

Non-Equilibrium Phase Transitions and Critical Dynamics in QCD

Krabi, Thailand, 26 November 2024

Lorenz von Smekal with Mattis Harhoff, Johannes Roth, Leon Sieke, Yunxin Ye and Sören Schlichting

JHEP 10 (2023) 065; arXiv:2403.4573; arXiv:2409.14470 arXiv:2411.10266

Non-equilibrium Dynamics

UNIVERSITÄT GIESSEN

Phase Diagram

Strong-Interaction (QCD) Matter

- Non-Equilibrium, Closed-Time Path, Keldysh
- Open Quantum Systems and Classical Limit
- Non-Equilibrium Phase Transitions
- Dynamic Universality Classes
- Real-Time FRG for Critical Dynamics

U. C. Täuber, *Critical Dynamics: A Field Theory Approach to Equilibrium and Non-Equilibrium Scaling behavior*, Cambridge, 2014

• Keldysh rotation:

time orderedlesserKeldyshretarded $\begin{pmatrix} G^T(t,t') & G^{<}(t,t') \\ G^{>}(t,t') & G^{\widetilde{T}}(t,t') \end{pmatrix}$ \rightarrow $\begin{pmatrix} G^K(t,t') & G^R(t,t') \\ G^A(t,t') & 0 \end{pmatrix}$ greateranti time orderedadvanced• parametrize: $G^K = G^R \circ F - F \circ G^A$

distribution function (hermitian): $F(t,t') \longrightarrow F(t-t')$

 $S_0[\Phi] =$

• open quantum system:

plus interactions

 $\Phi = egin{pmatrix} arphi^c \ arphi^q \end{pmatrix}$

$$\int \! \frac{\mathrm{d}^4 p}{(2\pi)^4} \, \Phi^T(-\omega,\vec{p}) \begin{pmatrix} 0 & \omega^2 - \omega_p^2 - \Sigma_\mathrm{E}^A(\omega,\vec{p}) \\ \\ \omega^2 - \omega_p^2 - \Sigma_\mathrm{E}^R(\omega,\vec{p}) & \mathrm{i} \coth\left(\frac{\omega}{2T}\right) J_\mathrm{E}(\omega,\vec{p}) \end{pmatrix} \Phi(\omega,\vec{p}) \\ \end{pmatrix}$$

• (an-)harmonic oscillator in Ohmic bath:

$$J_{
m E}(\omega) \,=\, 2\gamma\omega\, heta(\Lambda-|\omega|)$$
 for $|\omega|\ll\Lambda$

• Caldeira-Leggett model:

$$S_0[\Phi] \,=\, \int_{-\infty}^\infty rac{\mathrm{d}\omega}{2\pi}\, \Phi^T(-\omega) egin{pmatrix} 0 & \omega^2 - \mathrm{i}\gamma\omega - \omega_0^2 \ \omega^2 + \mathrm{i}\gamma\omega - \omega_0^2 & 2\mathrm{i}\gamma\omega \coth\left(rac{\omega}{2T}
ight) \end{pmatrix} \Phi(\omega)$$

Classical Limit

• on Keldysh contour:

$$\varphi^{\pm} = \varphi^c \pm \frac{\hbar}{\varphi} \varphi^q$$

• equilibrium distribution function:

 $\hbar \omega \ll T$

Rayleigh-Jeans limit

• Keldysh action:

$$\begin{split} S_{0}[\Phi] \rightarrow & \text{with interactions: } \omega_{0}^{2}\varphi^{c} \rightarrow V'(\varphi^{c}), \text{ classical force} \\ \frac{1}{\hbar} \int_{-\infty}^{\infty} \frac{\mathrm{d}\omega}{2\pi} \left(\varphi^{c}, \hbar \varphi^{q}\right) \begin{pmatrix} 0 & \omega^{2} - \mathrm{i}\gamma\omega - \omega_{0}^{2} \\ \omega^{2} + \mathrm{i}\gamma\omega - \omega_{0}^{2} & 4\mathrm{i}\gamma\frac{T}{\hbar} \end{pmatrix} \begin{pmatrix} \varphi^{c} \\ \hbar \varphi^{q} \end{pmatrix} \\ & = \int \mathrm{d}t \left\{ 2\varphi^{q} \left(- \ddot{\varphi}^{c} - \gamma \dot{\varphi}^{c} - V'(\varphi^{c}) \right) + 4\mathrm{i}\gamma T \left(\varphi^{q}\right)^{2} \right\} \end{split}$$

classical Martin-Siggia-Rose (MSR) action

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

dissipative equation of motion:

• replace potential by Landau-Ginzburg-Wilson functional:

$$F[arphi] = \int \mathrm{d}^d x \, \left\{ rac{1}{2} (ec
abla arphi)^2 + V(arphi)
ight\}$$

• dissipative equation of motion:

$$\partial_t^2 \varphi + \gamma \partial_t \varphi = -\frac{\delta F}{\delta \varphi} + \xi(x)$$

or $\mathbf{1}^{\text{st}}$ order form

 $\partial_t \varphi = \pi$

$$\partial_t \pi = -\gamma \pi - rac{\delta F}{\delta \varphi} + \xi(x)$$

• stochastic force:

$$ig\langle \xi(x)\xi(x')ig
angle \,=\, 2\gamma T\,\delta(x-x')$$

• spectral functions from classical FDR:

$$ho(t,ec x) = -rac{1}{T}\,\partial_tig\langle arphi(t,ec x)arphi(0,0)ig
angle \ = -rac{1}{T}\,ig\langle \pi(t,ec x)arphi(0,0)ig
angle$$

for statics, with Z₂ SSB

obtain universal dynamic scaling functions

Schlichting, Smith, LvS, NPB 950 (2020) 114868 Schweitzer, Schlichting, LvS, NPB 960 (2020) 115165; NPB 984 (2022) 115944

JUSTUS-LIEBIG-

🗐 UNIVERSITÄT

GIESSEN

• susceptibility, skewness, kurtosis:

CRC-TR 211 Non-Equilibrium Finite-Size Scaling

November 2024 | Lorenz von Smekal | p. 14

Kibble-Zurek Scaling

• allows accurately determining dynamic critical exponent *z*

d = 2

z	d=2	d=3
KZ scaling	2.142(49)	1.949(54)
Crit. SFs	$2.10(4)^{1}$	$1.92(11)^{1}$
Monte Carlo	$2.1667(5)^2$	$2.0245(15)^3$
ϵ expansion	$2.14(2)^4$	$2.0236(8)^4$
FRG	2.15 ⁵	2.024 ⁵
Experiment	2.09(6) (95% confidence) ⁶	$1.96(11)^{7}$

Sieke, Harhoff, Schlichting, LvS, arXiv:2411.10266

obtain from
$$J(M=0)\sim r_J^{1/\left(1+rac{
u z}{eta\delta}
ight)}$$
not necessary to know Kibble-Zurek time

¹Schweitzer, Schlichting, LvS (2020); ²Nightingale, Blöte (2000); ³Hasenbusch (2020);
 ⁴Adzhemyan et al. (2022); ⁵Duclut, Delamotte (2017); ⁶Dunlavy, Venus (2005); ⁴Livet et al. (2018)

HFHF

Dynamic Universality Classes

• classified as Model A, B, C,... — Model J

Hohenberg, Halperin (1977)

• describe full set of critical/hydrodynamic modes

order parameter, Goldstone modes, conserved charges, reversible mode couplings

• critical dynamics in QCD:

- chiral phase transition: Model G Rajagopal, Wilczek (1993)
 - classical-statistical: Florio, Grossi, Soloviev, Teaney, PRD 105 (2022) 054512
 Florio, Grossi, Teaney, PRD 109 (2024) 054037
 FRG: Roth, Ye, Schlichting, LvS, arXiv:2403.04573
- QCD critical point: Model H Son, Stephanov (2004)
 - classical-statistical:Chattopadhyay, Ott, Schaefer, Skokov, PRL 133 (2024) 032301FRG:Chen, Tan, Fu, arXiv:2406.00679Roth, Ye, Schlichting, LvS, arXiv:2409.14470

• Landau-Ginzburg-Wilson functional:

$$F[arphi] = \int \mathrm{d}^d x \, \left\{ rac{1}{2} (ec
abla arphi)^2 + V(arphi)
ight\}$$

for statics, with Z₂ SSB

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

• Langevin dynamics:

$$\partial_t^2 arphi + \gamma \partial_t arphi = -rac{\delta F}{\delta arphi} + \xi$$

• no conservation laws

Gaussian white noise

FRG: Canet, Chate, J. Phys. A 40 (2007) 1937,
Canet, Chate, Delamotte, J. Phys. A 44 (2011) 495001
Duclut, Delamotte, PRE 95 (2017) 012107
Roth, LvS, JHEP 10 (2023) 065
Batini, Grossi, Wink, PRD 108 (2023) 125021

CRC-TR 211

• LGW functional:

$$F[arphi,n] = \int \mathrm{d}^d x \, \left\{ rac{1}{2} (ec
abla arphi)^2 + V(arphi) \,\, + B \, arphi n \,\, + rac{n^2}{2\chi_n} \,
ight\}$$

• equations of motion:

(chiral) order parameter

$$\partial_t^2 \varphi + \gamma \partial_t \varphi = -\frac{\delta F}{\delta \varphi} + \xi(x)$$

$$\tau_R \partial_t^2 n + \partial_t n = \bar{\lambda} \vec{\nabla}^2 \frac{\delta F}{\delta n} + \vec{\nabla} \cdot \vec{\zeta}(x)$$

with linear coupling B to conserved (baryon) density n(x) (non-critical)

$$\xi(x)\xi(x')\rangle_{\beta} = 2\gamma T\delta(x-x')$$

 $\langle \zeta^i(x)\zeta^j(x')\rangle_\beta = 2\bar{\lambda}T\delta^{ij}\delta(x-x')$

conserved (baryon) density

slow critical mode diffusive

FRG: Roth, LvS, JHEP 10 (2023) 065

Berdnikov, Rajagobal, PRD 62 (2000) 105017

JUSTUS-LIEBIGERC-TR 2

📻 UNIVERSITÄT

GIESSEN

• LGW functional:

$$F[arphi,n] = \int \mathrm{d}^d x \; \Big\{ rac{1}{2} (ec{
abla} arphi)^2 + V(arphi) \; + rac{g}{2} arphi^2 n \; + rac{n^2}{2\chi_n} \, \Big\}$$

• equations of motion:

(chiral) order parameter

with quadratic coupling g to conserved (energy) density n(x)

$$\partial_t^2 \varphi + \gamma \partial_t \varphi = -\frac{\delta F}{\delta \varphi} + \xi(x)$$

$$\tau_R \partial_t^2 n + \partial_t n = \bar{\lambda} \vec{\nabla}^2 \frac{\delta F}{\delta n} + \vec{\nabla} \cdot \vec{\zeta}(x)$$

$$\langle \xi(x)\xi(x')\rangle_{\beta} = 2\gamma T\delta(x-x')$$

$$\langle \zeta^i(x)\zeta^j(x')\rangle_\beta = 2\bar{\lambda}T\delta^{ij}\delta(x-x')$$

FRG: Mesterházy, Stockemer, Palhares, Berges, PRB 88 (2013) 174301 Roth, LvS, JHEP 10 (2023) 065

Dynamic Universality Classes

• LGW functional:

CRC-TR 211

now static O(4) universality

Model G

z = d/2

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

$$F[\phi,n] = \int \mathrm{d}^d x \left\{ \frac{1}{2} (\partial^i \phi_a) (\partial^i \phi_a) + \frac{m^2}{2} \phi_a \phi_a + \frac{\lambda}{4!N} (\phi_a \phi_a)^2 + \frac{1}{4\chi_n} n_{ab} n_{ab} \right\}$$

• equations of motion:

(chiral) order parameter

with conserved iso-vector and iso-axialvector charge densities

conserved O(4) densities

aka: SSS Model Sasvári, Schwabl, Szépfalusy, Physica A 81 (1975) 108

С	
Γ.	

Critical Spectral Functions

CRC-TR 211

Critical Dynamics

• strong-scaling hypothesis:

in *d* spatial dimensions (SSS Model)

• MSR action:

$$z_{\phi}=z_n=rac{d}{2}$$

Model G *z* = *d*/2

Sásvari, Schwabl, Szépfalusy, Physica A **81** (1975) 108 Rajagopal, Wilczek, Nucl. Phys. B **399** (1993) 395

$$\begin{split} S &= \int_{x} \left[-\tilde{\phi}_{a} \left(\frac{\partial \phi_{a}}{\partial t} + \Gamma_{0} \frac{\delta F}{\delta \phi_{a}} - \frac{g}{2} \{\phi_{a}, n_{bc}\} \frac{\delta F}{\delta n_{bc}} \right) \\ &- \frac{1}{2} \tilde{n}_{ab} \left(\frac{\partial n_{ab}}{\partial t} - \gamma \nabla^{2} \frac{\delta F}{\delta n_{ab}} - g\{n_{ab}, \phi_{c}\} \frac{\delta F}{\delta \phi_{c}} - \frac{g}{2} \{n_{ab}, n_{cd}\} \frac{\delta F}{\delta n_{cd}} \right) \\ &+ i T \tilde{\phi}_{a} \Gamma_{0} \tilde{\phi}_{a} - \frac{1}{2} i T \tilde{n}_{ab} \gamma \nabla^{2} \tilde{n}_{ab} \right] \end{split}$$

- symmetries: charge conservation
 - thermal equilibrium symmetry
 - temporal (non-Abelian) gauge symmetry
 - BRST symmetry Canet, Delamotte, Wschebor, PRE 93 (2016) 6, 063101 Crossley, Glorioso, Liu, JHEP 09 (2017) 095

Critical Dynamics

• add regulators to LGW functional:

$$F \to F + \frac{1}{2} \int_{\boldsymbol{x}\boldsymbol{y}} \left(\phi_a(\boldsymbol{x}) R_k^{\phi}(\boldsymbol{x}, \boldsymbol{y}) \phi_a(\boldsymbol{y}) + \frac{1}{2} n_{ab}(\boldsymbol{x}) R_k^n(\boldsymbol{x}, \boldsymbol{y}) n_{ab}(\boldsymbol{y}) \right)$$

Model G
$$z = d/2$$

 \rightsquigarrow regulators necessarily cubic in fields

• Ansatz for effective average action:

Ward identity:

$$\begin{split} \Gamma_{k} &= \int_{x} \left[-\tilde{\phi}_{a,k} \left(Z_{\phi,k}^{\omega} \frac{\partial \phi_{a}}{\partial t} + \gamma_{\phi,k}(\boldsymbol{\nabla}) \frac{\delta F_{k}}{\delta \phi_{a}} - \frac{g_{k}^{\phi n}}{2} \{\phi_{a}, n_{bc}\} \frac{\delta F_{k}}{\delta n_{bc}} \right) \qquad g_{k}^{\phi n} = g_{k}^{n\phi} = g_{k}^{n\phi} = g_{k}^{nn} = g_{k}^{n\phi} = g_{k}^{n\phi}$$

charge diffusion coefficient

strong scaling

Roth, Ye, Schlichting, LvS, arXiv:2403.04573

Dynamic Scaling Relations

JUSTUS-LIEBIG-UNIVERSITAT GIESSEN

CRC-TR 211

• real-time methods for non-equilibrium phase transitions

- compute universal non-equilibrium scaling functions
- determine non-equilibrium scaling regions

real-time FRG for critical dynamics

- quantify universal aspects of QCD chiral dynamics and critical point, Model G and Model H
- determine universal dynamic scaling functions and dynamic scaling regions

Thank you for your attention!

