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Probing URHIC with quarkonia production

J/ψ

primordial

(Re)combination of 𝑄𝑄 and �𝑄𝑄
produced in independent initial 
nucleon-nucleon collisions

Early « in-medium 
quarkonia » surviving up 
to the QGP freeze out

2 typical contributions :

A

B

Dominant for charmonia
production at low pT



Bottomia (single pair)

Exogenous recombination : c & cbar initially 
far from each other may recombine and 
emerge as charmonia states

Yao, Mehen, Müller (2019)

Charmonia (many pairs)

No exogenous recombination : only the b-
bbar pairs which are initially close together 
will emerge as bottomia states.

Full quantum treatment affordable

N.B.: In some SC formalisms : intermediate 
regeneration

Regeneration: Dilute vs Dense
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ALICE Collab. JHEP02 (2024) 066

Quarkonia 
production in AA 
strongly affected by 
the presence of the 
QGP => good probe 
of the QGP 
properties on small 
scales (1/MQ) 

Increasing 
suppression with 
centrality at 
intermediate and 
high pT

Increasing yield with 
centrality at low pT

Increasing 
experimental 
precision => need for 
the models to gain in 
accuracy

central

Other classes

Semi-central

What experiment tells us
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What experiment tells us
ALICE Collab. JHEP02 (2024) 
066

Dense (in phase space) 
=> recombination Dilute (in phase 

space)

Alternate possible explanation : pT-dependent 
absorption cross section : not excluded, but 
not favored by the finite v2 observed for J/ψ
by ALICE 
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Bottomia (single pair)

Exogenous recombination : c & cbar initially 
far from each other may recombine and 
emerge as charmonia states

No full quantum treatment possible … but 
some inspiration from simpler situations… 

Yao, Mehen, Müller (2019)

Charmonia (many pairs)

No exogenous recombination : only the b-
bbar pairs which are initially close together 
will emerge as bottomia states.

Full quantum treatment affordable

N.B.: In some SC formalisms : intermediate 
regeneration

Regeneration: Dilute vs Dense
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Stochastic Langevin Equation in evolving QGP

Prel = 0.5 GeV/c

 Need the full combination 
(reconfining V(t) + equilibration 
with environment) to substantially 
produce lowest state…
 Possible cross talk with 
fragment production at lower 
energies

V(T(t)) + Stochastic forces 
V(T(t)) + Stochastic forces + dissipation

max overlap at 
T=0.2 GeV

V(T(t))
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Semi-classical treatment through HQ 
“trajectories” ?



Combining the expression of the Wigner’s functions  and substituting in the effective 
rate equation :

Interaction of HQ with the QGP are 
carried out by EPOS2+MC@HQ 
(good results for D and B mesons 
production)

• The quarkonia production in this model  is a 
three body process; the HQs interact only by 
collisions with the QGP !!!

• The “details” of Hint between HQ and bulk 
partons are incorporated into the evolution of 
WN after each collision / time step (nice 
feature for the MC simulations)

• WN(t+ε) and WN(t-ε) are NOT the equivalent of 
gain and loss terms in usual rate equations

• Dissociation and recombination treated in the 
same scheme 

Then: NB: Also possible to generate similar 
relations for differential rates 
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Remler formalism at work
Background and Motivation Quarkonia in a microscopic theory Conclusions
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Background and Motivation Quarkonia in a microscopic theory Conclusions

The 3 layers of the numerical modelling
Initial state evolution

EPOS2 initial condition 
+transverse positions of the 

NN collisions
Fluid dynamicsBackground

{T(x),v(x)}

Initialisation of c-cbar
pairs according to FONLL2 

⊗ EPOS2 positions
HQ level

Evolution of HQ according to 
MC@HQ + c-cbar in-medium 

potential

W(p1,x1,p2,x2) 
{Correlated SC trajectories} 

Quarkonia level Initial J/ψ(T) P (t0) 
when T(x) < Tdiss

Evaluation of Γ
according to improved

Remler + Γloc.

We do not have J/ψ quasi particles in our approach, just correlated c-cbar trajectories
DY Arrebato Villar et al., Phys.Rev.C 107 (2023) 5, 054913
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Bottomia (single pair)

Exogenous recombination : c & cbar initially 
far from each other may recombine and 
emerge as charmonia states

No full quantum treatment possible => semi-
classical approximation (to be specified later)

Yao, Mehen, Müller (2019)

Charmonia (many pairs)

No exogenous recombination : only the b-
bbar pairs which are initially close together 
will emerge as bottomia states.

Full quantum treatment affordable

N.B.: In some SC formalisms : intermediate 
regeneration

Regeneration: Dilute vs Dense

Level of accuracy ?

1. Solve the quantum problem in a 
“simple” situation (single pair)

2. Use this solution to benchmark 
the semi-classical approximation

Structure of the talk
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Kim et al,  JHEP11(2018)088

Rich structure : broadening and mass shift. What are the underlying “ingredients’” ?

What is a quarkonia at finite T ?
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a) Screened real potential and b) inelastic interactions with the QGP



Time

T

Dissociation of well identified bound 
states by scarce “high-energy” gluons 
(dilute medium => cross section ok)

Multiple scattering on quasi free states

Best d.o.f. : individual heavy quarks                           Best d.o.f. : quarkonia bound states 

Quantum Brownian Regime Quantum Optical Regime

Spectral density

Two clear regimes

High Temperature Low Temperature
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Trace out environment degrees of freedom =>
Reduced density operator

However,          is generically a non local super-operator in time 

Von Neumann equation for the total 
density operator �𝜌𝜌

Quite generally, the system builds correlation with the 
environment thanks to the Hamiltonian

Quantum Master Equations

System

System + environment Evolution of the total system

Evolution of the system

Evol. eq. on the red. Density: (linear mapping)
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Non abelian Quantum Master Equation for a 
𝑸𝑸�𝑸𝑸 pair 

2 coupled color representations (singlet octet)

The Linblad Operator contains various terms 
representing several aspects of HQ physics

Unitary 
dynamics

: kinetic term

: (screened) real potential term

Non-Unitary 
dynamics

: fluctuations => heating and 
decoherence

: dissipation

: mandatory to preserve 
positivity (but sub-dominant)

Imaginary potential W

15J-P.Blaizot & M.A. Escobedo, JHEP 2018.6 (2018)



Sketch of the appearance of an imaginary part to V
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0 stochastic average

At 2nd order :



Further implementation features
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 1D grid for both and   

Need to design a realistic 1D bona fide potential V + i W (based on 3D lQCD
results, tuned to reproduce 3D mass spectra and decay widths)   

!!! Not the radial decomposition of        which is more cumbersome

Even states will be considered as « S like » while odd states will be
considered as « P like » states

T=0.18

T=0.2

T=0.25

T=0.35
T=0.45
T=0.55

1D potential from R. Katz, S. Delorme & PBG, Eur. Phys. J. A (2022) 58:198 17



Some selected results for 1 𝒄𝒄�𝒄𝒄 pair
Color Dynamics  : Singlet – octet probabilities:

 Starting from a singlet 1S-like, one expects some equilibration / 
thermalisation -> asymptotic values :

o At early times : Quasi 
exponential behaviour exp(-
t/τ), with thermalisation 
time τo<τs ≈ 2 fm/c

o Color appears to thermalize
on time scales < QGP life 
time, but not 
instantaneoulsy.

o C-cbar can interact with the 
surrounding QGP as an 
octet => energy loss

18S.Delorme et al. JHEP 06 (2024) 060



Evolution of the Density matrix

T=300 MeV

t=20 fm/c

long-lived
correlation

Progressive loss
of Q coherence, 
dissociated
component

1S singlet initial state:

SC

t=5 fm/c

t=10 fm/c

t=0 fm/c
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Evolution of the spatial density
1S singlet initial state:

t=0 fm/c

t=2 fm/c

t=5 fm/c
t=10 fm/c

t=20 fm/c

Some c-cbar stay at intermediate distance (“recombination”) … remaining 
peak in the asymptotic distribution

singlet
octet

Box :

Surviving
correlation

« open » HF

20



Evolution of the momentum density

Spurious region for p>M 
(coming from the mandatory
regularization of the imaginary
potential…room for improvement)

Convergence -> ≈ Maxwellian
distribution for p<M, as expected
from SC expansion

Mostly sensitive to the distribution at large relative distance 
(individual c quarks) 21



Results for projection on vacuum states

1S-like

2S-like

1P-like

 Natural evolution for 1S-like suppression, from low to high T

 2S state do not decay 𝛼𝛼𝑒𝑒−Γ2𝑆𝑆𝑡𝑡 at early time… partly driven by the 
ground state at later time.

Starting from a compact S-like state : 

asympt. Prob.

22



Contact with experiment (𝒃𝒃�𝒃𝒃)
 Bottomonia yield using the QME with EPOS4 (T,v) 

profiles and starting from a compact 𝑏𝑏�𝑏𝑏 state. 

 See Stephane Delorme’s talk at SQM24 for 
more details.

1S suppression : 50%

2S suppression: 95%
3S suppression: 95%

(direct production)

23



… and now, we will consider the semi-classical evolution of the lowest 𝑄𝑄 �𝑄𝑄 bound
state 

Semiclassical approximation

24



… and now, we will consider the semi-classical evolution of the lowest 𝑄𝑄 �𝑄𝑄 bound
state 

Semiclassical approximation

25

SC  = limit of small  ℏ  large action of the system… ok for ground state ?



• For the relative motion (2 body):

• Wigner transform :                             and

• => Usual Fokker Planck equation :

• Easy MC implementation + generalization for N body system (c-cbar @ LHC)   

Semiclassical approximation
and

Near thermal equilibrium, Density operator is
nearly diagonal => semi-classical expansion
of the Linblad equation: power series in y up 
to 2nd order) 

fluctuations dissipation

26



• For the relative motion (2 body):

• When / why does it work ? 

o The unitary term :

o The interaction with the environment : L2

Semiclassical approximation
and

Near thermal equilibrium, Density operator is
nearly diagonal => semi-classical expansion
of the Linblad equation: power series in y up 
to 2nd order) 

27

Wigner-Moyal expansion, valid when y <<  variation scale of the real potential

Classical noise



Quantum vs SC dynamics
 SCA : linear mapping

 Several aspects : 
o Temperature
o Initial state
o Property considered

-

-

-

Fokker-Planck/Langevin

Always positive defined even if Win and Wfin are not positive defined

In the following : only a limited set of results; 
manuscript to come soon

28



• 1D (same as for the QME),   1 𝒄𝒄�𝒄𝒄 pair
• Same real potential, W in the QME  η and γ in the FP

• Abelian case (for the time, not clear how to deal with the singlet <-> octet 
transition in a semiclassical approach)

• Yet, not trivial…

• Initial state vacuum 1S state :

Concrete implementation

29



Unitary evolution
Unitary no fluctuation and dissipation by coupling with the QGP

evolution of a vacuum 1S state in a screened V (T=200MeV) … still some evolution 

WQME(t=2fm/c) WSC(t=2fm/c) Normalized to 1

30



Non-unitary evolution Full coupling with the QGP

 Some specific signs of genuine QM evolution at small time

 Better agreement between the two descriptions at late times. 31



Non-unitary evolution Full coupling with the QGP

I. Growth of the ≠ 
between QME and SC 

evolution : genuine 
QM features

II. Saturation and decrease 
of the ≠ between QME 

and SC evolution : 
classicalization

III. Late stage evolution: the norm 
difference d1 ceases to decrease and 

saturates ?!

32



Non-unitary evolution Full coupling with the QGP

I. Growth of the ≠ 
between QME and SC 

evolution : genuine 
QM features

II. Saturation and decrease 
of the ≠ between QME 

and SC evolution : 
classicalization

III. Late stage evolution: the norm 
difference d1 ceases to decrease and 

saturates ?!
Small deviations of the asymptotic  

𝑝𝑝2 from QME wrt Gibbs-
Boltzmann 

QME
Gibbs-Boltzmann

Asymptotic

33



Non-unitary evolution Full coupling with the QGP

 More concrete observable : Survival probability of the 1S initial state:

 Good agreement of the SC calculation with the QME benchmark

 Slight over suppression for the QME (overheating)

34



Non-unitary evolution Full coupling with the QGP

 More concrete observable : (Re)generate 2S state

 Good agreement of the SC calculation with the QME benchmark, especially at 
large T

 Most significant disagreement for low T, around t = 2.5 fm/c (beginning of the 
classicalization) 35



Non-unitary evolution Full coupling with the QGP

 More concrete observable : (Re)generate 2S state

 Good agreement of the SC calculation with the QME benchmark, especially at 
large T

 Higher effect of the genuine interference quantum effects due to the mixture 
of positive and negative regions in W2S. 36



Why does it work ?

 With increasing time, <y^2> decreases -> the de Broglie thermal length                     
and the Wigner-Moyal expansion works better and better.

37

T=0.2

T=0.3

T=0.4



Conclusions
 The Lindblad equation succeeds in producing the bottomonia sequential 

suppression observed in RAA. As next step, we will compute this observable and 
have direct comparison with experimental data.

 After some “decoherence time”, The semiclassical description reproduces very 
well the results of the exact quantum description, especially, at high 
temperatures

 The late time discrepancies are, mainly, due to the relaxation into different 
steady states. The steady sate of an open quantum system is still an active 
research topic !

 To come : generalization of the comparison for the non-abelian case.
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