

The MYRRHA Project

and a few detours via current Linac developments at IAP Frankfurt

NED2024

26.11.2024

Klaus Kümpel

Institute for Applied Physics, Goethe University Frankfurt

THE REAL PROPERTY IN

Introduction

'Some day, son, all this (nuclear waste) will be yours!' Cartoon: Katauskes via Greens MPs on Flickr (CC BY-NC-ND). Taken from: <u>https://theecologist.org/sites/default/files/styles/inline_l/public/NG_media/402277.jpg?itok=lfXcQo99</u>, 24.11.2024

Europe's €130 billion nuclear dream

Eastern Europe is uniting behind the biggest drive for nuclear capacity in decades, with plans to build a string of new reactors but the question is who will foot the bill

Source: World Nuclear Association and IAEA Power Reactor Information Service (PRIS)

Introduction

A. SCHWENK-FERRERO: German Spent Nuclear Fuel Legacy: Characteristics and High-Level Waste Management Issues. Science and Technology of Nuclear Installations, Vol. 2013, 2013, http://dx.doi.org/10.1155/2013/293792

20th Century Fox

Introduction

GOETHE		Myrte	
UNIVERSITÄT Frankfurt am main	Institut für Angewandte Physik	(inj) (c	

ELEMENT	kg
U	930,7
Plutonium	11,1
Minore Aktinide	
Np-237	0,79
Am	0,99
Cm	0,1
Langlebige Spaltprodukte	
I-129	0,26
Tc-99	1,23
Zr-93	1,12
Cs-135	0,6
Kurzlebige Spaltprodukte	
Cs-137	1
Sr-90	0,6
Stabile Isotope	
Lanthaniden	15,87
andere Stabile	35,64

A. SCHWENK-FERRERO: *German Spent Nuclear Fuel Legacy: Characteristics and High-Level Waste Management Issues.* Science and Technology of Nuclear Installations, Vol. 2013, 2013, http://dx.doi.org/10.1155/2013/293792

O.RENN (HRSG.): Partitionierung und Transmutation. Forschung - Entwicklung – Gesellschaftliche Implikationen (acatech STUDIE). Herbert Utz Verlag, München, 2014.

C. Angulo, MYRRHA A New Large Research Infrastructure in Belgium for Applications in Nuclear Energy and Nuclear Physics, Talk at the FlipPhysics Workshop, 2022, https://www.google.com/url?sa=i&url=https%3A%2F%2Findico.ific.uv.es%2Fevent%2F6372%2Fcontributions%2F17464%2Fattachments%2F9905%2F1362 4%2F4_Angulo.pdf&psig=AOvVaw1drmyYsV7NfTAqKwO5BumE&ust=1732635420596000&source=images&cd=vfe&opi=89978449&ved=0CBgQ3YkBahcKEwi4q_ yS6PeJaxUAAAAAHQAAAAAQBA

C. Angulo, MYRRHA A New Large Research Infrastructure in Belgium for Applications in Nuclear Energy and Nuclear Physics, Talk at the FlipPhysics Workshop, 2022, https://www.google.com/url?sa=i&url=https%3A%2F%2Findico.ific.uv.es%2Fevent%2F6372%2Fcontributions%2F17464%2Fattachments%2F9905%2F1362 4%2F4_Angulo.pdf&psig=AOvVaw1drmyYsV7NfTAqKwO5BumE&ust=1732635420596000&source=images&cd=vfe&opi=89978449&ved=0CBgQ3YkBahcKEwi4q_yS6PeJAxUAAAAAHQAAAAAQBA

MYRRHA – Multi-purpose hYbrid Research Reactor for High-tech Applications

particles	protons	N/A
energy	600	MeV
current	4	mA
beam power	2.4	MW
duty factor	100	%
beam stability	energy ±1%, current ±2% position ±10%, size ±10%	N/A
MTBF	250	h

2036* PHASE 3 REACTOR

What should MYRRHA do?

- Demonstrate the ADS at pre-industrial scale
- Demonstrate Transmutation
- Use as a multipurpose and flexible irradiation facility

*planned

MYRRHA – Multi-purpose hYbrid Research Reactor for High-tech Applications

Parts of MYRRHA:

- LINAC LINear ACcelerator
- PTF Proton Target Facility
- FPF Full Power Facility
- undercritical Reaktor

F.Bouly et al.: Superconducting LINAC Design Upgrade in View of the 100MeV MYRRHA Phase I. Proceedings of IPAC2019 (pp. 837-840, MOPTS003), Melbourne, Australia, 2019, https://doi.org/10.18429/JACoW-IPAC2019-MOPTS003

- Sustainable fission energy: demonstrate the physics and technology of an Accelerator Driven System (ADS) for transmuting long-lived radioactive waste
- Sustainable energy: development of a fast-spectrum reactor and fusion technology
- Enabling technologies for renewable energies: production of neutron irradiated silicon
- Health care: production of radioisotopes for nuclear medicin (e.g. Mo-99)
- Science: production of radioisotopes for fundamental and applied science via the Isotope Separation On-Line method at ISOL@MYRRHA

Nuclear-physics applications of MYRRHA

EPJ Web of Conferences 66 10011 (2014) DOI: 10.1051/epjconf/20146610011

Lucia Popescu

"...number of beam trips longer than 3 s remains under 10 during a 3-months operational period of the Myrrha reactor..." [1]

MTBF > 250 h

- use of components far from their limits
 - e.g. the voltages of the cavities in the injector
- Redundancy
 - Parallel scheme in the injector
 - Serial scheme in the superconducting part
- Repairability
 - e.g. use of similar components

[1] D. Vandeplassche, J.-L. Biarrotte, H. Klein, H. Podlech, "The MYRRHA Linear Accelerator", in *Proc. 2nd International Particle Accelerator Conf. (IPAC11)*, San Sebastian, Spain, Sep. 2011, paper WEPS090, pp. 2718-2720

MYRRHA – Multi-purpose hYbrid Research Reactor for High-tech Applications

Parts of MYRRHA:

- LINAC LINear ACcelerator
- PTF Proton Target Facility
- FPF Full Power Facility
- undercritical Reaktor

F.Bouly et al.: Superconducting LINAC Design Upgrade in View of the 100MeV MYRRHA Phase I. Proceedings of IPAC2019 (pp. 837-840, MOPTS003), Melbourne, Australia, 2019, https://doi.org/10.18429/JACoW-IPAC2019-MOPTS003

Electron Cyclotron Resonance (ECR) ion source at 2.45 GHz

Low Energy Beam Transport (LEBT)

- Beam diagnostics (emittance meter, faraday cup...)
- Solenoids for focussing

The job of the LEBT is to maximize the proton beam quality injected into the RFQ

Überblick Linearbeschleuniger (LINAC)

"First accelerating structure"

- ➤ Focusing
- ➢ Bunching
- > Accelerate

Parameter	MHYRRA	Unit
RF Structure	4.Rod	
Frequency	176.1	MHz
Beam current	4	mA
Duty factor	100	%
E _{in}	30	keV
E _{out}	1.5	MeV
RF Power	108	kW
Voltage	44	kV
Length	4	m

Simulated values

Transverse electric quadrupole field

Field components due to electrode modulation

(1) Transversal Focusing

(2) Longitudinal bunching

(3) Acceleration

Can be realised as: <u>Cavity Resonator</u>

4-Vane

 $(TE_{21(0)}$ -Mode)

Interdigital H-Moden (IH) (TE₁₁₍₀₎-Mode)

ma ma ma Modulation of the quadrupole electrodes

Line Resonator

- ➤ 4-Rod-RFQ
- Ladder-RFQ
- Spiral-RFQ
- Split-Ring-RFQ

14

h

 $\rightarrow \leftarrow \Delta h \longrightarrow$

2. Arbeiten am MYRRHA-RFQ

simulierte Größe	${\it MYRRHA} - {\it RFQ} - {\it Simulationsmodell}$
Dipol nach Def_{oben} und V_{Achse}	-3,3%
Dipol nach $Def_{\rm Mittel}$ und $V_{\rm Achse}$	-3,2%
Dipol nach $Def_{\tt oben}$ und $V_{\tt Curve}$	-2,8 %
Dipol nach $Def_{\rm Mittel}$ und $V_{\rm Curve}$	-2,7 %

	Dipol gemessen	Dipol Sim. V_{Achse}	Dipol Sim. V_{Curve}
Dipol nach Def_{oben}	-4,2 %	-3,3 %	-2,8 %
$\begin{array}{c} {\rm Dipol~nach} \\ {Def}_{\rm Mittel} \end{array}$	-4,1 %	-3,2 %	-2,7 %

- > Limitations in the design of internal cooling channels
- Tension in the assembly due to clamped tuning plates
- > Shunt impedance /Q-factor worse than simulations predict (~ 75-80 %)
 - Due to contact resistance of multiple connected parts
- Usage of o-rings instead (could we have a "better" vacuum?)

Cooling System on Main Parts of the RFQ

Thermal oxidation occured during operation →High surface temperatures P_F=127,5 kW/m

Tuning plates welded to the Stems

- \rightarrow High contact resistance
- \rightarrow Limited cooling in this area

Damage occured at a multiple of the design power!

Klaus Kümpel

- > Limitations in the design of internal cooling channels
- Tension in the assembly due to clamped tuning plates
- > Shunt impedance /Q-factor worse than simulations predict (~ 75-80 %)
 - Due to contact resistance of multiple connected parts
- Usage of o-rings instead (could we have a "better" vacuum?)

Current Problems / Challenges of the 4-Rod-RFQ

Attachment of the tuning plates

New design T-Slots and solid copper holder screwed from below

- More than sufficient cooling in the contact areas
- Simpler and more cost-efficient design
- Q-factor improvements
- No tension in the assembly

T-Slots and Cooling are only possible, due to additive process

Test setup for tuning plate mounting

Manufactured with conventional machining $f_{res}=176MHz \pm 50MHz$; $Q_{0,Sim}=6800$ Allows for clamped and screwed Tuningplates by rotating the stems First results with rough machined surfaces: ; $Q_0=4300$

- > Limitations in the design of internal cooling channels
- > Tension in the assembly due to clamped tuning plates
- > Shunt impedance /Q-factor worse than simulations predict (~ 75-80 %)
 - Due to contact resistance of multiple connected parts
- Usage of o-rings instead (could we have a "better" vacuum?)

The LOEWE3 RFQ Project

Radii of curvature and contact pressure are specified by the manufacturer

The LOEWE3 RFQ Project

- Stems and tuning blocks should have the same base area to use the same metal seals
- Transition at the support (rounding) should be at the same height as the tuning blocks to avoid the 90° angle

Model	conventional	LOEWE-3
Dipole	2.2 %	0.5 %
R_p	108700	113 700
Q-factor	5860	6260

- Cavity resonator, operated in TE211 mode
- Constant phase beam dynamics
- 15 accelerating cavities
- 1-2 buncher
- Power consumption between 8 and 35kW (without bea loading)

Design without Insert 5 l/min

95,6 °C

Design without Insert 7.5 l/min

86,6 °C

Insert KK_01

First draft from the manufacturer

IAP Design KK_01

Insert KK_14

35

	Ri Design	IAP Design KK_09	IAP Design KK_14
5 l/min	95,6 °C	74,8 °C	58,3 °C
7,5 l/min	86,6 °C	70,7 °C	52,7 °C

What happens next?

Design of the Cavity

- Beam Dynamics Simulations
- **RF Simulations**
- Multiphysics Simulations (Thermal, Mechanical.)

CH3+4

Construction of the Cavity

CH5-15

- Re-Simulations of the manufacturer drawings
- Factory Acceptance Tests (FATs)

Low Level Measurements

- Frequency
- Q-Value
- Tuning Range
- Voltage distributions
 - •••

High Power Tests / Conditioning

CH1+2

RFQ

• Getting the cavity used to the required power

High Power Tests / Conditioning

Dauertest bei CH1 "new lid"

- Possible Events during Conditioning (list is not complete)
 - Multipacting
 - Outgassing
 - > Discharge

े 🛞 🗐 🖬 15p	t Anwendungsschriftart •	ferser mile fer ∰r ∰r			Suchen	p
topp	^	Zielfrequenz [Hz] Zielleistung (dBm) Leistung P f (W) Leistung P r (VI Leistung P t (W)	Temperatur		Plot 0
CTOPP	Datenlogger	176100000 0E+0 0E+0	0E+0	1-		1
STOPP		P f verbunden P r verbunde	n O P t verbunden	0.75-		
	Frank and the second stress	Frequenz [Hz] Power [dBm]	Interlocks deaktivieren	C 05-		
everung SMC	Einstellungen speichern	176100021 0 P_R/P_F Druck [mbar]	T max			
	9	0 0	0 Hinweis	10 0,23		
-	Zu wartende ms	Status AP RF on/off Frequenz P_R/P_F in dB Sensor	Tmax_dT/dP	the second		
egeung	500	RF on/off 0	0	a -0,25 -		
-			Frances wird	월 -0,5-		
ere Grenze R/F	Obere Grenze	Verh Refl zu Vorwärts Reflektierte Leistung Druck Temperatur P f reduzierer	warten Leistung erhöhen Konditionierung beendet gesucht	-0,75-		
0,9	As		• • • •	-1=	07/15-50	07
	Zielleistung	Suche beenden erolinteelli		01110.00	Zeit	07.
ere Grenze P_R/P_F in dB	Konditionierung	Leistung P t	Leistung P f			
0,45	0 Druck	1,2E-8-	1,2E-8-			
scheidungswerte	30					
ruck; Grenze:	P r/P f; Grenze:	16-8-	16-8-			
=0 weniger P	P=0 weniger P	88-9-	88-9-			
1E-6	J <u>0,1</u>					
ruck; Grenze:	P r/P f; Grenze:	66-9-	66-9-			
eniger P. P=const	weniger P. P=const	4E-9 -	4E-9-		Temperaturen	
7E-7	-J0,07					131
ruck; Grenze:	P r/P f; Grenze:	22-9-	21-9-		T2 T12 T22	10
= const messen	P=const Zielleistung	0E+0-	0E+0-		0 0 0	0
J3E-7	0,03				T3 T13 T23	T33
eistung hoch	Twarnen	-22-9-0	-22-9-1	01:00:01	0 0 0	0
0,01	40	Laistung Da	Druck		T4 T14 T24	134
istung runter	T Kritisch	25 10-	JE OF		10 10 10 TS TIS TOS	0 T05
0,75	30		05.1-		0 0 0	0
L		1,56-10-	0011		T6 T16 T26	T36
Freq finden		1E-10-	06-1-		0 0 0	0
	Wiedemolungen	5E-11-	45-1-		T7 T17 T27	T37
Schritte his	g 4 Schrittweite	06+0-	2E-1-		0 0 0	0
Frequenz suchen	100k	-56-11-	0E+0-		18 118 128	T38
50	y	.1F.10-	-2E-1-		T9 T19 T29	10
			-4E-1-		0 0 0	0
		-1,32-10-	-6E-1-		T10 T20 T30) T40
Wolfgang Gosthe Lini	erritati labuine data 😁	-2E-10-	-8E-1-		0 0 0	0
Datai Kammanta	resident of the second se	-2,5E-10-	-1E+0-			
z valer kommentar		00:59:59 01:00:00 01:0	201 00:59:59 01:00:00	01:00:01		

High Power Tests / Conditioning

(from left to right: loop in original condition; strongly warmed loop; irreparable loop)

https://voc-vacuum.com/virtuelle-lecks/

A ceramic cup and a loop have suffered irreparable damage.

Navaridas, Javier & Pascual Saiz, Jose Antonio & Galarza, Julen & Romero, Txomin & Muñoz, Juan & Bustinduy, Ibon. (2024). On the parallelization of multipacting simulation codes for the design of particle accelerator components. The Journal of Supercomputing. 80. 1-22. 10.1007/s11227-024-05896-2.

GOETHE INTERNITAT INTERNITATION INTERNI ARTARI INTERNI INTERNI INTERNI INTERNI INTERNI INTERNITATION

- Conditioning is a time-consuming process
- Because of the high risk for cavity and used instruments, constant supervision is necessary
- No clear analytic description of effects happening
 → Conditioning needs a lot of experience and intuition
- Classic algorithms ineffective at conditioning
- But: Most of the time nothing happens
- → Costly and exhausting process
 → Automation desired

Machine Learning for Conditioning (ongoing PhD Thesis)

Final MYRRHA page

Current Setup for testing the MYRRHA-CH-Cavities:

- Up to 15 CH-Cavities
- Low-Level-Measrements
- High Power Tests / Conditioning
- Cage outside the Bunker
- Cavity is tested inside the Bunker
- First test of the Setup is currently running with the FRANZ-RFQ-Prototype

Thank you!

https://www.uni-frankfurt.de/159823517/LINAC_AG?