

Review on Hadron Spectroscopy

Frank Nerling

HFHF, GU Frankfurt & GSI Darmstadt

10th International Symposium on Non-equilibrium Dynamics – NED2024, Krabi, Thailand, Nov 25th - 29th 2024

Outline

- Introduction: From cosmic rays to hadrons
- The powerful Quark Model and QCD
- A selection of recent results at BESIII
 - Supernumerary vector Y states
 - Manifestly exotic Z_c states)
 - The X(3872) and other X states
- Ongoing analysis at GlueX:
 - Search for the Y(2175) in photoproduction
- Summary & prospectives

Recent hot topics

Recent hot topics

The successful Quark Model

1964

1 February 1964

8419/TH.412 21 February 1964

*)

AN SU, MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

II *)

G. Zweig CERN---Geneva

Version I is CERN preprint 8182/TH.401, Jan. 17, 1964.

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

. . .

Volume 8, number 3

PHYSICS LETTERS

A SCHEMATIC MODEL OF BARYONS AND MESONS *

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u^2 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q q \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while

6)

Hadrons beyond the Quark Model

PHYSICAL REVIEW D

VOLUME 15, NUMBER 1

1 JANUARY 1977

Multiquark hadrons. I. Phenomenology of $Q^2 \bar{Q}^2$ mesons*

R. J. Jaffe[†]

Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305 and Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (Received 15 July 1976)

The spectra and dominant decay couplings of $Q^2 \bar{Q}^2$ mesons are presented as calculated in the quark-bag model. Certain known 0⁺ mesons [ϵ (700), S*, δ , κ] are assigned to the lightest cryptoexotic $Q^2 \bar{Q}^2$ nonet. The usual quark-model 0⁺ nonet ($Q\bar{Q} L = 1$) must lie higher in mass. All other $Q^2 \bar{Q}^2$ mesons are predicted to be broad, heavy, and usually inelastic in formation processes. Other $Q^2 \bar{Q}^2$ states which may be experimentally prominent are discussed.

Mesons and exotic states

Simple Quark model

• Mesons: Color neutral $q\overline{q}$ systems

Conventional (qq)

QCD

• Meson states beyond $q\overline{q}$

Simple Quark model

• Mesons: Color neutral qq systems

Conventional (qq)

QCD

• Meson states beyond $q\overline{q}$

• Baryons: (qqq) / (q vec q vec q vec q)

Alternative 4-quark configurations:

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Molecule (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q}) g
Image: Wybrid (q\bar{q})(q\bar{q})

Image: Wybrid (q\bar{q}) g

Simple Quark model

• Mesons: Color neutral qq systems

QCD

Meson states beyond qq

Lead to further alternative multi-quark configurations:

Alternative 4-quark configurations:

Potential model:

$$V_0^{c\bar{c}} = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\bar{c}}$$
$$V_{\text{spin-dep.}} = \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right]$$
$$+ \text{ relativistic corrections!}$$

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

• Before 2003:

Good agreement between theory and experiment, particularly beneath open charm thresholds

$$V_0^{c\overline{c}} = -\frac{4}{3}\frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2}\delta(r)\vec{S}_c\vec{S}_{\overline{c}}$$
$$V_{\text{spin-dep.}} = \frac{1}{m_c^2}\left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r}\right)\vec{L}\cdot\vec{S} + \frac{4\alpha_s}{r^3}T\right]$$
$$+ \text{ relativistic corrections!}$$

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

• Before 2003:

- Good agreement between theory and experiment, particularly beneath open charm thresholds
- After 2003:
 - Severe mismatch between predicted and observed spectrum

Potential model:

$$\begin{split} V_0^{c\overline{c}} &= -\frac{4}{3} \frac{\alpha_s}{r} + br + \frac{32\pi\alpha_s}{9m_c^2} \delta(r) \vec{S}_c \vec{S}_{\overline{c}} \\ V_{\text{spin-dep.}} &= \frac{1}{m_c^2} \left[\left(\frac{2\alpha_s}{r^3} - \frac{b}{2r} \right) \vec{L} \cdot \vec{S} + \frac{4\alpha_s}{r^3} T \right] \\ &+ \text{ relativistic corrections!} \end{split}$$

[Godfrey & Isgur, PRD 32 (1985) 189] [Barnes, Godfrey & Swanson, PRD 72 (2005) 054026]

Production mechanisms of hadrons

- Formation & Production with recoil particle(s)
 - > CLEO(-c), BaBar, Belle(II) ($E_{cms} \le 12 \text{ GeV}$)
 - ► BESI-III ($E_{cms} \le 4.9 \text{ GeV}$)
- B meson decays
 - > CLEO, BaBar, Belle(II) ($E_{cms} \le 12 \text{ GeV}$)
 - > LHCb: pp (7 TeV/c)
- Diffractive, photoproduction
 - GlueX: γ p (9 GeV/c),
 - COMPASS: π/K/p p (190-270 GeV/c)
- Formation & Production with recoil particle(s)
 - ► E760/E835, PANDA ($E_{cms} \le 5.5 \text{ GeV}$)
 - No running experiment presently

HFFFF Hadron physics – Major labs and experiments

FRANKFURT AM MAIN

HFHF Hadron physics – Major labs and experiments JOHANN WOLFGANG UNIVERSITÄT

FRANKFURT AM MAIN

HFHF Hadron physics – Major labs and experiments JOHANN WOLFGAN UNIVERSITÄT

FRANKFURT AM MAIN

HFFFFF Hadron physics – Major labs and experiments

BESIII at BEPCII

- Symmetric e⁺e⁻ collider:
 - > √s = 2.0 4.6 GeV
- Design luminosity:
 - 1x10³³ cm⁻²s⁻¹ (at ψ(3770), achieved in 04/2016)

- Multi-purpose 4π detector with
 - good tracking
 - calorimetry
 - PID and muon detection
- Operating since March 2008

Hadron Physics – Spectroscopy and search for exotic XYZ states

The Y(4260) and further supernumerary vector states

The Y states, e⁺e⁻ production of J/ψππ, h_cππ and ψ(2S)ππ

Some history:

- Discovery of the Y(4260) using ISR by BaBar in $J/\psi\pi^+\pi^-$
- Discovery of the Y(4360) using ISR by BaBar in $\psi(2s)\pi^{+}\pi^{-}$

The Y states, e⁺e⁻ production of J/ψππ, h_cππ and ψ(2S)ππ

BESIII result, published

- single resonance Y(4260)!
- > Two favoured over one by >7 σ

What happened to the Y states?

Two structures now resolved: $Y(4260) \rightarrow Y(4230)$, $Y(4360) \rightarrow Y(4390)$

What happened to the Y states?

Two structures now resolved: $Y(4260) \rightarrow Y(4230)$, $Y(4360) \rightarrow Y(4390)$

HFHF

The Z(4430) and further (charged) Z_c states

Experimental review of the Z(4430)

- First observed by Belle in 2008
 - $\succ B \to K^{\mp}Z(4430)^{\pm} \to K^{\mp}\pi^{\pm}\psi'$
 - > relatively narrow state, 6.5 σ
 - first charmonium-like state with a non-zero electric charge
 - => Minimal quark content [ccud] = manifestly exotic
 - BaBar searched for it, however, does not confirm [PRD 79, 112001 (2009)]
- Decay to J/ψ/π seen in B decays by Belle [PRD 90, 112009 (2014)], and not seen by BaBar [PRD 79, 112001 (2009)]
- LHCb confirms and showed resonant behavior in argand plot [PRL 112, 222002 (2014)]
- Spin-parity constrained by Belle: J^P = 1^{+,} confirmed by LHCb [PRL 112, 222002 & PRD 92, 112009 (2015)]

Experimental review of the Z(4430)

- First observed by Belle in 2008
 - $\succ \ B \to K^{\mp}Z(4430)^{\pm} \to K^{\mp}\pi^{\pm}\psi'$
 - \succ relatively narrow state, 6.5 σ
 - first charmonium-like state with a non-zero electric charge
 - => Minimal quark content [ccud] = manifestly exotic
- BaBar searched for it, however, does not confirm [PRD 79, 112001 (2009)]
- Decay to J/ψ/π seen in B decays by Belle [PRD 90, 112009 (2014)], and not seen by BaBar [PRD 79, 112001 (2009)]
- LHCb confirms and showed resonant behavior in argand plot [PRL 112, 222002 (2014)]
- Spin-parity constrained by Belle: J^P = 1^{+,} confirmed by LHCb [PRL 112, 222002 & PRD 92, 112009 (2015)]

HFHF Two Z_c triplets established at BESIII

 $Z_{c}(3900)^{\pm,0}$?

• The charged $Z_c(3900)^{\pm}$, and meanwhile also the neutral partner $Z_c(3900)^0$

HFHF Hendel E Forschungsakedenie Hessen für FAR Two Z_c triplets established at BESIII

- The charged $Z_c(3900)^{\pm}$, and meanwhile also the neutral partner $Z_c(3900)^0$
- Two isospin triplets of charmonium-like exotic states established

UNIVERS

Two Z_c triplets established at BESIII

- Two isospin triplets of charmonium-like exotic states established
- Different decay (hidden vs. open charm) of same state observed?

HFHF Henrieltz Forschungsakadenie Hessen für FAR Two Z_c triplets established at BESIII

HFHF First Z_{cs} candidates Z(3985) reported

Hadron Physics – Spectroscopy and search for exotic XYZ states

HFHF First Z_{cs} candidates Z(3985) reported

- Search for strange partner of $Z_c(3900)$
 - Containing s quark in open charm decay
 - $\geq e^+e^- \rightarrow K^+(D_sD^*/D_s^*D)^-$
 - > Narrow threshold enhancement (5.3 σ)

$$M = (3982.5^{+1.8}_{-2.6} \pm 2.1) \text{MeV}/c^2, \Gamma = (12.8^{+5.3}_{-4.4} \pm 3.0) \text{MeV}$$

- Manifestly exotic charged hidden-charm tetraquark candidate with strangeness
 - > With a non-zero electric charge
 - Thus, minimal quark content => [ccsu]
- LHCb reports a $Z_{cs}(4000)$ in B $\rightarrow \phi(J/\psi K^+)$ > $M = (4000.3 \pm 6^{+4}_{-14}) \text{MeV}/c^2$, $\Gamma = (131 \pm 15 \pm 26) \text{MeV}$
 - > J^P = 1⁺, hidden charm final state
 - ➤ 10x broader …
- => Same state observed in different decays (open/hidden charm) at two experiments?

HFHF First Z_{cs} candidates Z(3985) reported

- Search for strange partner of $Z_c(3900)$
 - Containing s quark in open charm decay
 - $\geq e^+e^- \rightarrow K^+(D_sD^*/D_s^*D)^-$
 - > Narrow threshold enhancement (5.3 σ)

$$M = (3982.5^{+1.8}_{-2.6} \pm 2.1) \text{MeV}/c^2, \Gamma = (12.8^{+5.3}_{-4.4} \pm 3.0) \text{MeV}$$

- Manifestly exotic charged hidden-charm tetraquark candidate with strangeness
 - > With a non-zero electric charge
 - Thus, minimal quark content => [ccsu]
- Search for neutral partner of $Z_{cs}(3985)$
 - Containing s quark in open charm decay

$$e^+e^- \to K^0_{\rm S}(D^+_s D^{*-}_s + D^{*+}_s D^-)$$

> Narrow threshold enhancement (4.6 σ)

>
$$M = (3992.2 \pm 1.7 \pm 1.6) \text{ MeV}/c^2$$

 $\Gamma = (7.7^{+4.1}_{-3.8} \pm 4.3) \text{ MeV}$

=> Seem to be isospinpartners

The X(3872) and further X states

Experimental review of the X(3872)

Analogy to deuteron:

- First observed by Belle in 2003
 - $\succ X(3872) \rightarrow J/\psi \pi^+ \pi^-$
 - very narrow state with J^{PC} = 1⁺⁺
- Belle & BaBar report signal in > $X(3872) \rightarrow D^0 \overline{D}^{*0}$
- Mass $m[X(3872)] m[D^{*0}] m[D^0]$ = (-0.07 ± 0.12) MeV/c² (LHCb 2020)
- Width measurement:
 - ➤ Γ_{X(3872)} < 1.2 MeV (2011, Belle)</p>
 - ➤ Γ_{X(3872)} = 1.13 MeV (2020, LHCb)

For clarification:

=> Precision measurement with sub-MeV resolution needed!

- Spectroscopy and search for exotic XYZ states

BESIII: First observation of
$$e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \pi^+\pi^- J/\psi$$

First observation of $e^+e^- \rightarrow \gamma X(3872) \rightarrow \gamma \omega J/\psi$

- $m = (3871.9 \pm 0.7 \pm 0.2) \text{ MeV}/c^2$
- $\Gamma < 2.4 \, {\rm MeV} \,$ (90% CL)

• Fit with three Breit-Wigner resonances => Evidence for two more structures

- $m = (4200.6^{+7.9}_{-13.3} \pm 3.0) \text{ MeV}/c^2$
- $\Gamma = (115^{+38}_{-26} \pm 12) \text{ MeV}/c^2$

 Shape consistent with production via a Y(4260) state

[Subm. to Phys. Rev. Lett., arXiv:1903.04695 [hep-ex]]

Again a Zoo of (exotic) hadrons ...

[Polyakov, EPS-HEP-2021]

HF

Search for the Y(2175) in photoproduction at GlueX

CEBAF at JLab

Frank Nerling

Hadron Physics – Spectroscopy and search for exotic XYZ states

GlueX in Hall D at CEBAF, JLab

- 12 GeV electron beam from CEBAF accelerator
- Coherent Bremsstrahlung on diamond radiator
- Linear polarization in peak at ~9 GeV: $P\gamma \sim 40\%$
- Energy tagged by scattered electrons
- Beam intensity: $1 5 \cdot 10^7$ y/s in peak

GlueX in Hall D at CEBAF, JLab

First observed in ISR, BaBar

PDG: Larger spread in individual resonance parameter measurements, e.g. above

HFHF Heinholtz Forschungsakademie Hessen für FAR The Y(2175) – strange partner of Y(4230) FRANKFURT AM MAIN

PDG: Larger spread in individual resonance parameter measurements, e.g. above

Prediction for photoproduction

- Investigation of reaction $\gamma p \rightarrow \phi \eta p$ @ $E_{\gamma} = 8 \text{ GeV}$
- Assumption: $\Gamma(Y(2175) \rightarrow \varphi \eta) \approx 6.6 \text{ MeV}$ (quark model)
- Peak integral: $\sigma_{\varphi\eta} \approx 885 \text{ pb}$ (with $\sigma_{max} \approx 7 \text{nb}$, $\Gamma = 83 \text{ MeV/c}^2$)

Study $\phi \pi \pi$ photoproduction

- Investigation of reaction $\gamma p \rightarrow \phi \eta p$ @ $E_{\gamma} = 8 \text{ GeV}$
- Assumption: $\Gamma(Y(2175) \rightarrow \varphi \eta) \approx 6.6 \text{ MeV}$ (quark model)
- Peak integral: $\sigma_{\varphi\eta} \approx 885 \text{ pb}$ (with $\sigma_{max} \approx 7 \text{nb}$, $\Gamma = 83 \text{ MeV/c}^2$)
- $\Gamma(\Upsilon(2175) \rightarrow \varphi f_0(980) / \Gamma(\Upsilon(2175) \rightarrow \varphi \eta)) \approx 1.37$
 - For Y(2175) →φf₀(980): σ_{φf0} ≈ 1212 pb

Event selection

Apply loose PID selection (dE/dx, ToF)

- Form $\gamma K^+K^-\pi^+\pi^- p$ candidates
- Perform 4C of $K^+K^-\pi^+\pi^-p$ to γp_{target} system together with
- Vertex fit of $K^+K^-\pi^+\pi^-p$ system

II)

- Apply beam energy cut $E_{\gamma} > 8 \text{ GeV}$
- Apply momentum transfer cut $-t < 1 \text{ GeV}^2/c^4$ (fiducial)
- Apply veto cut for $\Delta^{++}(1232)$: m > 1.35 GeV/c²
- Require $|MM^2| < 50 \text{ MeV}^2/c^4$ for missing mass squared
- Require $\chi^2_{4C+vtx} < 70$

III)

• Determine $\phi(1020)$ yield using a Voigtian fctn.

event candidates

event selection cuts

Event selection (II): MC vs. Data

[K. Goetzen and F. Nerling, Conf. Proc. HADRON2023 & MESON2023]

Event selection (II): Kinematics

φ(1020) signal in different data sets

• Fit signal with function (V = Voigtian):

 $f(m) = V(m; m_0, \Gamma_0, \sigma_{\text{res}}) + |m - m_t|^p \cdot e^{-\lambda m} \quad \text{for } m > m_t,$

• Fix φ -shape parameters to extract distributions slice-wise

Slice-wise efficiency determination

HFFHF Henneltz Forschungsakademie Hessen für FAR Slice-wise fits & φ signal shape parameters

- Fit yields in 45 MeV slices in 4-body mass with fixed signal shape
- Signal shape parameters m and σ_{res} determined from data (coarse scan)

"Slice-wise ϕ fits", data

• Single slice fits data (here for 2018 Fall)

Differential cross section

• Determine mass-dependent cross section:

$$\frac{d\sigma}{dm}(m_i) = \frac{N_{\phi}(m_i)}{\varepsilon(m_i) \cdot F \cdot d_{\text{target}} \cdot \mathcal{B}(\phi(1020) \to K^+K^-)}$$

• Combine results by bin-wise via "weighted average" method:

$$\hat{x} \pm \delta \hat{x} = \frac{\sum_{i} w_{i} x_{i}}{\sum_{i} w_{i}} \pm \left(\sum_{i} w_{i}^{2}\right)^{-1/2} \quad \text{with } w_{i} = 1/\delta x_{i}^{2}$$

Hadron Physics – Spectroscopy and search for exotic XYZ states

Mass-dependent cross section result

=> Take differences in cross section of default vs. varied fit as systematics			
Source	$\delta_{\rm sys,avg}$ [%]		
$\phi(1020)$ branching fraction	1.0		
χ^2 requirement	0.9		
MM^2 requirement	0.4		
Accidentals	0.5		
K^+K^- binning	0.7		
$\Delta(1232)^{++}$ veto	2.8		
$\phi(1020)$ fit model data	0.8		
$\phi(1020)$ fit model MC	0.7		
$\phi(1020)$ fit range	1.6		
$\phi(1020)$ veto range MC	0.5		
$\phi(1020)$ integral range MC	0.1		
$\phi(1020)$ param. interpolation	0.5		
Total systematic uncertainty	4.7		

Search for resonances in m($\phi\pi^+\pi^-$)

- Fit signal + background in combined spectrum
 - ▶ 1 Res.: $f(m) = V(m; m_1, \Gamma_1, \sigma_{res}) + T_4(m)$
 - ► 2 Res.: $f(m) = V_1(m; m_1, \Gamma_1, \sigma_{res}) + V_2(m; m_2, \Gamma_2, \sigma_{res}) + T_4(m)$
 - > V = Voigtian, T₄ = 4th order Chebyshev polynomial
- Use weighted mass resolution from MC (σ_{res} = 24.6 MeV/c²)
- Repeat for each systematic variation
- Systematic uncertainty: Difference to nominal result
- Additional systematics are:
 - > m($\phi \pi \pi$) fit range
 - > $m(\phi \pi \pi)$ fit model (degree of bkgd polynomial)
 - \blacktriangleright $\phi(2170)$ mass m₀ (by +/- 1 σ)
 - > $\phi(2170)$ width Γ_0 (by +/- 1 σ)

• And we take the (larger) difference as systematic uncertainty

Fixed Y(2175) parameters – fit a₁)

R1: Fixed PDG parameters Y(2175) $m_{\phi(2170)} = 2162 \pm 7 \text{ MeV}/c^2$ $\Gamma_{\phi(2170)} = 100^{+31}_{-21} \text{ MeV}/c^2$

 $\sigma_{\phi(2170)} = 174 \pm 69 \text{ (stat.)} \pm 218 \text{ (sys.) pb}$ $\sigma_{\phi(2170)} < 499 \text{ pb} (\text{CL90}) \quad [Z = 1.6\sigma \ (2.1\sigma)]$

R1: Fixed PDG parameters Y(2175) $m_{\phi(2170)} = 2162 \pm 7 \text{ MeV}/c^2$ $\Gamma_{\phi(2170)} = 100^{+31}_{-21} \text{ MeV}/c^2$

R2: Possible structure at m ~ 1.8 GeV

 $\sigma_{X(1800)} < 615 \text{ pb} (\text{CL90})$

$$\begin{split} \sigma_{\phi(2170)} &= 232 \pm 68\,(\text{stat.}) \pm 91\,(\text{sys.}) \text{ pb} \\ \sigma_{\phi(2170)} < 379 \text{ pb}\,(\text{CL90}) \ [Z = 1.5\sigma \ (1.8\sigma)] \end{split}$$

Fixed Y(2239) parameters – fit b₁)

$$\begin{split} \sigma_{Y(2239)} &= 641 \pm 82\,(\text{stat.}) \pm 181\,(\text{sys.}) \text{ pb} \\ \sigma_{Y(2239)} &< 896 \text{ pb}\,(\text{CL90}) \ [Z = 5.7\sigma \ (6.0\sigma)] \end{split}$$

Fixed Y(2175)' parameters – fit b₂)

R1: Fixed parameters Y(2239)

$$m_{Y(2239)} = 2239.2 \pm 13.4 \text{ MeV}/c^2$$

 $\Gamma_{Y(2239)} = 139.8 \pm 24.0 \text{ MeV}/c^2$

R2: Possible structure at m ~ 1.8 GeV):

 $\sigma_{X(1800)} < 701 \text{ pb} (\text{CL90})$

$$\begin{split} \sigma_{Y(2239)} &= 629 \pm 83\,(\text{stat.}) \pm 130\,(\text{sys.}) \text{ pb} \\ \sigma_{Y(2239)} &< 826 \text{ pb}\,(\text{CL90}) \ [Z = 4.7\sigma \ (5.1\sigma)] \end{split}$$

- Analysis of reaction $\gamma p \rightarrow K^+ K^- \pi^+ \pi^- p$
- Measurement of differential $\varphi \pi^+ \pi^-$ production cross section $\sigma(\gamma p \rightarrow \varphi \pi^+ \pi^- p)$
- Search for Y(2175) + other resonances gives

Case	Cross Section [pb]	UL [pb]	Z _{stat}	Z _{tot}
Fit a ₁ : Y(2175) fixed	$174 \pm 69 \pm 218$	499	2.1	1.6
Fit a ₂ : Y(2175) fixed	$232 \pm 68 \pm 91$	379	1.8	1.5
Fit b ₁ : Y(2239) fixed	641 ± 82 ± 181	896	6.0	5.7
Fit b ₂ : Y(2239) fixed	629 ± 83 ± 130	826	5.1	4.7

- Fit with Y(2175) PDG parameters \rightarrow no evidence (Z < 3 σ)
- Alternative fits with Y(2239) parameters (fixed) \rightarrow evidence/observation (Z > 3)
- Signal strength of Y(2239) in ball-park of predicted $\sigma \approx 1200 \text{ pb}$
- Find 2^{nd} structure at around m $\approx 1.8 \text{ GeV/c}^2$
 - > UL(CL90): $\sigma < 615$ pb (fit a_2) and $\sigma < 701$ pb (fit b_2)

- Analysis of reaction $\gamma p \rightarrow K^+ K^- \pi^+ \pi^- p$
- Measurement of differential $\varphi \pi^+ \pi^-$ production cross section $\sigma(\gamma p \rightarrow \varphi \pi^+ \pi^- p)$
- Search for Y(2175) + other resonances gives

Case	Cross Section [pb]	UL [pb]	Z _{stat}	Z _{tot}
Fit a ₁ : Y(2175) fixed	$174 \pm 69 \pm 218$	499	2.1	1.6
Fit a ₂ : Y(2175) fixed	$232 \pm 68 \pm 91$	379	1.8	1.5
Fit b ₁ : Y(2239) fixed	641 ± 82 ± 181	896	6.0	5.7
Fit b ₂ : Y(2239) fixed	629 ± 83 ± 130	826	5.1	4.7

- Fit with Y(2175) PDG parameters \rightarrow no evidence (Z < 3 σ)
- Alternative fits with Y(2239) parameters (fixed) \rightarrow evidence/observation (Z > 3)
- Signal strength of Y(2239) in ball-park of predicted $\sigma \approx 1200 \text{ pb}$
- Find 2^{nd} structure at around m $\approx 1.8 \text{ GeV/c}^2$
 - > UL(CL90): σ < 615 pb (fit a₂) and σ < 701 pb

Under internal review for publication → paper submission to journal soon

Summary and Prospectives

- New era of charmonium-like exotic states started two decades ago, and more than 20 unexpected XYZ states have been discovered
 - Supernumerary vector Y states consistently resolved (statistics)
 - Two structures consistently resolved in all three systems
 - Y(4260) and Y(4360) → Y(4230), Y(4390)?
 - \succ Charged Z_c states are manifestly exotic states
 - First complete isospin triplets established
 - *First strange partner(s) reported, incl. neutral partner*
 - > The first of the XYZ states discovered, the X(3872), still not understood
 - Consistent picture in B decays and e⁺e⁻ production
 - Line shape to be measured precisely $\rightarrow p\overline{p}$ annihilation experiment

Summary and Prospectives

- New era of charmonium-like exotic states started two decades ago, and more than 20 unexpected XYZ states have been discovered
 - Supernumerary vector Y states consistently resolved (statistics)
 - Two structures consistently resolved in all three systems
 - Y(4260) and Y(4360) → Y(4230), Y(4390)?
 - > Charged Z_c states are manifestly exotic states
 - First complete isospin triplets established
 - First strange partner(s) reported, incl. neutral partner
 - > The first of the XYZ states discovered, the X(3872), still not understood
 - Consistent picture in B decays and e⁺e⁻ production
 - Line shape to be measured precisely $\rightarrow p\overline{p}$ annihilation experiment
- New production mechanisms important to be explored
 - Further understand the nature of these exotic states
 - Strange partner candidate of Y(4230) first adressed in photoproduction
 - Further important other processes $\rightarrow p\overline{p}$ annihilation experiment

Summary and Prospectives

- New era of charmonium-like exotic states started two decades ago, and more than 20 unexpected XYZ states have been discovered
 - Supernumerary vector Y states consistently resolved (statistics)
 - Two structures consistently resolved in all three systems
 - Y(4260) and $Y(4360) \rightarrow Y(4230)$, Y(4390)?
 - \succ Charged Z_c states are manifestly exotic states
 - First complete isospin triplets established
 - First strange partner(s) reported in First strange partner(s) bartner
 - The first of the i
 - Consistent
- Thank you! Line shape $\rightarrow p\overline{p}$ annihilation experiment
- New production mechanisms important to be explored
 - Further understand the nature of these exotic states.
 - Strange partner candidate of Y(4230) first adressed in photoproduction
 - Further important other processes $\rightarrow p\overline{p}$ annihilation experiment

Outlook: "QCD at FAIR" initiative

→ Synergies between hadron physics and heavy-ion communities

2), still not understood

tion