
Gibbsian hydrodynamics, or Quantum gravity for poor people
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2307.07021 , 2309.05154 2007.09224 (JHEP),
2109.06389 (Annals of Physics, With T.Dore,M.Shokri,L.Gavassino,D.Montenegro)
Answers somewhat speculative... but I think I am asking good questions!



What is ideal hydrodynamics?
Hydrodynamics is an ”effective theory”, built around coarse-graining and
”fast thermalization”. Fast w.r.t. Gradients of coarse-grained variables
If thermalization instantaneus, then isotropy,EoS enough to close evolution

Tµν = (e+ P (e))uµuν + P (e)gµν

In rest-frame at rest w.r.t. uµ

Tµν = Diag (e(p), p, p, p)

(NB: For simplicity we assume no conserved charges, µB = 0 )

This makes sysem solvable: ∂µT
µν = 0, p = p(e)

A beautiful, rigorous theory with a direct connection to statistical mechanics,
i.e. fundamental physics and maths. Exciting that HIC can be described by
it!



If thermalization not instantaneus,

Tµν = T eqµν +Πµν , uµΠ
µν = 0

∑

n

τnΠ∂
n
τΠµν = −Πµν +O (∂u) +O

(
(∂u)2

)
+ ...

A series whose ”small parameter” (Barring phase transitions/critical
points/... all of these these same order):

K ∼ lmicro
lmacro

∼ η

sT
∇u ∼ DetΠµν

DetTµν
∼ ...

and the transport coefficients calculable from asymptotic correlators of

microscopic theory Navier-Stokes ∼ K , Israel-Stewart ∼ K2 etc.
Non-relativistic version still considered beautiful and profound, but with
relativity...



What’s wrong with this?

uµ ambiguus many definitions (Landau, Eckart,...)
We think flow is ”clear”, so this is a bit strange

Πµν ambiguus can even be eliminated by carefully choosing uµ (BDNK)

Fluctuations ...

• Defined linearly
• No clear fluctuation-dissipation relation
• Does ”everything” fluctuate? What if fluctuation of uµ, T,Πµν leave
Tµν invariant?

Entropy current not clearly connected to energy-momentum current,
need microscopic theory to ”select good EFT” (2nd law)



More concretely

A theorist will say that fluctuations of e.g. δΠµν, δf(x, p) produce
”non-hydrodynamic modes”, sensitive to underlying theries, and
hydrodynamics is easy to break down

An experimentalist measures neither Πµν nor f but rather, e.g.

dN

dypTdpTdφ
≡ dN

dypTdpT
[1 + 2vn(pT , y) cos (n (φ− φ0n))]

i.e. gradients of Tµν,entropy and finds hydro everywhere they look!
in a fluctuating medium are ”non-hydrodynamic modes” detectable
in principle? Can your non-hydro mode be my fluctuating sound-wave?

The two are in a very complicated correspondence which is not 1 ↔ 1



Hydrodynamics from microscopic theories

QFT transport coefficients plagued by divergences, need truncation
(Schwinger-Keldysh separates ”fast”, ”slow”, Kadanoff-Baym needs
truncation)

Boltzmann equation Sequential scattering and molecular chaos. Weak
coupling, Lose microscopic correlations

AdS/CFT strong coupling and large Nc, lose microscopic correlations

Molecular dynamics keeps microscopic correlations, lose Lorentz
invariance (in practice not a problem)

Basic problem with either Lorentz invariance or correlations on scale of
gradients! Ambiguity in flow,Πµν comes from here!



In brief most microscopic approaches to EFT hydrodynamics assume that

lmicro︸ ︷︷ ︸
∼s−1/3,n−1/3

≪ lmfp︸︷︷︸
∼η/(sT )

≪ Lmacro

But this seems falsified by hydrodynamics in small systems!

CMS  1606.06198



Not just in heavy ions

Brandstetter et al

2308.09699

The
Brazil
nut effect

Empirically, strongly coupled systems with enough thermal energy seem to
be ”fluid” even with a small number of DoFs. EFT does not explain this!
The role of fluctuations in hydrodynamics, and of the exast relation of
statistical physics and hydrodynamics, are still ambiguous and this is related
to experimental puzzles



Hydrodynamics and statistical mechanics
Equation of state p(E) comes from basic statistical mechanics

p = T lnZ ,
dP

dT
=
dS

dV
=
p+ e− µn

T

But the same partition function also predicts fluctuations

〈
(∆E)2

〉
=
∂ lnZ
∂β2

∼ 1

(∆V )× s

which in a deterministic theory are completely neglected. could this have
something to do with the above ambiguity?



of the entropies

the battle

Boltzmann entropy (associated with frequentist probability) a property of
the ”DoF”, and is ”kinetic” subject to the H-theorem which is really a
consequence of the not-so-justified molecular chaos assumption. Gibbsian
entropy (more Bayesian) is the log of the area of phase space, and is
justified from coarse-graining and ergodicity . The two are different even in
equilibrium, with interactions! (Khinchin,stat.mech.) Note, Von Neumann
〈lnρ̂〉 Gibbsian . Gibbs is more general, but...



the unreasonable
effectiveness
of stat mech

Non-ideal hydrodynamics is based around approximate local equilibrium .
Boltzmannian global and local equilibrium are defined, but they depend on
Boltzmannian physics Only Global equilibrium well defined in Gibbs (what
is ”approximate maxiumum” Gibbsian entropy?)

Khinchin’s “failed” PhD: Stat Mech just seems wrong but seems to apply
everywhere! Just like hydro?



QM to rescue?

|φ><ψ|

Berry/Bohigas/Eigenstate thermalization hypothesys: En>>1 of quantum
systems whose classical correspondent is chaotic have density matrices
that look like pseudo-random. If off-diagonal elements oscillate fast or
observables simple, indistinguishable from Micro-canonical ensemble! . Can
be valid for arbitrarily small fluctuating systems!



Let’s look at this ambiguity a bit deeper: Lagrangian and Eulerian
hydrodynamics Hydro as fields: (Nicolis et al,1011.6396 (JHEP))
Continuus mechanics (fluids, solids, jellies,...) is written in terms of 3-
coordinates φI(x

µ), I = 1...3 of the position of a fluid cell originally at
φI(t = 0, xi), I = 1...3 . (Lagrangian hydro . NB: no conserved charges)
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The system is a Fluid if it’s Lagrangian obeys some symmetries (Ideal
hydrodynamics ↔ Isotropy in comoving frame) Excitations (Sound waves,
vortices etc) can be thought of as ”Goldstone bosons”



Translation invariance at Lagrangian level ↔ Lagrangian can only be a
function of BIJ = ∂µφ

I∂µφJ Now we have a “continuus material”!

Homogeneity/Isotropy means the Lagrangian can only be a function of
B = detBIJ ,diagBIJ

The comoving fluid cell must not see a ”preferred” direction ⇐ SO(3)
invariance

Invariance under Volume-preserving diffeomorphisms means the Lagrangian
can only be a function of B
In all fluids a cell can be infinitesimally deformed
(with this, we have a fluid. If this last requirement is not met, Nicolis et
all call this a “Jelly”)



A few exercises for the bored public Check that L = -F(B) leads to

Tµν = (P + ρ)uµuν − Pgµν

provided that

ρ = F (B) , p = F (B)−2F ′(B)B , uµ =
1

6
√
B
ǫµαβγǫIJK ∂αφ

I∂βφ
J∂γφ

K

Equation of state chosen by specifying F (B) . “Ideal”: ⇔ F (B) = B4/3
√
B is identified with the entropy and

√
BdF (B)

dB with the microscopic
temperature. uµ fixed by uµ∂µφ

∀I = 0



Conserved charges (Dubovsky et al, 1107.0731(PRD))
Within Lagrangian field theory a scalar chemical potential is added by
adding a U(1) symmetry to system.

φI → φIe
iα , L(φI, α) = L(φI, α+ y) , Jµ =

dL

d∂µα

generally flow of b and of J not in same direction. Can impose a well-defined
uµ by adding chemical shift symmetry

L(φI, α) = L(φI, α+ y(φI)) → L = L (b, y = uµ∂
µα)

A comparison with the usual thermodynamics gives us

µ = y , n = dF/dy

obviously can generalize to more complicated groups



This looks a bit like GR and this is not a coincidence!

4D local Lorentz invariance becomes local SO(3) invariance

Vierbein gµν = ηαβeαµe
β
ν is

∂x
comoving
I
∂xµ

= ∂µφI (with Gauge phase for chemical potential )

Killing vector becomes uµ

L ∼ √−g (Λ +R+ ...) becomes L ∼ F (B) ≡ f(
√−g) Just cosmological

constant, expanding fluid ≡ dS space

Very nice... but the ambiguities beyond ideal hydro generally break this .
Who cares? Should beyond idel hydrodynamics have this general covariance?



The poor people’s quantum gravity: How can fluctuations and dissipation
keep hydrodynamic’s diffeomorphism invariance?
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First step: Lagrangian hydrodynamics very elegant, but where is the
connection to local thermalization? Statistical mechanics? Transport?
Hint from D.T.Son: it is the largest group of diffeomorphisms
where time plays no role!



Where does statistical mechanics come from? Ergodicity

Conservation
law bound

Classical evolution via Hamilton’s equations

ẋ =
∂H

∂p
, ṗ = −∂H

∂x
, Ȯ = {O,H}

“Chaos”,conservation laws→ phase space more “fractal”, recurring



“After some time”, for any observable ergodic limit applies

∫ (large) T

0

Ȯ(p, q)dt =

∫
P (O(p, q))dqdp

where P (...) probability independent of time. This probability can only be
given by conservation laws

P (O) =
(
∑

iOi) δ
4 (
∑

iP
µ
i − Pµ) δ (

∑
iQi −Q)

N
, N =

∫
P (O)dO = 1

this is the microcanonicanal ensemble. In thermodynamic limit

P (O) → δ(O − 〈O〉)



Hydrodynamics is “thermodynamics in every cell

∫ (large) T

0

Ȯ(p, q)dt→ ∆φ

∆t

where φ is some local observable.

∆φ

∆t

∣∣∣∣
t−t′=∆

≃ 1

dΩ(Q,E)
×

×
∑

δ4Pµ,Pµmacro(t)δQ,Qmacro(t)δ




∞∑

j

pµj − Pµ


 δ




∞∑

j

Qj −Q




Problem: This is not relativistically covariant!



Solution: Foliation!
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t→ Σ0 , xµ → Σµ , ∆ → “smooth′′
∂Σµ
∂Σν

Smooth: Rcurvature of metric change smaller than “cell size” (New fmfp )

∆φ

∆Σ0
=

∫
P (φ,Σµ)dΣi , Σµ → Σ′

µ ,
∆φ

∆Σ′
0

=
∆φ

∆Σ0



What kind of effective lagrangian would enforce

∆φ

∆Σ0
=

∫
P (φ,Σµ)dΣi ,

∆φ

∆Σ′
0

=
∆φ

∆Σ0

with
P (...) ∼ δ(

∑

i

Pµi − P )δ(
∑

i

Qi −Q)

Now Remember Noether’s theorem!

pµ =

∫
d3ΣνTµν , Tµν =

∂L

∂∂µφ
∆νφ−gµνL , ∆νφ(xµ) = φ(xµ+dxν)

Q =

∫
d3Σνjν , jν =

∂L

∂∂µφ
∆ψφ , ∆ψφ = |φ(x)|ei(ψ(x)+δψ(x))

momentum generates spatial translations, conserved charges generate
complex rotations!



Space-like foliations decompose

dΣµ = ǫµναβ
∂Σν

∂Φ1

∂Σα

∂Φ2

∂Σβ

∂Φ3
dΦ1dΦ2dΦ3

where the determinant (needed for integrating out δ− functions is only in
the volume part

∂Σ′
µ

∂Σν
= Λνµ det

dΦ′
I

dΦJ
, detΛνµ = 1

Physically, Λνµ moves between the frame dΣµrest = dΦ1dΦ2dΦ3(1,~0)



so lets try
L(φ)︸︷︷︸

microscopic DoFs

≃ Leff(Φ1,2,3)

with
∆φ

∆Σ0
=

∫
P (φ,Σµ)dΣi , P (...) = δ(...)δ(...)

the general covariance requirement of ∆φ
∆Σ0

= ∆φ
∆Σ′

0
means the invariance of

the RHS
dΩ(dP ′

µ, dQ
′,Σ′

0)

dΩ(dPµ, dQ,Σ0)
=

=
dΣ′

0

dΣ0

∫
daµdψδ

4 (dΣνaα∂
α (δµνL)− dPµ(Σ0)) δ (dΣ

µψ∂µL− dQ(Σ0))∫
da′µdψ

′δ4
(
dΣ′

νa
′
α∂

α (δµνL)− dP ′
µ(Σ

′
0)
)
δ
(
dΣ′

µψ
′∂µL− dQ′(Σ′

0)
)



It is then easy to see,via

δ((f(xi))) =
∑

i

δ(xi − ai)

f ′(xi = ai)︸ ︷︷ ︸
f(ai)=0

, φ′I =
∂αΣ

′
I

∂αΣJ
ΦJ , δ4(Σµ) = det

∣∣∣∣
∂Σµ

∂Σν

∣∣∣∣ δ
4

that for general covariance to hold

L(ΦI, ψ) = L(Φ′
I, ψ

′) , det
∂φI
∂φJ

= 1 , ψ′ = ψ + f(φI)

the symmetries of perfect fluid dynamics are equivalent to requiring
the ergodic hypothesys to hold for generally covariant causal spacetime
foliations!!!!



Classical to quantum F.Becattini, 0901.3643

....
vs.:

Berry’s conjecture: quantum systems with Chaotic classical counterparts
and Above ground state En≫1

Density matrix pseudorandom , indistinguishable from microcanonical
ensemble. born in equilibrium



=

M. Rigol, V. Dunjko, and M. Olshanii,Nature 452, 854 (2008)
Quantum billiard balls very different from classical and semi-classical
ones! Any ”non-integrability” modifies ”initial state” which already ”looks
thermal”. All evolution does is randomize phase . Related to divergences
in finite temperature QFT? ”loop” corrections to transport hard!



Applying the Eigenstate thermalization hypothesis to every cell in every
foliation is equivalent to promoting Jµν, θ, P,Q to functions of xµ and
imposing foliation independence on the “pseudo-randomness” of ρ̂.

dρ̂

dΣ0

∣∣∣∣
Σ0−Σ′

0≃∆

= 0 , ρ̂ ≃ 1

dΣ
δ̂E,E′δ̂Q,Q′

Û−1(x)ρ̂Û(x) ≃ ρ̂ , Û(x) = exp
[
iT̂µνd3Σµδxν

]
exp

[
i∂αθd

3ΣαδQ̂
]

for arbitrary d3Σµ . Above derivation follows.

So one expects hydro together with statistical hadronization!



....
vs.:

So the symmetries of ideal hydrodynamics are equivalent to ideal local
ergodicity . So what? turns out one might be able to extend this “close”
to equilibrium while retaining these symmetries!



The crucial question: Does this extend to non-ideal hydrodynamics?

Close to local equilibrium is not on gradient expansion but the
approximate applicability of fluctuation-dissipation
These are not automatically the same!

For smaller fluctuating systems many equivalent definitions of e, uµ, J
µ,Πµν, ...

leaving Tµν invariant!
Different Boltzmannian entropy but all counted as Gibbsian entropy

If many equivalent choices of e, uµ, J
µ,Πµν, ... likely in one its ”small”!

Ideal hydro behavior.

So indeed Ambiguity from fluctuations makes system look like a fluid.



The physical intuition Ergodicity/Poncaire cycles meet relativity slightly
away from equilibrium!
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Gibbs entropy level+relativity : Lack of equilibrium is equivalent to “loss
of phase” of Poncaire cycles. one can see a slightly out of equilibrium cell
either as a “mismatched uµ” (fluctuation) or as lack of genuine equilibrium
(dissipation)



How to make physics fully “gauge”-invariant?

(intensive)

Hydrostatic System (extensive)

Subsystems

(statistical mechanics only)

Fluctuation
<f(x,t)f(x’,t’)>

Hydrodynamic System

Evolution
<f(x,t)f(x’,t’)>

Fluctuation-dissipation at the cell level could do it! We don’t know if a
”step” is fluctuation (Tµν0 or evolution (Πµν )-driven!



(intensive)

Hydrostatic System (extensive)

Subsystems

(statistical mechanics only)

Fluctuation
<f(x,t)f(x’,t’)>

Hydrodynamic System

Evolution
<f(x,t)f(x’,t’)>

But in hydro Tµν0 ,Πµν treated very differently! “Sound-wave”
u ∼ exp[ikµx

µ] or “non-hydrodynamic Israel-Stewart mode?”
DΠµν +Πµν = ∂u
Only in EFT 1/T ≪ lmfp they are truly different!



What is a gauge theory,exactly?

Z =

∫
DAµ exp [S[Fµν] ≡

∫
DAµ1DAµ2 exp [S[Aµ1 ]

Aµ1,2 can be separated since physics sensitive to derivatives of lnZ

lnZ = Λ+ lnZG , ZG =

∫
DAµδ (G(Aµ)) exp [S(Aµ)]

Ghosts come from expanding δ(...) term. In KMS condition/Zubarev

Z =

∫
Dφ , ”S” → dΣνβµT

µν

Multiple Tµν(φ) → Gauge-like configuration . Related to Phase space
fluctuations of φ



In summary,what we need is a hydrodynamics...

Manifestly in terms of observable quantities

Diffeomorphism-invariant at the level of fluctuations

Entropy content a scalar



Zubarev partition function for local equilibrium: think of Eigenstate
thermalization...
Let us generalize the GC ensemble to a co-moving frame E/T → βµT

µ
ν

ρ̂(Tµν0 (x),Σµ, βµ) =
1

Z(Σµ, βµ)
exp

[
−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

Z is a partition function with a field of Lagrange multiplies βµ , with
microscopic and quantum fluctuations included.

Effective action from ln[Z] . Correction to Lagrangian picture?

All normalizations diverge but hey, it’s QFT! (Later we resolve this! )



This is perfect global equilibrium. What about imperfect local?

• Two vectors, dΣµuµT
µν
0 dΣµ foliation choice not clear (with vorticity

it can’t be parallel to flow everywhere). Physics should be choice
independent. If dΣµ close to βµ , dΣµ non-inertial

• Dynamics is not clear. Naively partition function can not depend on
time (Adiabatically wrt microscopic scale however it could!) Becattini
et al, 1902.01089: Gradient expansion in βµ . Reproduces Euler and
Navier-Stokes, but...

– 2nd order Gradient expansion (Navier stokes) non-causal perhaps...
– Use Israel-Stewart, Πµν arbitrary perhaps...
– Foliation dΣµ arbitrary but not clear how to link to Arbitrary Πµν

• What about fluctuations? Coarse-graining and fluctuations mix? How
does one truncate?



An operator formulation T̂µν = T̂µν0 + Π̂µν
and T̂µν0 truly in equilibrium! Each microscopic particle “does not know“ if

it ”belongs” to T̂µν0 , Π̂µν

ρ̂(Tµν0 (x),Σµ, βµ) =
1

Z(Σµ, βµ)
exp

[
−
∫

Σ(τ)

dΣµβνT̂
µν
0

]

describes all cumulants and probabilities

〈Tµν0 (x1)T
µν
0 (x2)...T

µν
0 (xn)〉 =

∏

i

δn

δβµ(xi)
lnZ

Equilibrium at ”probabilistic” level and KMS Condition obeyed by ”part
of density matrix” in equilibrium, “expand” around that! An operator
constrained by KMS condition is still an operator! ≡ time dependence in
interaction picture



Does this make sense? Nishioka, 1801.10352 〈x| ρ |x′〉 =

=
1

Z

∫ τ=∞

τ=−∞

∫
[Dφ,Dy(τ)Dy′(τ)] e−iS(φy,y′)·δ

[
y(0+)− x′

]
δ
[
y′(0−)− x

]
︸ ︷︷ ︸

δJi(y(0
+))

δJi(x
′)

δJj(y(0
−))

δJj(x)

⇒ δ2

δJi(x)δJj(x′)
ln [ZT0(T

µν, J)× ZΠ(J)]J=J1(x)+J2(x′)

J1(x) + J2(x
′) chosen to respect Matsubara conditions!

Any ρ can be separated like this for any βµ . The question is, is this a
good approximation? “Close enough to equilibrium”

The source J related to the smearing in “weak solutions”. Pure maths
angle?



How to go forward... Crooks fluctuation theorem

Gabriel Landi

P(W)/P(−W)=e
∆ s

Crooks fluctuation theorem From talk

Relates fluctuations, entropy in small fluctuating systems (Nano,proteins )

P(W) Probability system doing work in its usual thermal evolution

P(-W) Probability of the same system “running in reverse” and decreasing
entropy due to a thermal fluctuation

∆S Entropy produced by P (W )



How to go forward... Crooks fluctuation theorem redtextApplying Crooks
theorem to Zubarev hydrodynamics: Stokes theorem

Wσ∼ Ω

−W

−
∫

Σ(τ0)

dΣµ

(
T̂µνβν

)
= −

∫

Σ(τ ′)

dΣµ

(
T̂µνβν

)
+

∫

Ω

dΩ
(
T̂µν∇µβν

)
,



In a past work (2007.09224,JHEP ) I have shown Zubarev+Crooks
fluctuation theorem has right limits and symmetries But highly non-local
and non-linear, ”lattice” .

A simpler EFT: A Gaussian approximation

General covariance via the Gravitational Ward identity

Gaussian approximation from Zubarev hydrodynamics

Kramers-Konig to enforce fluctuation-dissipation



The gravitational ward identity ∇W = 0

W = Gµν,αβ (Σµ,Σ
′
ν)−

1√
g
δ (Σ′ − Σ)×

×
(
gβµ

〈
T̂αν (x′)

〉
Σ
+ gβν

〈
T̂αµ (x′)

〉
Σ
− gβα

〈
T̂µν (x′)

〉
Σ

)

Fancy name and complicated but consequence of elementary properties of
the metric and energy conservation

∂µT
µν + ΓναβT

αβ = 0 ,
〈
Tnµν
〉
=

δn√−gδgµν(n) lnZ



Cumulant expansion: An possibly diffeomorphism invariant alternative to
gradient expansion which isn’t!

lnZ ≃ lnZ|0−
∂2 lnZ
∂βµ∂βν

∣∣∣∣
0

[ dΣαdΣ
′
τ (T

µα(Σ)− 〈Tµα(Σ′)〉) (T ντ(Σ)− 〈T ντ(Σ′)〉)]

A covariantization of

〈
E2
〉
− 〈E〉2 ≡ CV T ⇒⇒ Cαβµν ∼

∂ lnZ
∂βµ∂βν

∣∣∣∣
0

F (Σ)αβ

This way metric tensor propagator can be modelled as a Gaussian

f(...) ∼
∏

Σ(x),Σ(x′)

exp

[
−1

2
(Tµν(Σ(x

′))− 〈Tµν(Σ(x′))〉)Cµναβ(Σ(x),Σ(x′)) (Tαβ(Σ(

and Ward identity imposed on width Cαβγν .



fluctuation-dissipation relation From Kramers-Konig relations

Im
[
G̃µν,αβ(ω, k)

]
= −1

π
P
∫ ∞

−∞

Re
[
G̃µν,αβ(ω, k)

]

ω′ − ω
dω′

Re
[
G̃µν,αβ(ω, k)

]
=

1

π
P
∫ ∞

−∞

Im
[
G̃µν,αβ(ω, k)

]

ω′ − ω
dω′

Direct consequence of causality, relate the real and imaginary part of the
response function in momentum space But non-local in frequency, generally
invalidates gradient expansion! (inherently breaks fluctuation-dissipation)



Apply on the linear response function of energy-momentum tensor

Tµν(Σ) =

∫
eǫΣ0Gµν,αβ(Σ′

0 − Σ0)δgαβ(Σ
′
0)dΣ0

G̃µναβ =
1

2i

(
G̃αβµν(Σ0, k)

G̃αβµν(−iǫΣ0, k)
− 1

)

These equations together should do it!

Only in terms of Tµν, Jµ,Σµ ”observables” and a ”gauge” reditemSecond
law imposed via fluctuation dissipation (redundances, fluctuations of
observables)



Conclusions

Fluctuations in non-ideal hydrodynamics not well understood

Intimately related to entropy current, double counting of DoFs
Could alter fluctuation-dissipation expectation, ”fluctuations help
dissipate”, in analogy to Gauge theory

Approximate local equilibrium not understood in Gibbsian picture
My proposal: applicability of fluctuation-dissipation

Need a covariant description purely in terms of observable quantities
Ergodicity works in ideal hydro, Crooks theorem/K-K beyond it?

Could be relevant for hydro in small systems



SPARE SLIDES



PS: transfer of micro to macro DoFs experimentally proven!

Polarization by vorticity
in heavy ion collisions

NATURE
August 2017

STAR
collaboration

1701.06657

Could give new talk about this, but will mention hydro with spin not
developed and a lot of conceptual debates Pseudo-gauge dependence if
both spin and angular momentum present in fluid? Gauge symmetry
“ghosts”? GT,1810.12468 (EPJA) . redundances?



Polarization by vorticity
in heavy ion collisions

NATURE
August 2017

STAR
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Pseudo-gauge symmetries physical interpretation: T.Brauner, 1910.12224

xµ → xµ + ǫζµ(x) , ψa → ψa + ǫψ′
a → L → L

lnZ Invariant, but 〈O〉 generally is not. Spin ↔ fluctuation, need equivalent
of DSE equations! D 〈O〉 = 0 → D 〈O〉 = 〈OIOJ〉



Statistical mechanics: This is a system in global equilibrium, described
by a partition function Z(T, V, µ) , whose derivatives give expectation
values 〈E〉 ,fluctuations

〈
(∆E)2

〉
etc. in terms of conserved charges. All

microstates equally likely, which leads to preferred macrostates!

Fluid dynamics: This is the state of a field in local equilibrium which
can be perturbed in an infinity of ways. The perturbations will then
interact and dissipate according to the Euler/N-S equations. many issues
connecting to Stat.Mech. Wild weak solutions, millenium problem!



The problem with general ”transport thinking”

= ?

Let’s solve the simplest transport equation possible: Free particles

pµ

m
∂µf(x, p) = 0 → f(x, p) = f

(
x0 +

p

m
t, p
)

obvious solution is just to propagate
What is weird is that ”hydro-like” solution possible too (eg vortices)!

f(x, p) ∼ exp [−βµpµ] , ∂µβν + ∂νβµ = 0

But obviously unphysical, no force! What’s up?
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This paradox is resolved by remembering that f(x, p) is defined in an
ensemble average limit where the number of particles is not just “large” but
uncountable . curvature from continuity!

BUt this suggests Boltzmann equation disconnected from any finite number
of particles!

What if e−βµp
µ
used to sample strongly coupled particles in ”many finite

events”? Thermal fluctuations,Vlasov correlations and Boltzmann scattering
”mix these words”. Many ways to mix,some wrong! What is appropriate?



How ”different events” correlated is crucial
Villani , https://www.youtube.com/watch?v=ZRPT1Hzze44

Vlasov equation contains all classical correlations. Relativistically numer
of particles varies in each event but ”evolves” deterministically. but
instability-ridden, “filaments”, cascade in scales.
NDOF → ∞ invalidates KAM theorem stability

Boltzmann equation “Semi-Classical UV-completion” ov Vlasov
equation, first term in BBGK hyerarchy, written in terms of Wigner
functions.

Infinitely unstable jerks on infinitely small scales Random scattering
Statistical behavior emerges from both instabilities (chaos, Poncaire cycles)
and scattering (H-theorem) but interplay non-trivial. Strong coupling away
from molecular chaos not understood!

https://www.youtube.com/watch?v=ZRPT1Hzze44


B.Betz,D.Henkel,D.Rischke
There is more
to hydro
than the 
Knudsen number

0812.1440

What if these are ~?

lmicro︸ ︷︷ ︸
∼s−1/3,n−1/3

≪ lmfp︸︷︷︸
∼η/(sT )

≪ Lmacro

Second inequality was developed so far, but first is suspect! experimentally



lmicro︸ ︷︷ ︸
∼s−1/3,n−1/3

≪ lmfp︸︷︷︸
∼η/(sT )

≪ Lmacro

Weakly coupled: Ensemble averaging in Boltzmann equation good up to
O
(
(1/ρ)1/3∂µf(...)

)

Strongly coupled: classical supergravity requires λ ≫ 1 but λN−1
c =

gYM ≪ 1 so

1

TN
2/3
c

≪ η

sT

(
or

1√
λT

)
≪ Lmacro

QGP: Nc = 3 ≪ ∞ ,so lmicro ∼ η
sT . Cold atoms: lmicro ∼ n−1/3 > η

sT ?



Why is lmicro ≪ lmfp necessary? microscopic fluctuations (which have

nothing to do with viscosity ) will drive fluid evolution. ∆ρ/ρ ∼ C−1
V ∼ N−2

c

System I
"macro"

k<

k>
"micro"
System II

Λ

Λ

Kolmogorov
cascade
regime

A classical low-viscosity fluid is turbulent. Typically, low-k modes cascade
into higher and higher k modes In a non-relativistic incompressible fluid

η/(sT ) ≪ Leddy ≪ Lboundary , E(k) ∼
(
dE

dt

)2/3

k−5/3

For a classical ideal fluid, no limit! since limδρ→0,k→∞ δE(k) ∼ δρkcs → 0
but quantum E ≥ k so energy conservation has to cap cascade.



More fundamentally: take stationary slab of fluid at local equilibrium.
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Statistical mechanics: This is a system in global equilibrium, described
by a partition function Z(T, V, µ) , whose derivatives give expectation
values 〈E〉 ,fluctuations

〈
(∆E)2

〉
etc. in terms of conserved charges. All

microstates equally likely, which leads to preferred macrostates!

Fluid dynamics: This is the state of a field in local equilibrium which
can be perturbed in an infinity of ways. The perturbations will then
interact and dissipate according to the Euler/N-S equations. Smaller η/s
, the closer to local equilibrium (SM applies to cell) but the longer the
timescale to global equilibrium (SM applies to system).
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• Provided state is localized, local equilibrium is ”global equilibrium in
every cell”, global equilibrium with spin, forces ”non-local” A.Palermo
et al,2007.08249,2106.08340 ”global” equilibrium not necessarily stable
against hydro perturbations I think ”real” global equilibrium built up
from local equilibria

• Dissipation scale in local equilibrium η/(Ts) , global equilibration
timescale (Ts)/η .turbulence drastically changes this ,but ”when does a
small perturbation become a microstate?”



Some insight from maths
Millenium problem: existence and smoothness of the Navier-Stokes
equations

Important tool are “weak solutions” , similar to what we call “coarse-
graining”.

F

(
d

dx
, f(x)

)
= 0 ⇒ F

(∫
d

dx
φ(x)..., f(x)

)
= 0

φ(x) “test function”, similar to coarse-graining!



Existance of Wild/Nightmare solutions and non-uniqueness of weak solutions
shows this tension is non-trivial, coarse-graining “dangerous”

I am a physicist so I care little about the ”existence of ethernal solutions” to
an approximate equation, Turbulent regime and microscopic local equilibria
need to be consistent

Thermal fluctuations could both ”stabilize” hydrodynamics and
”accellerate” local thermalization
But where do microstates,”local” microstates fit here?



of the entropies

the battle

Boltzmann entropy is usually a property of the ”DoF”, and is ”kinetic”
subject to the H-theorem which is really a consequence of the not-so-
justified molecular chaos assumption. Gibbsian entropy is the log of the
area of phase space, and is justified from coarse-graining and ergodicity ,
but hard to define it in non-equilibrium . The two are different even in
equilibrium, with interactions! Note, Von Neumann 〈lnρ̂〉 Gibbsian



Gauge theory and local thermalization

The formalism we introduced earlier is ok for quark polarization but
problematic for gluon polarization: Gauge symmetry means one can
exchange locally angular momentum states for transversely polarized
spin states. So vorticity vs polarization is ambiguus

Using the energy-momentum tensor for dynamics is even more problematic
for spin Tµν aquires a ”pseudo-gauge” transformation

Tµν → Tµν +
1

2
∂λ
(
Φλ,µν +Φµ,νλ +Φν,µλ

)

where Φ is fully antisymmetric. δS/δgµν and canonical tensors are lmits
of choice of Φ . But vorticity global (and gauge invariant), yµν local (and
gauge dependent). Affects EFTs based on Tµν (Hong Liu,Florkowski and
collaborators)



Generalization from U(1) to generic group easy

α→ {αi} , exp (iα) → exp

(
i
∑

i

αiT̂i

)

One subtlety: Currents stay parallel to uµ but chemical potentials become
adjoint, since rotations in current space still conserved

y = Jµ∂µαi → yab = Jµa ∂µαb

Lagrangian still a function of dF (b, {µ})/dyab , “flavor chemical potentials”



From global to gauge invariance! Lagrangian invariant under

{yab} → y′ab = U−1
ac (x)ycdUdb(x) , Uab(x) = exp

(
i
∑

i

αi(x)T̂i

)

However, gradients of x obviously change y .

yab → U−1
ac (x)ycdUbd(x) = U−1(x)acJ

µ
f UcfU

−1
fg ∂µαgUbg =

= U−1(x)acJ
µ
f Ucf∂µ

(
U−1
fg αdUbd(x)

)
− Jµa (U∂µU)fb αf

Only way to make lagrangian gauge invariant is

F
(
b, Jµj ∂µαi

)
→ F

(
b, Jµj (∂µ − U(x)∂µU(x))αi

)

Which is totally unexpected, profound and crazy



The swimming ghost!

F
(
b, Jµj ∂µαi

)
→ F

(
b, Jµj (∂µ − U(x)∂µU(x))αi

)

Means the ideal fluid lagrangian depends on velocity!. no real ideal fluid limit possible
the system “knows it is flowing” at local equilibrium! NB: For U(1)

T̂i → 1 , yab → µQ , uµ∂
µαi → Aτ

So second term can be gauged to a redefinition of the chemical potential
(the electrodynamic potentials effect on the chemical potential).

Cannot do it for Non-Abelian gauge theory, “twisting direction” in color
space It turns out this has an old analogue...



The swirling ghost
Since uµ∂µ is in the Lagrangian,let us compare vorticity and Wilson loops!

Vorticity :

∮
Jµdx

µ 6= 0 , Wilsonloop :

∮
dxµ∂

µUab ≡
∫

Σ

dΣµνF
µν
ab

Lagrangian will in general have gauge-invariant terms proportional to
TraωµνaF

µν
a Unlike in Jackiw et al , Fµν is not field strength but just

a polarization tensor, whose value is set by entropy maximization.

But circular modes correlating angle around vortex of uµ and direction a of
F aµν non-dissipative (unlike in polarization hydro described earlier)



Nature, 1894

S. Montgomery (2003): How does a cat always fall on its feet without
anything to push themsevles against? The shape of spaces a cat can deform
themselves into defines a “set of gauges” a cat can choose without change
of angular momentum.



Purcell,Shapere+Wilczek,Avron+Raz : A similar process enables swimmers
to move through viscous liquids with no applied force

Gauge direction

Fluid
flow

Now imagine each fluid cell filled with a “swimmer”, with arms and legs
outstretched in “gauge” directions...

Hydrostatic vacuum unstable against purcell swimmers in Gauge space!



A statistical mechanics/Gauge explanation
Hydrodynamic limit: ∂µsµ ≡ ∂µ (uµ lnNmicrostates) = 0
In thermal Gauge theory microstates contain gauge redundancies,

Nmicrostates → Nmicrostates −Ngauge But srealµ not parallel to sgaugeµ

so no local equilibrium!. recall hydrostatic limit perturbation

φI = XI + ~πsoundI + ~πvortexI , ∇.~πvortexI = ∇× ~πsoundI = 0

Since the derivative of the free energy w.r.t. b is positive, sound waves and
vortices do “work”. Let us now assume the system has a “color chemical
potential”. Let us vary the color chemical potential in space according to

∆µ(x) =
∑

i

(
µi(x)

swim + µi(x)
swirl

)
T̂i , ∇i.µ

swim
i = ∇i×µswirli = 0

“color susceptibility” typically negative. So the two can balance!!!!



But this breaks the ”hyerarchy” of statistical mechanics
It mixes micro and macro perturbations!
In statistical mechanics, what normally distinguishes “work” from “heat”
is coarse-graining, the separation between micro and macro states.
Quantitatively, probability of thermal fluctuations is normalized by 1/(cV T )
and microscopic correlations due to viscosity are ∼ η/(Ts) . Since for a
usual fluid, there is a hyerarchy between microscopic scale, Knudsen number
and gradient

1

cV T
≪ η

(Ts)
≪ ∂uµ

Gauge symmetry breaks it, since it equalizes perturbations at both ends of
this!



Is there a Gauge-independent way of seeing this? Perhaps!
One can write the effective Lagrangian in a Gauge-invariant way using
Wilson-Loops . But the effective Lagrangian written this way will have an
infinite number of terms, in a series weighted by the characteristic Wilson
loop size. For a locally equilibrated system, this series does not commute
with the gradient. Just like with Polymers, the system should have multiple
anisotropic non-local minima which mess up any Knuden number expansion.
Some materials are inhomogeneus and anisotropic at equilibrium, YM could
be like this!

Lattice would not see it , as there are no gradients there. There is an
entropy maximum, and it is the one the lattice sees. The problems arise if
you ”coarse-grain” this maximum into each microscopic cell and try to do a
gradient expansion around this equilibrium, unless you have color neutrality.



Development of EoMs, linearization, etc. of this theory in progress!

A crazy guess, speculation Remember that all flow dependence through µab
color chemical potentials. What if local equilibrium happens when they go
to zero, i.e. color density is neutral.

Could colored-swimming ghosts quickly be produced, and then locally
thermalize and color-neutralize the QGP?

Similar to Positivity violation picture of confinement (Alkofer)



What about gauge-gravity duality?

Large N non-hydrodynamic modes go away in the planar limit
There are N ghost modes and N2 degrees of freedom

Conformal fixed point most likely means ghosts non-dynamical
Not yet sure of this, but conformal invariance reduces pseudo-Gauge
transformations to

Φλ,µν →︸︷︷︸
conformal

gσµ∂νφ− gσµ∂µφ

where φ is a scalar function. Irrelevant for dynamics.
As shown in Capri et al ( 1404.7163 ) Gribov copies for a Yang-Mills
theory non-dynamical there. It would be a huge job to do this for
hydrodynamics.


