Quarkonium dynamics: From quantum to semiclassical description

Pol B Gossiaux, SUBATECH (NANTES)

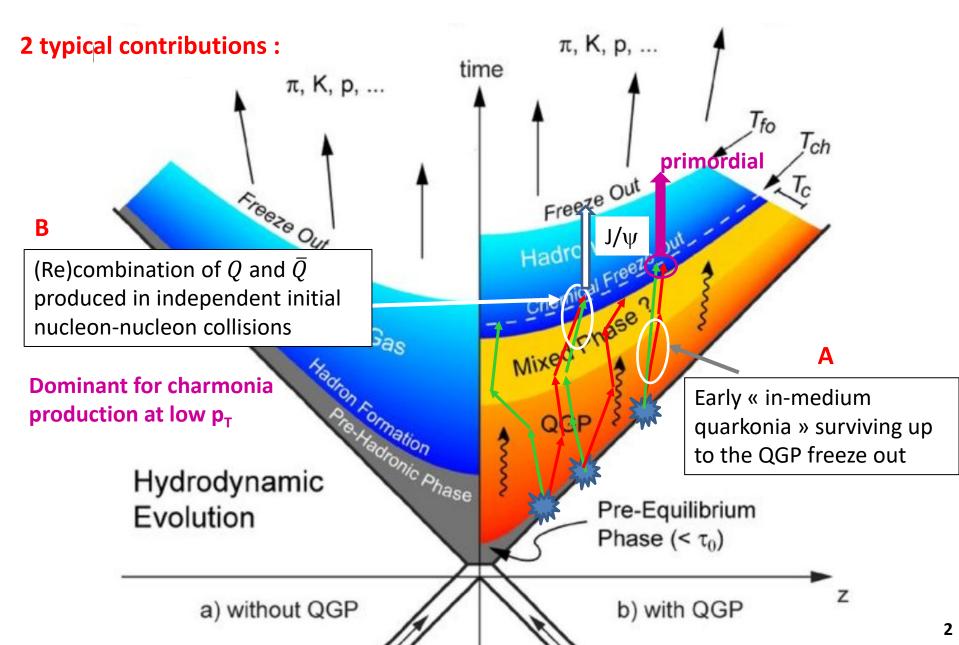
Xth NED

November 2024 Krabi (Thailand)

and Pays de la Loire

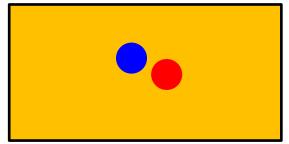
Nantes Université

Probing URHIC with quarkonia production



Regeneration: Dilute vs Dense

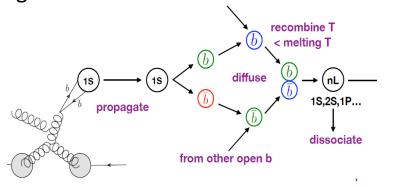
Bottomia (single pair)



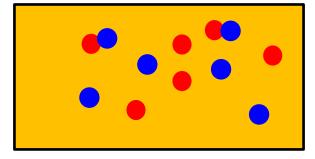
No exogenous recombination : only the bbbar pairs which are initially close together will emerge as bottomia states.

Full quantum treatment affordable

N.B.: In some SC formalisms : intermediate regeneration

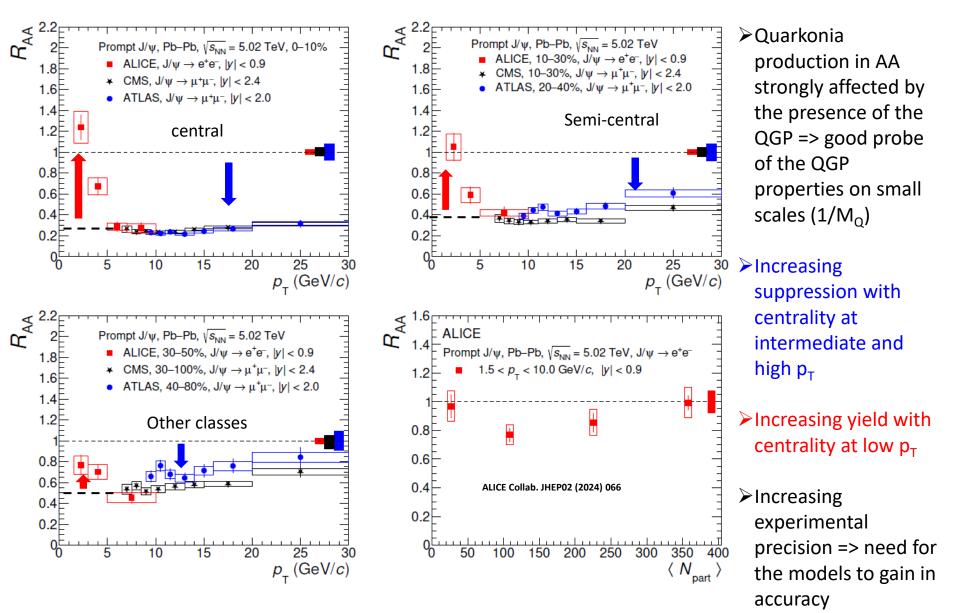


Charmonia (many pairs)



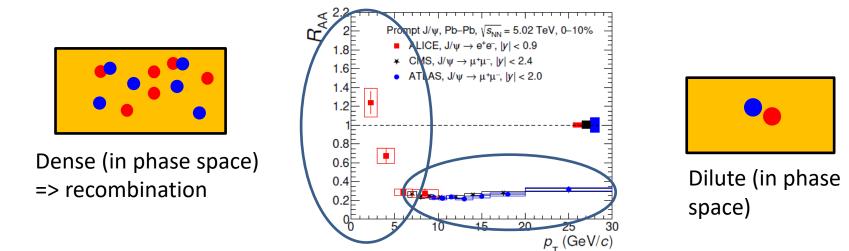
Exogenous recombination : c & cbar initially far from each other may recombine and emerge as charmonia states

What experiment tells us

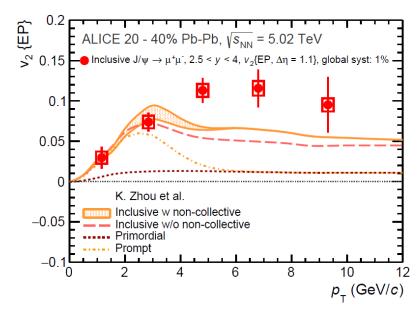


What experiment tells us

ALICE Collab. JHEP02 (2024)

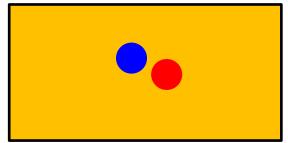


Alternate possible explanation : p_T -dependent absorption cross section : not excluded, but not favored by the finite v_2 observed for J/ ψ by ALICE



Regeneration: Dilute vs Dense

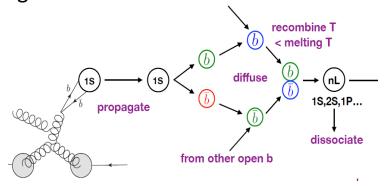
Bottomia (single pair)



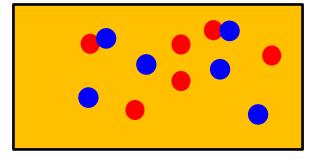
No exogenous recombination : only the bbbar pairs which are initially close together will emerge as bottomia states.

Full quantum treatment affordable

N.B.: In some SC formalisms : intermediate regeneration



Charmonia (many pairs)

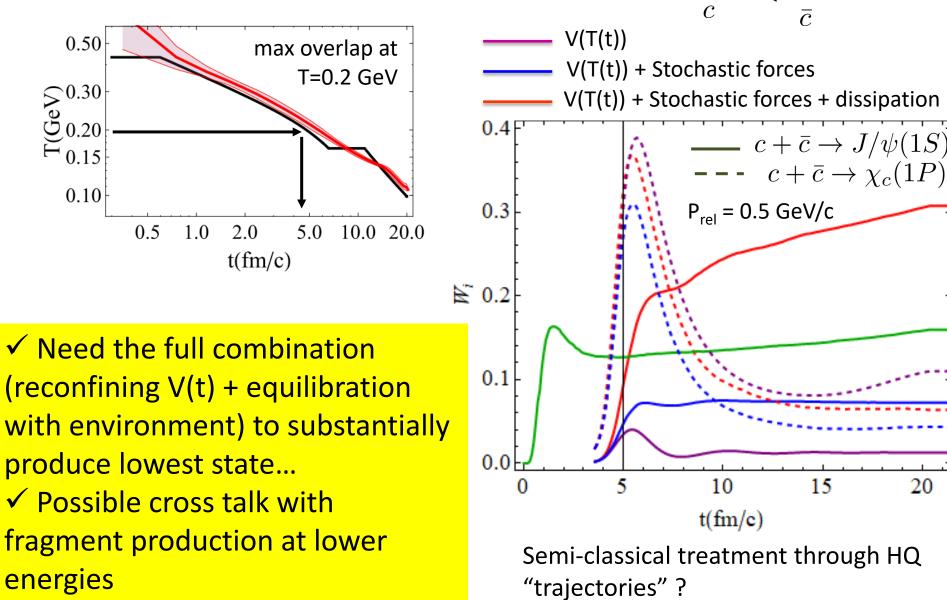


Exogenous recombination : c & cbar initially far from each other may recombine and emerge as charmonia states

No full quantum treatment possible ... but some inspiration from simpler situations...

Yao, Mehen, Müller (2019)

Stochastic Langevin Equation in *evolving QGP*



Quarkonia in a microscopic theory

Frankfurt-Nantes Approach

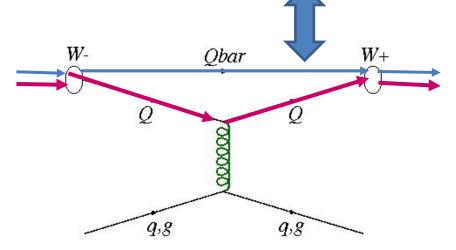
Remler formalism at w

Gossiaux, NED 2022 Combining the expression of the Wigner's functions and substituting in the effective rate equation :

 $\Gamma^{\Psi}(t) = \sum_{i=1,2} \sum_{j>3} \delta(t-t_{ij}) \int \frac{d^3 p_i d^3 x_i}{h^3} W^{\Psi}_{Q\bar{Q}}(p_1, x_1; p_2, x_2) \left[W_N(t+\epsilon) - W_N(t-\epsilon) \right]$

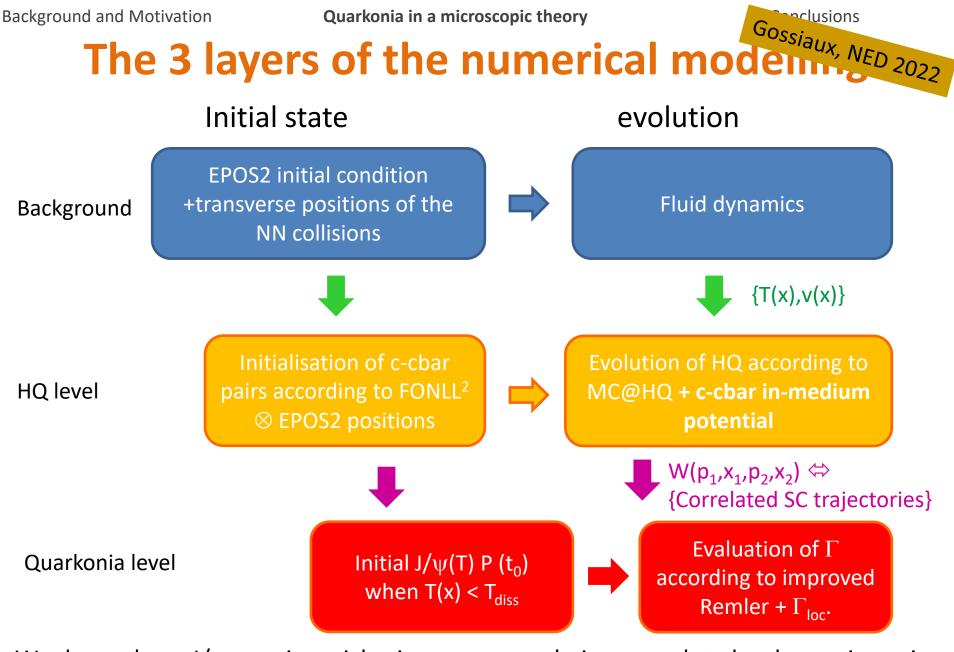
- The quarkonia production in this model is a three body process; the HQs interact only by collisions with the QGP !!!
- The "details" of H_{int} between HQ and bulk partons are incorporated into the evolution of W_N after each collision / time step (nice feature for the MC simulations)
- $W_N(t+\varepsilon)$ and $W_N(t-\varepsilon)$ are NOT the equivalent of gain and loss terms in usual rate equations
- Dissociation and recombination treated in the same scheme

Then:
$$P^{\Psi}(t) = P^{\Psi}(t_0) + \int_{t_0}^t \Gamma(t') dt'$$



Interaction of HQ with the QGP are carried out by EPOS2+MC@HQ (good results for D and B mesons) production)

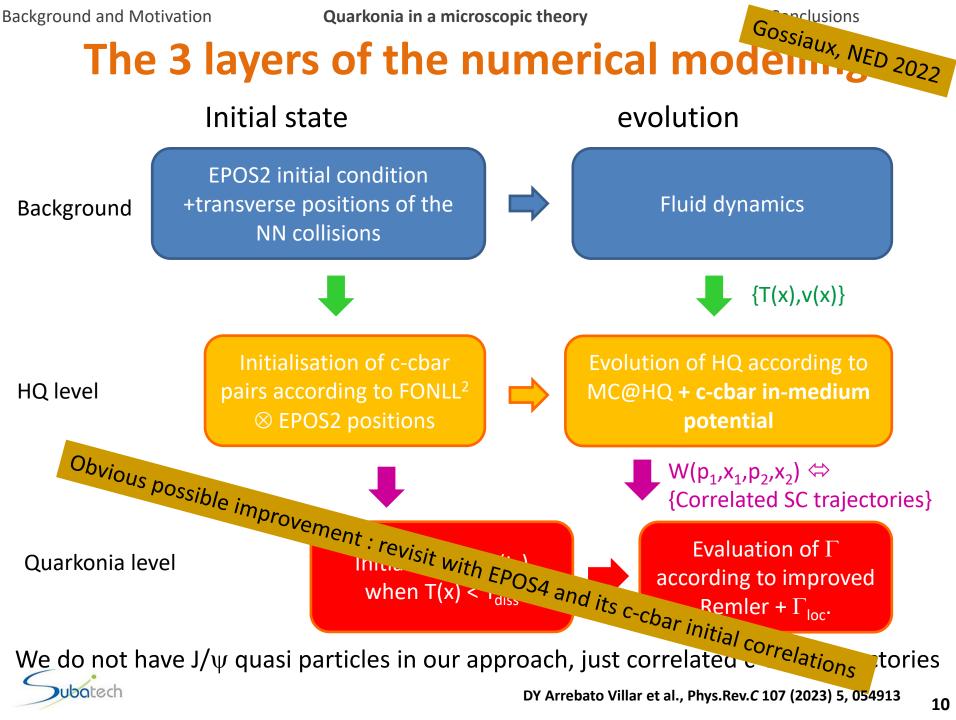
NB: Also possible to generate similar relations for differential rates



We do not have J/ ψ quasi particles in our approach, just correlated c-cbar trajectories

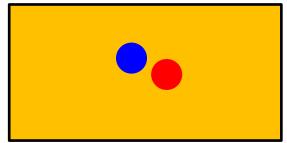
ubatech

DY Arrebato Villar et al., Phys.Rev.C 107 (2023) 5, 054913



Regeneration: Dilute vs Dense

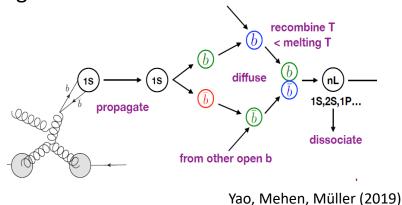
Bottomia (single pair)



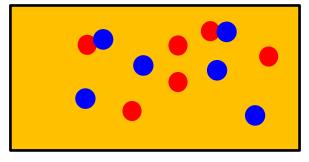
No exogenous recombination : only the bbbar pairs which are initially close together will emerge as bottomia states.

Full quantum treatment affordable

N.B.: In some SC formalisms : intermediate regeneration



Charmonia (many pairs)



Exogenous recombination : c & cbar initially far from each other may recombine and emerge as charmonia states

No full quantum treatment possible => semiclassical approximation (to be specified later)

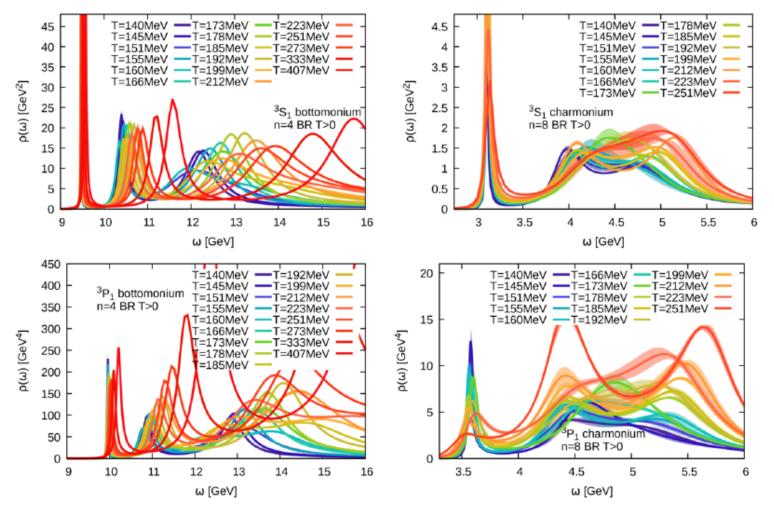
Level of accuracy ?

Structure of the talk

- Solve the quantum problem in a "simple" situation (single pair)
- 2. Use this solution to benchmark the semi-classical approximation

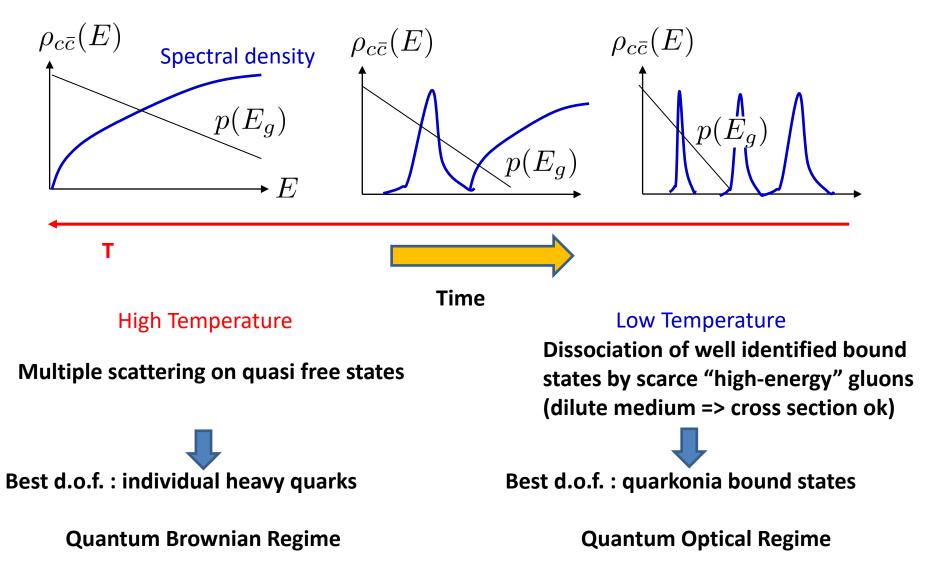
What is a quarkonia at finite T?

Kim et al, JHEP11(2018)088



Rich structure : broadening and mass shift. What are the underlying "ingredients"? ? a) Screened real potential and b) inelastic interactions with the QGP

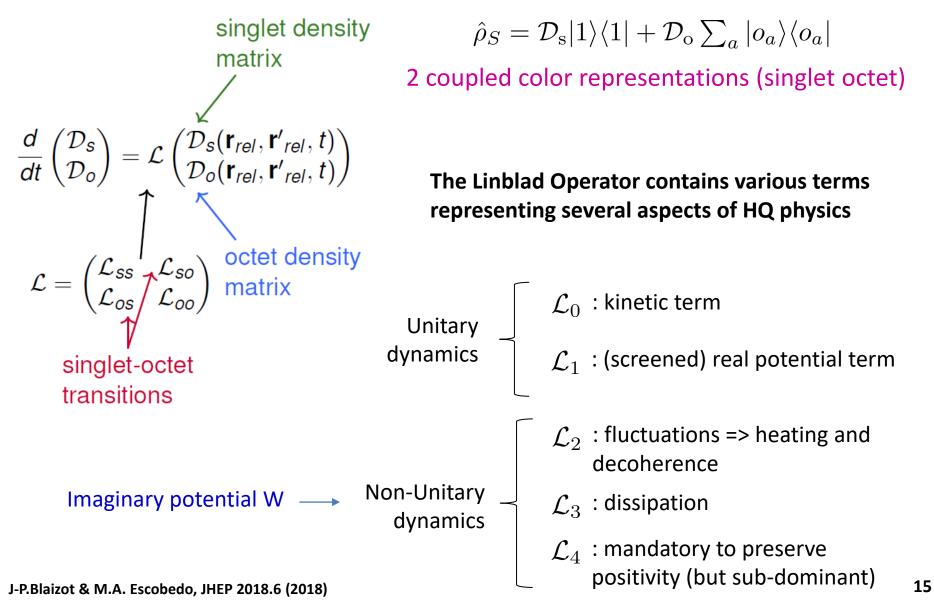
Two clear regimes



Quantum Master Equations

environment Quite generally, the system builds correlation with the $\hat{H} = \hat{H}_{S}^{(0)} + \hat{H}_{E} + \hat{H}_{int}$ environment thanks to the Hamiltonian Von Neumann equation for the total density operator $\hat{\rho}$ System + environment $\frac{d\hat{
ho}}{dt} = -i[\hat{H},\hat{
ho}]$ Evolution of the total system $\hat{\rho}(t=0) = \hat{\rho}_S(t=0) \otimes \hat{\rho}_E$ $\hat{\rho}(t) = \hat{U}(t,0) \left[\hat{\rho}_S(t=0) \otimes \hat{\rho}_E \right] \hat{U}^{\dagger}(t,0)$ Trace out environment degrees of freedom => Reduced density operator $\hat{
ho}_S^{
m red}$ Evolution of the system System $\hat{\rho}_{S}^{\text{red}}(t=0) = \hat{\rho}_{S}(t=0)$ $\hat{\rho}_{S}^{\text{red}}(t) = \operatorname{tr}_{E} \left[\hat{U}(t,0) \left[\hat{\rho}_{S}(t=0) \otimes \hat{\rho}_{E} \right] \hat{U}^{\dagger}(t,0) \right]$ Evol. eq. on the red. Density: $\frac{d\hat{\rho}_S^{red}}{dt} = \mathcal{L}[\hat{\rho}_S^{red}]$ (linear mapping) However, $\mathcal{L}[\cdot]$ is generically a non local super-operator in time

Non abelian Quantum Master Equation for a $Q\overline{Q}$ pair



Sketch of the appearance of an imaginary part to V

$$\frac{d}{dt}\hat{\rho}_S^{\text{red}}(t) = -i[\hat{H}_S^{(0)}, \hat{\rho}_S^{\text{red}}] + \sum_i \gamma_i \left[\hat{L}_i\hat{\rho}_S^{\text{red}}\hat{L}_i^{\dagger} - \frac{1}{2}\left(\hat{L}_i^{\dagger}\hat{L}_i\hat{\rho}_S^{\text{red}} + \hat{\rho}_S^{\text{red}}\hat{L}_i^{\dagger}\hat{L}_i\right)\right]$$

$$\hat{H} = \hat{H}_S + \hat{H}_{\rm sto}$$

$$\frac{d\hat{\rho}}{dt} = -i[\hat{H}, \hat{\rho}] \implies \hat{\rho}(t + dt) = \hat{\rho}(t) + dt \frac{d\hat{\rho}}{dt} + \frac{dt^2}{2} \frac{d^2\hat{\rho}}{dt^2}$$

0 stochastic average

At 2nd order :
$$\frac{d^2\hat{\rho}}{dt^2} = \frac{1}{\hbar^2} \left(2\hat{H}_{\rm sto}\hat{\rho}\hat{H}_{\rm sto} - \hat{H}_{\rm sto}^2\hat{\rho} - \hat{\rho}\hat{H}_{\rm sto}^2 \right)$$

$$\frac{d^2 \langle x | \hat{\bar{\rho}} | x' \rangle}{dt^2} = \frac{1}{\hbar^2} \left(2\hat{H}_{\rm sto}(x) \langle x | \hat{\rho} | x' \rangle \hat{H}_{\rm sto}(x') - \hat{H}_{\rm sto}^2(x) \langle x | \hat{\rho} | x' \rangle - \langle x | \hat{\rho} | x' \rangle \hat{H}_{\rm sto}^2(x') \right)$$

$$W(x - x')/dt \qquad W(x - x)/dt \qquad W(x' - x')/dt$$

$$\frac{d\rho(x,x')}{dt} = \dots - 2\underbrace{\left(W(x-x')-W(0)\right)}_{\Gamma(x-x')}\rho(x,x')$$
16

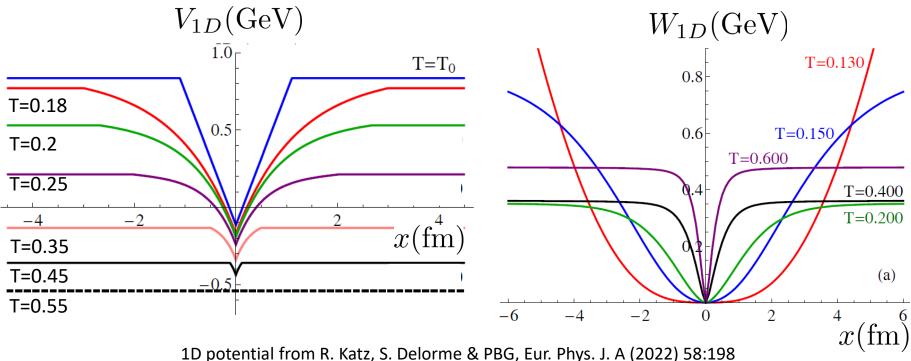
Further implementation features

 \succ 1D grid for both $s \in [-s_{\max}, +s_{\max}]$ and $s' \in [-s_{\max}, +s_{\max}]$

!!! Not the radial decomposition of $\mathcal{D}_{car{c}}(ec{s},ec{s}')$ which is more cumbersome

Even states will be considered as « S like » while odd states will be considered as « P like » states

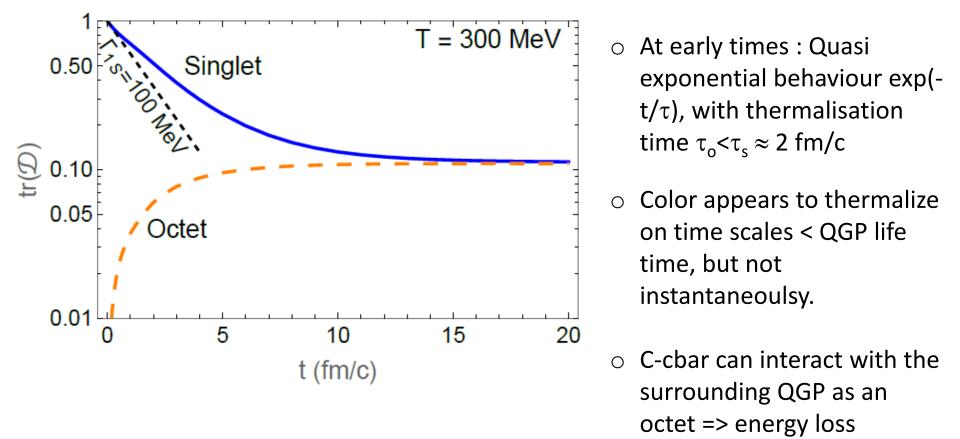
Need to design a realistic 1D bona fide potential V + i W (based on 3D IQCD results, tuned to reproduce 3D mass spectra and decay widths)



Some selected results for 1 $c\overline{c}$ pair

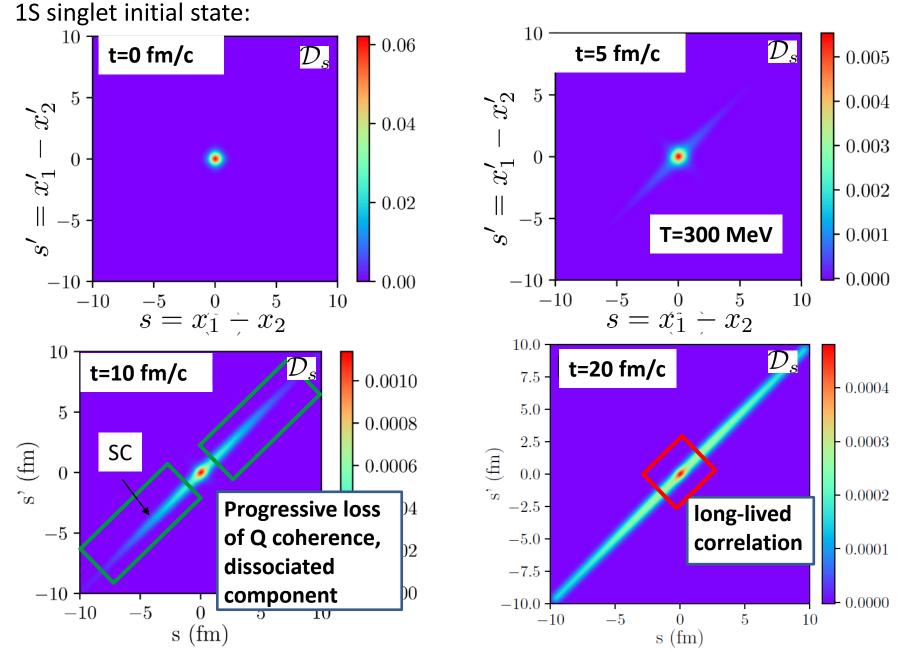
<u>Color Dynamics</u> : Singlet – octet probabilities:

Starting from a singlet 1S-like, one expects some equilibration / thermalisation -> asymptotic values : $D_{s}^{eq} = D_{o}^{eq} = \frac{1}{q}$ $(1+8) \times \frac{1}{q}$



S.Delorme et al. JHEP 06 (2024) 060

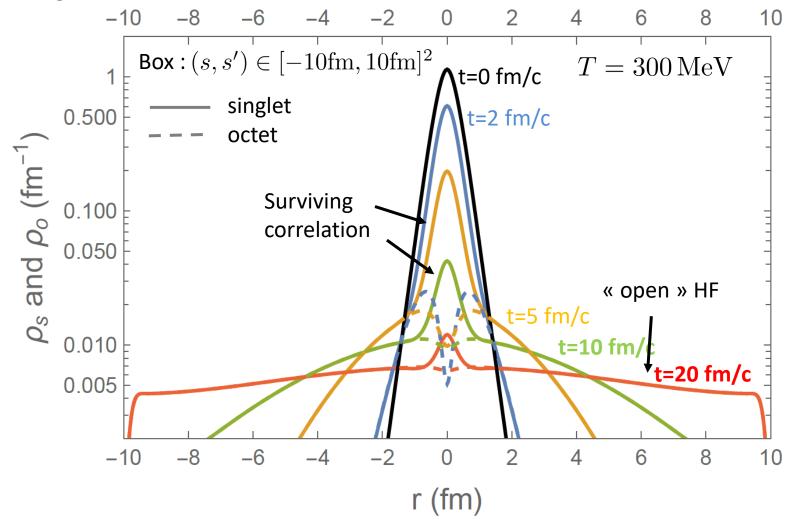
Evolution of the Density matrix



19

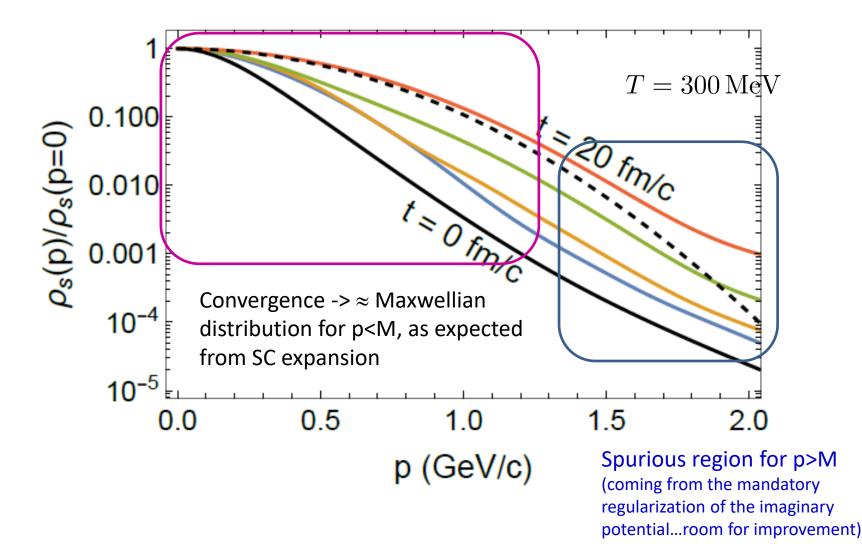
Evolution of the spatial density

1S singlet initial state:



Some c-cbar stay at intermediate distance ("recombination") ... remaining peak in the asymptotic distribution

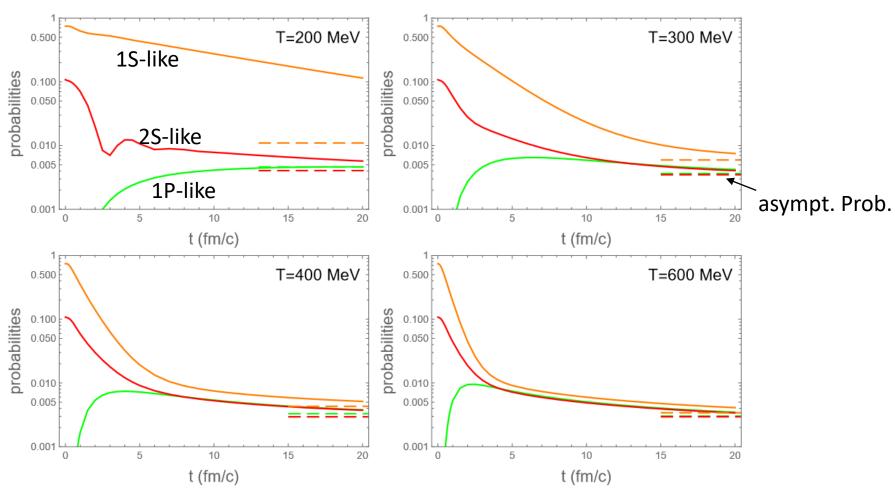
Evolution of the momentum density



Mostly sensitive to the distribution at large relative distance (individual c quarks)

Results for projection on vacuum states

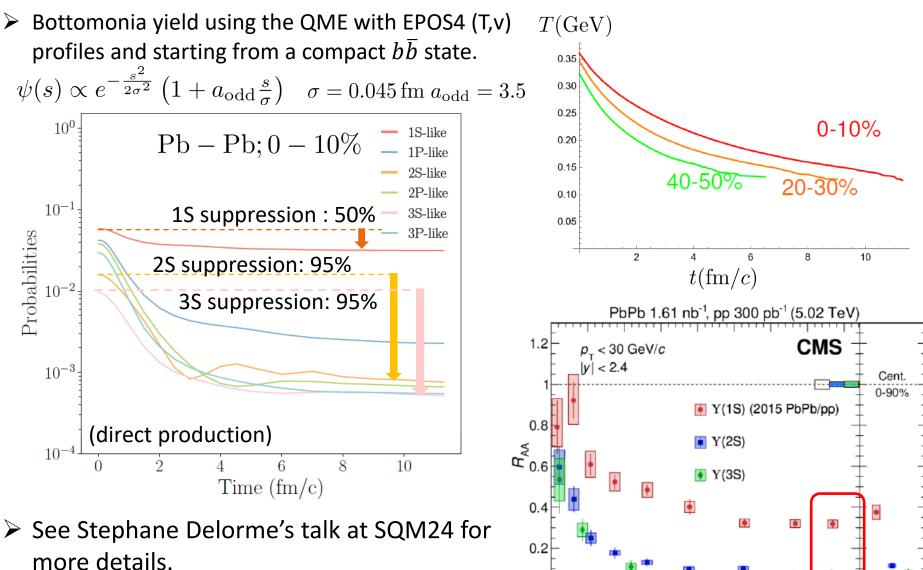
Starting from a compact S-like state : $\psi(s) \propto e^{-\frac{s^2}{2\sigma^2}}$ $\sigma = 0.165 \, \text{fm}$ $p_{\Phi} = \text{tr}(\mathcal{D}_s D_{\Phi})$



Natural evolution for 1S-like suppression, from low to high T

> 2S state do not decay $\alpha e^{-\Gamma_2 st}$ at early time... partly driven by the ground state at later time.

Contact with experiment $(b\overline{b})$



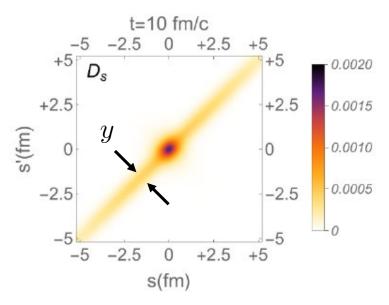
(N_{part}

... and now, we will consider the semi-classical evolution of the lowest $Q\overline{Q}$ bound state

... and now, we will consider the semi-classical evolution of the lowest $Q \overline{Q}$ bound state

SC = limit of small $\hbar \iff$ large action of the system... ok for ground state ?

• For the relative motion (2 body): $\vec{s} = \vec{x}_1$



$$\left. \begin{array}{c} s = x_1 - x_2 \\ \vec{s}' = \vec{x}'_1 - \vec{x}'_2 \end{array} \right\} \quad \vec{r} = \frac{\vec{s} + \vec{s}'}{2} \quad \text{and} \quad \vec{y} = \vec{s} - \vec{s}'$$

$$\frac{d}{dt}\mathcal{D}(r,y) = \mathcal{L}\mathcal{D}(r,y)$$

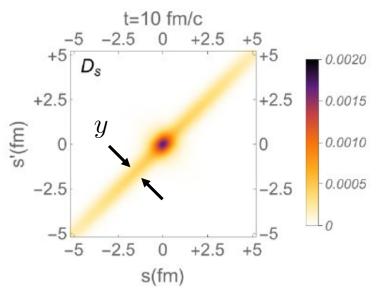
Near thermal equilibrium, Density operator is nearly diagonal => **semi-classical expansion** of the Linblad equation: power series in *y* up to 2nd order)

- Wigner transform : $\mathcal{D}(\vec{r}, \vec{y}) \to W(\vec{r}, \vec{p})$ and $\{\vec{y}, \nabla_y\} \to \{\nabla_p, \vec{p}\}$
- => Usual Fokker Planck equation :

$$\frac{\partial W}{\partial t} = \left[-\frac{2\vec{p}\cdot\nabla_r}{M} - \nabla_r V \cdot \nabla_p + \frac{\eta(r)}{2}\nabla_p^2 + \frac{\gamma(r)}{M}\nabla_p \cdot \vec{p} \right] W$$

• Easy MC implementation + generalization for N body system (c-cbar @ LHC)

• For the relative motion (2 body): $\vec{s} =$



$$\vec{s} = x_1 - x_2 \\ \vec{s}' = \vec{x}'_1 - \vec{x}'_2 \quad \vec{r} = \frac{\vec{s} + \vec{s}'}{2} \text{ and } \vec{y} = \vec{s} - \vec{s}'$$

$$\frac{d}{dt}\mathcal{D}(r,y) = \mathcal{L}\mathcal{D}(r,y)$$

Near thermal equilibrium, Density operator is nearly diagonal => **semi-classical expansion** of the Linblad equation: power series in y up to 2nd order)

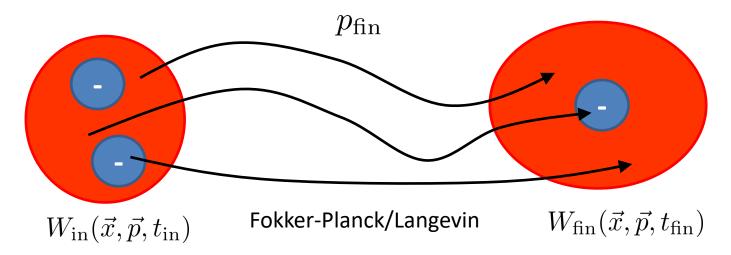
- When / why does it work ?
 - \circ ~ The unitary term : $~\mathcal{L}_1[
 ho]=[V,
 ho]=
 ho(s,s')(V(s)-V(s'))=V'(r)y+\mathcal{O}(y^3)$

Wigner-Moyal expansion, valid when y << variation scale of the real potential

• The interaction with the environment : L₂ $\Gamma(y)\rho(s,s') \approx \Gamma''(0)y^2 \times \left(1 + \mathcal{O}(y^2m_D^2)\right)\rho(s,s')$ $\Gamma''(0)\partial_p^2 W(r,p) \approx \frac{T}{m_Q} \ll 1 \quad \text{Classical noise}$

Quantum vs SC dynamics

SCA : linear mapping



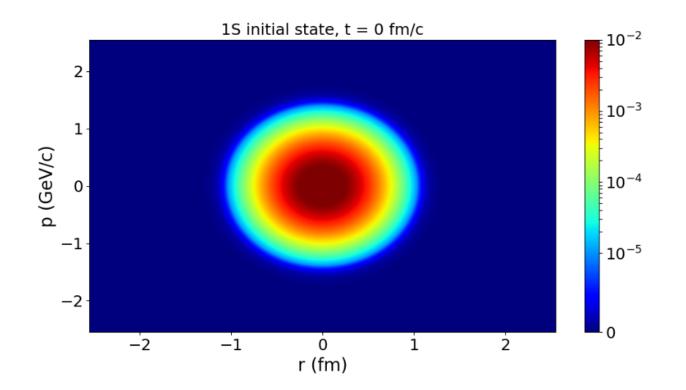
Always positive defined even if W_{in} and W_{fin} are not positive defined

- Several aspects :
 - o Temperature
 - Initial state
 - Property considered

In the following : only a limited set of results; manuscript to come soon

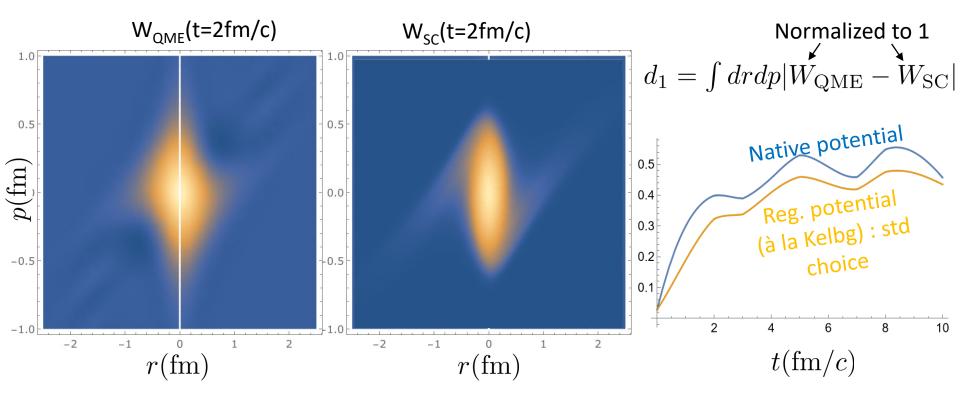
Concrete implementation

- 1D (same as for the QME), $1 c\overline{c}$ pair
- Same real potential, W in the QME $\Leftrightarrow \eta$ and γ in the FP
- Abelian case (for the time, not clear how to deal with the singlet <-> octet transition in a semiclassical approach)
- Yet, not trivial...
- Initial state vacuum 1S state : $\psi(s) \propto e^{-rac{s^2}{2\sigma^2}}$ $\sigma = 0.38\,{
 m fm}$



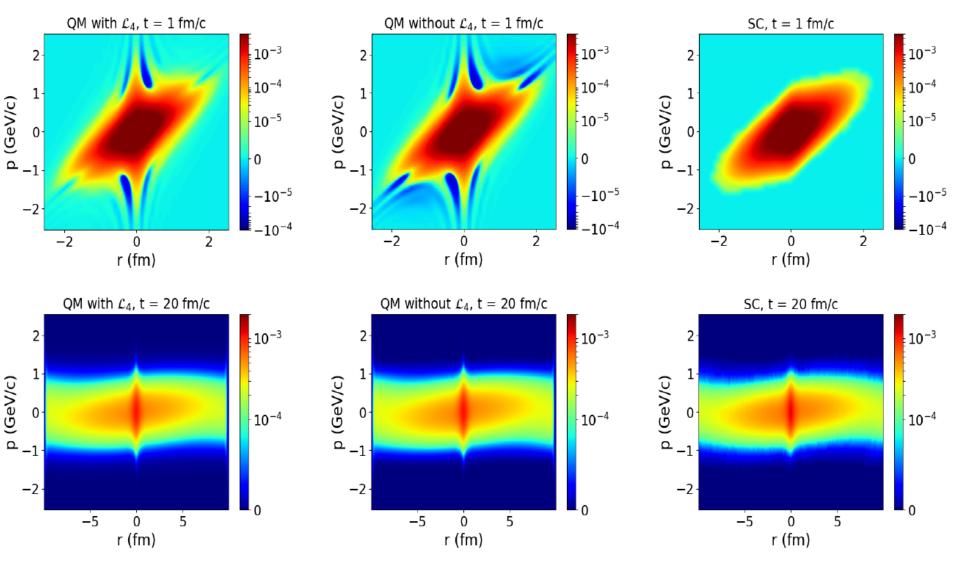
Unitary evolution

Unitary \Leftrightarrow no fluctuation and dissipation by coupling with the QGP evolution of a vacuum 1S state in a screened V (T=200MeV) ... still some evolution $H(T)|\psi\rangle_0 \neq E|\psi_0\rangle$



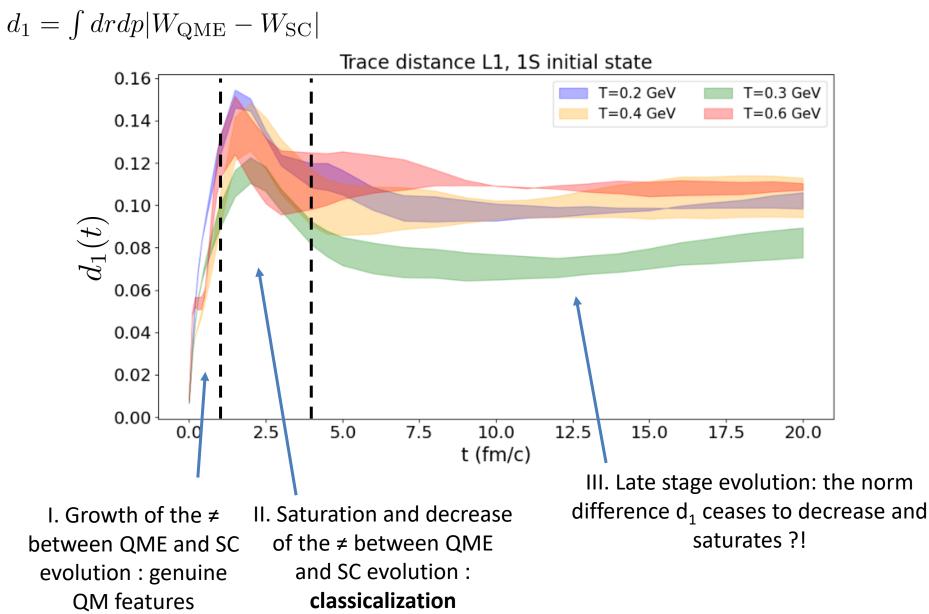
Non-unitary evolution

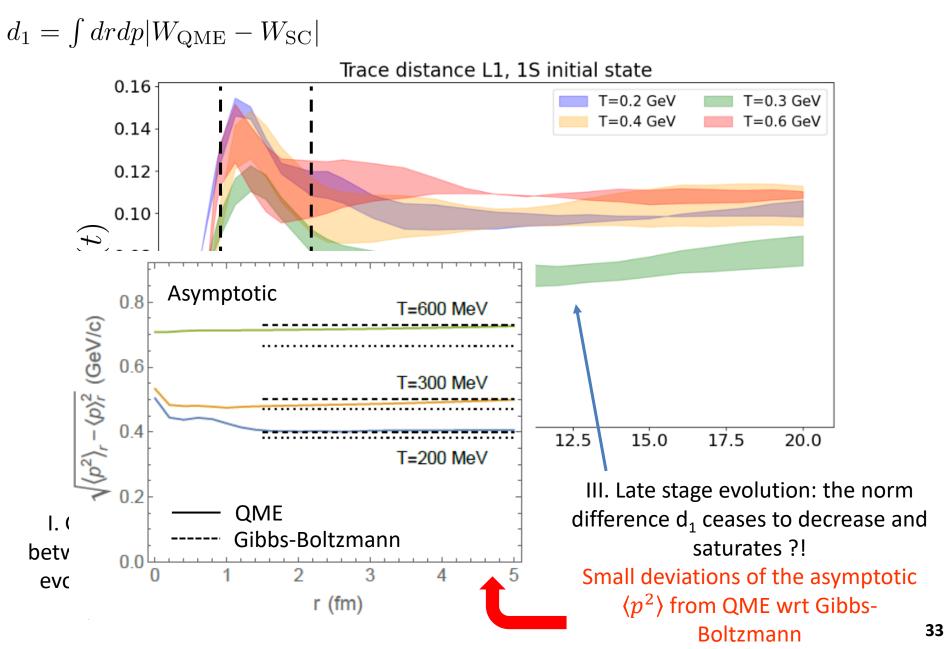
Full coupling with the QGP



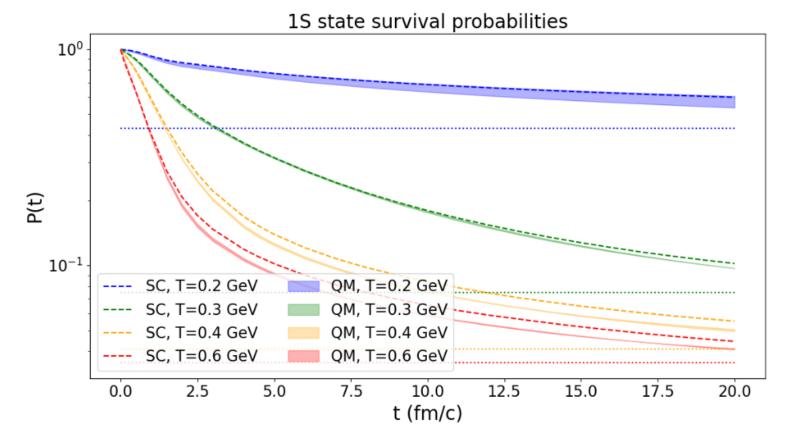
Some specific signs of genuine QM evolution at small time

Better agreement between the two descriptions at late times.



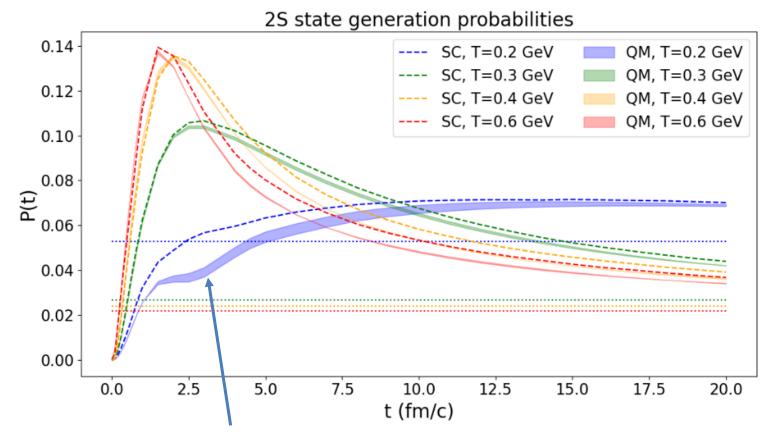


> More concrete observable : Survival probability of the 1S initial state:



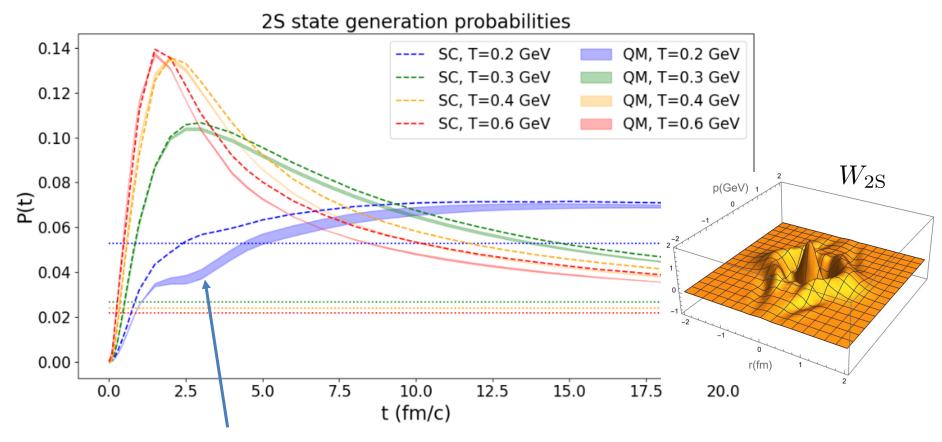
- Good agreement of the SC calculation with the QME benchmark
- Slight over suppression for the QME (overheating)

- More concrete observable : (Re)generate 2S state
- Good agreement of the SC calculation with the QME benchmark, especially at large T



Most significant disagreement for low T, around t = 2.5 fm/c (beginning of the classicalization)

- More concrete observable : (Re)generate 2S state
- Good agreement of the SC calculation with the QME benchmark, especially at large T

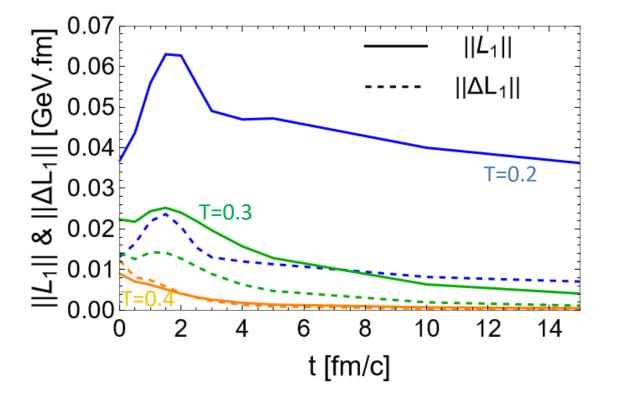


Higher effect of the genuine interference quantum effects due to the mixture of positive and negative regions in W_{2S}.

Why does it work ?

- When / why does it work ?
 - $\circ \quad \text{The unitary term}: \quad \mathcal{L}_1[\rho] = [V,\rho] = \rho(s,s')(V(s) V(s')) = V'(r)y + \mathcal{O}(y^3)$

Wigner-Moyal expansion, valid when y << variation scale of the real potential



> With increasing time, <y^2> decreases -> the de Broglie thermal length $\propto \sqrt{\overline{T}}$ and the Wigner-Moyal expansion works better and better.

Conclusions

- The Lindblad equation succeeds in producing the bottomonia sequential suppression observed in R_{AA}. As next step, we will compute this observable and have direct comparison with experimental data.
- After some "decoherence time", The semiclassical description reproduces very well the results of the exact quantum description, especially, at high temperatures
- The late time discrepancies are, mainly, due to the relaxation into different steady states. The steady sate of an open quantum system is still an active research topic !
- > To come : generalization of the comparison for the non-abelian case.