parameters
- No orthogonality of states

M. Kachelriess et al. Eur.Phys.J.A 57 (2021) M. Gyulassi et al. Nucl.Phys.A 402 (1983)

Kinetic production

- Introduce explicit processes, e.g. $np\pi \rightarrow d\pi$
- Dynamical treatment

J. Staudenmaier et al. Phys.Rev.C 104 (2021) 3, 034908 D. Oliinychenko et al. Phys.Rev.C 99 (2019) 4, 044907 G. Coci et al., Phys.Rev.C 108 (2023) 014902

Potential + MST

- Hamiltonian which binds cluster
- Momentum dependent potential with soft EoS

J. Aichelin et al., PRC 101 (2020) 044905 S. Gläßel et al., PRC 105 (2022) 1

Talk by J. Aichelin on Monday

Coalescence

- Employ cut-off parameters
- Event-by-event possible
- 2 free, energy-independent parameters

Talk by M. Bleicher on Monday

Thermal emission

- Clusters in partition sum
- No free parameter

P. Braun-Munzinger, et al. Phys.Lett.B 344 (1995) 43-48
A. Andronic, et al. Nature 561 (2018) 7723, 321-330
V. Vovchenko, et al. Phys.Lett. B (2020) 135746

Multifragmentation

- Break up of thermal nuclear system
- Microcanonical ensembles
- Deexcitation via Fermi break up

Bondorf et al. Phys.Rept. 257 (1995) 133-221

Talk by N. Buyukcizmeci on Thursday

10th NeD-2024, Krabi, Thailand

Apiwit Kittiratpattana

Cluster formation mechanisms

Coalescence Mechanism (UrQMD)

• Phase-space coalescence:

$$dN/d\vec{P} = g \int \frac{f_A(\vec{r}_1, \vec{p}_1) f_B(\vec{r}_2, \vec{p}_2) \rho_{AB}(\vec{r}_1, \vec{r}_2, \vec{p}_1, \vec{p}_2)}{\delta(\vec{P} - \vec{p}_1 - \vec{p}_2) d^3 r_1 d^3 r_2 d^3 p_1 d^3 p_2}$$

- Box coalescence: ρ_{AB}
 - $\Delta \vec{P} \leq \Delta \vec{P}_{max}, \ \Delta \vec{R} \leq \Delta \vec{R}_{max}$

Statistical Multifragmentation (SMM)

Assume a larger excited nuclear system which subsequently fragments into small clusters

- All participants (and spectators) from UrQMD (at 20 fm) are given to SMM
- Coalesce to heavier nuclei and decays into fragmented nuclei

10th NeD-2024, Krabi, Thailand

p_T spectra of protons and Λ hyperons

Protons:

- The slope parameters agree well
- Observe the residue free protons at $p_T \le 0.4$ GeV ($y \le 0.1$)
 - More apparent in larger system

Λ hyperons:

• Also agree well

Protons:

p_T spectra of protons and Λ hyperons

 π^- + C: 0 < b < 2.5 fm, $\sigma_{tot}^{\pi^-+C} = 196.35$ mb π^- + W: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^-+W} = 1327.32$ mb Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

This leads to slightly difference in the extrapolated rapidity densities at $y \approx 0$ (target)

10th NeD-2024, Krabi, Thailand

Apiwit Kittiratpattana

10/16

 $\pi^- + C: \quad 0 < b < 2.5 \text{ fm}, \quad \sigma_{tot}^{\pi^-+C} = 196.35 \text{ mb}$ $\pi^- + W: \quad 0 < b < 6.5 \text{ fm}, \quad \sigma_{tot}^{\pi^-+W} = 1327.32 \text{ mb}$ Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

Rapidity distribution of protons and Λ hyperons

Protons:

- The extrapolated (UrQMD) and HADES agree well
 - Need adjustment for exponential fit
- All protons are at the target
 - Good for cluster formation

Λ hyperons:

- Agree well in general
- Ξ^- hyperons:
 - Detectable
 - $\Xi NN \rightarrow \Lambda \Lambda N$?

Apiwit Kittiratpattana

Results p_T distribution of light nuclei

 π^- + C: 0 < b < 2.5 fm, $\sigma_{tot}^{\pi^-+C}$ = 196.35 mb π^- + W: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^-+W}$ = 1327.32 mb Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

Similar to the residue protons, the light cluster yields also has a bump at $y \approx 0$

Rapidity distribution of light nuclei

Most cluster are centered around target rapidity where (residue) nucleons are located/fragmented.

- $\rightarrow A \leq 4 \sim \mathcal{O}(10)$ per event
- Deceleration:
 - Deuterons are much more pronounce at forward rapidity
 - π^- is more likely to knock 1-2 nucleons from the target
 - Larger nucleus decelerates stronger

 π^- + C: 0 < b < 2.5 fm, $\sigma_{tot}^{\pi^-+C} = 196.35$ mb π^- + W: 0 < b < 6.5 fm, $\sigma_{tot}^{\pi^-+W} = 1327.32$ mb Kittiratpattana, A., et al. *Physical Review C* 109.4 (2024): 044913.

Rapidity distribution of hypernuclei

- More clusters formation at $y \approx 0$
- $\mathcal{O}(10^{-3})$ of $^{3}_{\Lambda}$ H /events
- NE signal
- Deceleration: A < 3
- In small system (πC),
 SMM differs from
 UrQMD by a factor of 10
 - Suppression ${}^{3}_{\Lambda}$ H in small system

Total abundance for larger (hyper)nuclei

Signal extractions by HADES (~10⁹ events)

- Nuclei $A > 3 \to 10^{-4} 10$ / event
- Hypernuclei $A \ge 3 \to 10^{-6} 10^{-3}$ / event

HADES with $p_{lab} = 2.5 \text{ GeV}$?

- Ξ -hypernuclei might be seen $(N^* \rightarrow \Xi + K + K)$
- Double- Λ ($\Xi + N + N \rightarrow \Lambda + \Lambda + N$)

Total abundance for larger (hyper)nuclei

Signal extractions by HADES (~10⁹ events)

- Nuclei $A > 3 \to 10^{-4} 10$ / event
- Hypernuclei $A \ge 3 \to 10^{-6} 10^{-3}$ / event

HADES with $p_{lab} = 2.5 \text{ GeV}$?

- Ξ -hypernuclei might be seen $(N^* \rightarrow \Xi + K + K)$
- Double- Λ ($\Xi + N + N \rightarrow \Lambda + \Lambda + N$)

UrQMD is employed to simulate π^- + C and π^- + W at $p_{
m lab}$ = 1.7 GeV

We predict clusters with coalescence and SMM

- Nuclei $A > 3 \rightarrow 10^{-4} 10$ / event
- Hypernuclei $A \ge 3 \rightarrow 10^{-6} 10^{-3}$ / event
- $\mathcal{O}(10^{-3})$ of $^{3}_{\Lambda}$ H per event

HFHF

GOETHE.

UNIVERSITÄT FRANKFURT AM MAIN

- Large targets are favorable (more stopping) 1
- Strong suppression supports coalescence

 Ξ and double- Λ at higher beam momenta?

Summary

