EXPERIMENTAL ADVANCES IN HYPERNUCLEI RESEARCH: LESSONS FROM RHIC BES-II

I. VASSILIEV¹², M. ZYZAK², Y. ZHOU²³

1 - GSI HELMHOLTZZENTRUM FÜR SCHWERIONENFORSCHUNG GMBH, DARMSTADT, GERMANY

2 - FIAS FRANKFURT INSTITUTE FOR ADVANCED STUDIES, FRANKFURT AM MAIN, GERMANY

3 – CCNU CENTRAL CHINA NORMAL UNIVERSITY, WUHAN, CHINA

HYPERNUCLEI

- Credit: K. Murano
 - Precise measurements of hypernuclei lifetime (YN interaction)
 - Strangeness in high density nuclear matter, EoS for NS, Hadronic phase of HI collisions
 - Measurement of branching ratios of hypernuclei decays, Dalitz plots for 3-body decays
 - hypernuclei internal structure
 - Measurements of \mathbf{B}_{Λ} in the hypernuclei
 - direct access to the hyperon-nucleon YN interaction
 - Observation of double lambda hypernuclei can provide an access to the YY forces

BES - II DATA SETS:

Most precise data to map the QCD phase diagram $3 < \sqrt{s_{NN}} < 200 \text{ GeV}; 750 < \mu_B < 25 \text{ MeV}$

Au+Au Collisions at RHIC									
Collider Runs					Fixed-Target Runs				
	$\sqrt{s_{\scriptscriptstyle NN}}$ (GeV)	#Events	μ_{B}	Run		$\sqrt{s_{_{NN}}}$ (GeV)	#Events	μ_{B}	Run
1	200	380 M	25 MeV	Run 10, 19	1	13.7 (100)	50 M	280 MeV	Run-21
2	62.4	46 M	75 MeV	Run-10	2	11.5 (70)	50 M	320 MeV	Run-21
3	54.4	120 M	85 MeV	Run-17	3	9.2 (44.5)	50 M	370 MeV	Run-21
4	39	86 M	112 MeV	Run-10	4	7.7 (31.2)	260 M	420 MeV	Run-18, 19, 20
5	27	585 M	156 MeV	Run-11, 18	5	7.2 (26.5)	470 M	440 MeV	Run-18, 20
6	19.6	595 M	206 MeV	Run-11, 19	6	6.2 (19.5)	120 M	490 MeV	Run-20
7	17.3	256 M	230 MeV	Run-21	7	5.2 (13.5)	100 M	540 MeV	Run-20
8	14.6	340 M	262 MeV	Run-14, 19	8	4.5 (9.8)	110 M	590 MeV	Run-20
9	11.5	57 M	316 MeV	Run-10, 20	9	3.9 (7.3)	120 M	633 MeV	Run-20
10	9.2	160 M	372 MeV	Run-10, 20	10	3.5 (5.75)	120 M	670 MeV	Run-20
11	7.7	104 M	420 MeV	Run-21	11	3.2 (4.59)	200 M	699 MeV	Run-19
					12	3.0 (3.85)	2300 M	750 MeV	Run-18, 21

STAR DETECTOR TOMOGRAPHY: LESSON 1

iTPC:

- Improves dE/dx
- Extends η coverage from 1.0 to 1.5
- Lowers p_T cut-in from 125 to 60 MeV/c
- Ready in 2019

eTOF:

- Forward rapidity coverage
- > PID at $\eta = 0.9$ to 1.5
- Borrowed from CBM-FAIR
- Ready in 2019

- The structure with R = 2 cm (beam position) is formed by pileup.
- Interactions with the pipe material and support structures are clearly visible.
- Tracks from these vertices lead to higher background, especially in 3-body channels.

Solution: We reconstruct vertices from **pileup** and interaction with the pipe. Tracks from these vertices are **removed** from further consideration. The procedure allows to noticeably reduce the background in 3-body channels.

KF Particle package (M. Zyzak) X. Ju et al. Nucl. Sci. Tech. 34, 10, 158 (2023)

STAR DETECTOR TOMOGRAPHY: LESSON 1

- The structure with R = 2 cm (beam position) is formed by pileup.
- Interactions with the pipe material and support structures are clearly visible.
- Tracks from these vertices lead to higher background, especially in 3-body channels.

Solution: We reconstruct vertices from **pileup** and interaction with the pipe. Tracks from these vertices are **removed** from further consideration. The procedure allows to noticeably reduce the background in 3-body channels.

X. Ju et al. Nucl. Sci. Tech. 34, 10, 158 (2023)

5

KF Particle package (M. Zyzak)

HYPERNUCLEI IN STAR WITH EXPRESS ANALYSIS

Full chain of express production and analysis has been running since 2019

Save HLT good events to a local disk directly PicoDst files produced in hours (collisions) or days (FXT) after data taking Express Production (selection) jobs on HLT farm (300-500 job slots)

Trigger on He has been introduced to enhance hypernuclei.

437M AuAu HLT triggered events at 3 GeV

HYPERNUCLEI IN STAR WITH ONLINE EXPRESS ANALYSIS

437M AuAu HLT triggered events at 3 GeV

Hypernuclei are reconstructed with KFParticle Finder in following decay channels:

$$\begin{array}{cccc}
H & \rightarrow & ^{3}\text{He} + \pi^{*} \\
H & \rightarrow & ^{4}\text{He} + \pi^{*} \\
\begin{array}{cccc}
3 \\
M & \rightarrow & d + p + \pi^{*} \\
\begin{array}{cccc}
4 \\
M & \rightarrow & d + p + \pi^{*} \\
\begin{array}{cccc}
4 \\
M & \rightarrow & 3 \\
M & \rightarrow & t + p + \pi^{*} \\
\begin{array}{cccc}
4 \\
M & \rightarrow & t + p + \pi^{*} \\
\begin{array}{cccc}
5 \\
M & He \rightarrow & ^{4}\text{He} + p + \pi^{*} \\
\end{array}$$

Run by run control S/Bg ratio, peak positions and mass resolution

Updated set of hypernuclei measurements in the high-baryon-density region with high statistical precision

I.VASSILIEV

KRABI 25.11.24

HYPERNUCLEI IN STAR WITH OFFLINE EXPRESS ANALYSIS

2.11B AuAu events at 3 GeV

S/Bg On/Off ratio: 0.9 - 1.0HN Enhansment factor: 1.3 – 1.97

> Updated set of hypernuclei measurements in the high-baryon-density region with high statistical precision

I.VASSILIEV

8

2 body

3 body

HYPERNUCLEI 3-BODY TOPOLOGY: LESSON 2

Signal: ${}_{\Lambda}^{5}$ He \rightarrow ⁴He + p + π^{-} ${}_{\mu}^{4}$ ${}_{\rho}^{4}$ PV ${}_{N}$ ${}_{N}^{5}$ He ${}_{\Lambda}^{5}$ He

In the analysis, particle identification was performed using the Time Projection Chamber (TPC) and the Time of Flight (TOF) detectors.

Hypernuclei are reconstructed with KFParticle Finder

TPC: Nucl. Instrum. Meth. A 499, 659 (2003), nucl-ex/0301015.TOF: Nucl. Instrum. Meth. A 661, S110 (2012).

HYPERNUCLEI 3-BODY TOPOLOGY: LESSON 2

Hypernuclei are reconstructed with KFParticle Finder

M ⁴He + p + π^- = 4.8052 (GeV/c²) M ⁴He + Λ = 4.8431 M ⁴_{Λ}H + p = 4.8607 M 1-st peak ~ 4.8398

I.VASSILIEV

KRABI 25.11.24

HYPERNUCLEI 3-BODY TOPOLOGY: LESSON 2

HYPERNUCLEI DALITZ DECAY: LESSON 3

The background was estimated with the side band method and subtracted under the peak.

 The background is smooth and no structures is observed.

• A complex structure in the signal can be explained as a possible spin effect.

I.VASSILIEV

KRABI 25.11.24

⁴ He \rightarrow ³He + p + π ⁻

HYPERNUCLEI DALITZ DECAY: LESSON 3

Hypernuclei 3-body decays have complex structures.There are hints of kinematic constraint due to spin and parity effects.

- Even with 3 particles in the final state majority of decays could be 2-body with a further cascade decay of a nuclei.
- Efficiencies strongly depend on decay kinematics.

$$^{4}_{\Lambda} \text{He} \rightarrow \, {}^{4}\text{Li}_{\text{GS}}^{*} + \, \pi^{-} \rightarrow \, {}^{3}\text{He} + \text{p} + \, \pi^{-}$$

ETOF AT RUN 2020 $\sqrt{S_{NN}} = 3.5 \text{ GeV}$

About 30% more deuterons selected with eTOF
low rapidity region covered by eTOF

Signal in 2-body channels remain nearly the same, while background drops about factor of 1.5 and significance increase noticeably.
 Signal and significance increase noticeably in all 3-body channels.

ANTI-MATTER HYPERNUCLEI

• STAR observed $\frac{4}{\Lambda}\overline{H}$ in 2023.

I.VASSILIEV

Nature 632 (2024) 8027, 1026-1031

- Benefit from high energy heavy ion collisions ($\mu_B \rightarrow 0$).
- The heaviest observed antimatter nuclear and hypernuclear cluster to date.

$^{3}_{\Lambda}$ H Λ binding energy

 $^{3}_{\Lambda}\,{
m H}\,\Lambda$ binding energy to be 0.04 to 0.33 MeV at 95% CL

Provides a new method to study the hypernuclei structure in the HI collision experiment

arXiv:2401.00319v1 [nucl-ex] 30 Dec 2023

Due to its very small binding energy, ${}^3_{\Lambda}$ H production provides unique input for theoretical models (R ~ 5 – 10 Fm) and production mechanism (coalescence)

I.VASSILIEV

A EXCITATION FUNCTION: LESSON 4

 $^3_\Lambda$ H yield at mid-rapidity increases about factor of 10² from 2.76 TeV to 3 GeV

Thermal model reproduces the trend, but does not quantitatively (factor 2) describe the yields of $^{3}_{\Lambda}$ H and $^{4}_{\Lambda}$ H

New data provide first constraints for hypernuclei production models in the high-baryon-density region

HN yields increase with increasing baryon density HN yields decrease with strangeness canonical suppression

I.VASSILIEV

CENTRALITY DEPENDENCE OF $^{3}_{\Lambda}$ H PRODUCTION

The yield in mid-central (10-40%) collisions follow the same trend as central (0-10%) collisions

New data provide first constraints for hypernuclei production models in the high-baryon-density region

J. Steinheimer, K. Gudima, A. Botvina, I. Mishustin, M. Bleicher, H. Stöcker Phys. Lett. B**714**, 85, (2012)

$^{3}_{\Lambda}$ H, $^{4}_{\Lambda}$ H & $^{4}_{\Lambda}$ He PRODUCTION

 $^{3}_{\Lambda}$ H, $^{4}_{\Lambda}$ H yields obtained multi-differentially as a function of p_T, rapidity and centrality

A=3: ${}^{3}_{\Lambda}$ H (Au+Au $\sqrt{s_{NN}}$ =3-27 GeV)

First measurement of dN/dy vs rapidity of hypernuclei in HI collisions New challenges for the models

$^{3}_{\Lambda}$ H, $^{4}_{\Lambda}$ H production VS EOS

The production of Hypernuclei is sensitive to the choice of the EoS.

HYPERNUCLEI VS LIGHT NUCLEI AT 3 GEV

Thermal/coalescence models predict approximately exponential dependence of yields/(2J+1) vs A factor 6 above fit for ${}^{4}_{\Lambda}$ H, ${}^{4}_{\Lambda}$ He

Data support creation of excited A=4 hypernuclei from heavy-ion collisions

$${}^4_{\Lambda}\mathrm{H}^*(\mathrm{J}^+=1) \to {}^4_{\Lambda}\mathrm{H}(\mathrm{J}^+=0) +$$

HYPERNUCLEI COLLECTIVITY AT 3 GEV

I.VASSILIEV

KRABI 25.11.24

HYPERNUCLEI LIFETIMES

 $\begin{array}{l} {}^3_{\Lambda} \, H, \, {}^4_{\Lambda} \, H \ \text{lifetimes shorter than} \\ {}^{\tau}_{\Lambda} \, (\text{with 1.8}\sigma, \, 3.0\sigma \ \text{respectively}) \\ \text{Consistent with theoretical calculations} \\ \text{including pion FSI} \\ \text{A. Gal et al, PLB791(2019)48} \end{array}$

 $\frac{\tau_{avg}^{4}\Lambda H}{\tau_{avg}^{4}\Lambda He} = 0.92 \pm 0.06,$ consistent (3 σ) with the theoretical estimation: 0.74 ± 0.04 A. Gal (2021), arXiv:2108.10179

ALICE H3L lifetime (2022) arXiv:2209.07360 HADES H3L, H4L lifetime (preliminary) S. Spies (HADES), QM2022 JPARC H4L lifetime (2022) arXiv:2302.07443

 $\begin{aligned} \tau({}^{3}_{\Lambda}\text{H}) &= 221 \pm 15(stat) \pm 19(syst) \ [ps] \\ \tau({}^{4}_{\Lambda}\text{H}) &= 218 \pm \ 6(stat) \pm \ 13(syst) \ [ps] \\ \tau({}^{4}_{\Lambda}\text{H}e) &= 214 \ \pm \ 10(stat) \pm \ 10(syst) \ [ps] \end{aligned}$

STAR Xiujun Li, SQM 2024

SUMMARY

- Updated set of Hypernuclei measurements in the high baryon density region with high statistical precision at 3.0 - 27 GeV (BES-II).
- > We observe $\frac{5}{\Lambda}$ He with significance of 20 σ .
- $> \frac{3}{\Lambda}$ H yield at mid-rapidity increases about factor of 10² from 2.76 TeV to 3 GeV (excitation function).
- $> \frac{3}{\Lambda}$ H, $\frac{4}{\Lambda}$ H and $\frac{4}{\Lambda}$ He lifetimes measured with improved precision.
- > First observation of Hypernuclei collectivity in v_1 and $\langle p_1 \rangle$, similar to light nuclei.
- > The production of Hypernuclei in the high baryon density region is sensitive to the choice of the EoS.
- > Coalescence is a dominate mechanism of Hypernuclei formation at mid-rapidity in HI collisions at RHIC.

KRABI 25.11.24

Further experimental challenges:

- > Further investigation on light Hypernuclei.
 - Production: kinetic freeze-out parameters
 - Collectivity: v1, v2 etc.
 - Intrinsic properties: B_{Λ} , Dalitz, BR, lifetime etc.
- Search of double Λ Hypernuclei ${}^{4}_{\Lambda\Lambda}$ H ${}^{4}_{\Lambda\Lambda}$ n, ${}^{6}_{\Lambda\Lambda}$ He and exotic hyperon states. • Y - Y interaction

Precise measurements on particle correlations.
p - A, d - A, A - A correlations, etc.

Thank you for your attention!

I.VASSILIEV

KRABI 25.11.24