Studies of light hypernuclei with heavy ion beams and image analyses

Take R. Saito

- High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research (CPR), RIKEN, Japan
- HypHI Group, FRS/NUSTAR department, GSI Helmholtz Center for Heavy Ion Research, Germany
- Graduate School of Science and Engineering, Saitama University, Japan

10th International Symposium on Non-Equilibrium Dynamics, Krabi, Thailand, Islamabad, Pakistan, 25th – 29th November, 2024

Chart of ordinary nuclei and hypernuclei

The HypHI Phase 0 at GSI in Germany (2006-2012)

TRS et al., Nature Reviews Physics 3, 803-813 (2021)

Two outcomes (mysteries) by HypHI

Signals indicating $nn\Lambda$ bound state

All theoretical calculations are negative

- E. Hiyama et al., Phys. Rev. C89 (2014) 061302(R)
- A. Gal et al., Phys. Lett. B736 (2014) 93
- H. Garcilazo et al., Phys. Rev. C89 (2014) 057001
 and much more publication

Short lifetime of ³_AH C. Rappold et al., Nucl. Phys. A 913 (2013) 170

• HypHI Phase 0: 183⁺⁴²-32 ps

Stimulated other **big** experiments

C. Rappold et al., PRC 88 (2013) 041001

The world situation of three-body hypernuclei

On hypertriton Benchmark

Average

 $200 \pm 13 \text{ ps}$

 $B_{A} = 130 \text{ keV}$ data from 60s') $\tau(^3_{\Lambda}H)$ should be equal to $\tau(\Lambda, 263 \text{ ps})$

³AH Binding energy

 $B_{\Lambda}(^{3}_{\Lambda}H): 0.13 \pm 0.05 \text{ MeV}$ G. Bohm et al., NPB 4 (1968) 511 M. Juric et al., NPB **52** (1973) 1

On Ann

STAR (2020)

 $0.41 \pm 0.12 \pm 0.11$ MeV

STAR Collaboration, Nat. Phys. 16 (2020) 409

ALICE

 $0.102 \pm 0.063 \pm 0.067$ MeV

Phys. Rev. Lett. 131, 102302 (2023)

HypHI., PRC 88 (2013) 041001

re fitted together with the known Λ quasifree, the free Λ , and the ie threshold is for the small peak. tional strength above the predicted

JLUD L12 17 005., PRC 105 (2022) L051001

New approaches with new developments With heavy ion beams:

- Lifetime
- Λnn

Gal [54]

Emulsion + Machine Learning

Binding energy STAR Collaboration, PRL 128 (2022) 2023

The novel technique with FRS at GSI (2016-)

PRODUCTION TARGET

SIS

TO CAVES

ESR

FRS

WASA-FRS in Nature Reviews Physics

nature reviews physics

Explore content >

About the journal ~

Publish with us >

nature > nature reviews physics > perspectives > article

Perspective | Published: 14 September 2021

New directions in hypernuclear physics

Takehiko R. Saito ☑, Wenbou Dou, Vasyl Drozd, Hiroyuki Ekawa, Samuel Escrig, Yan He, Nasser Kalantar-Nayestanaki, Ayumi Kasagi, Myroslav Kavatsyuk, Enqiang Liu, Yue Ma, Shizu Minami, Abdul Muneem, Manami Nakagawa, Kazuma Nakazawa, Christophe Rappold, Nami Saito, Christoph Scheidenberger, Masato Taki, Yoshiki K. Tanaka, Junya Yoshida, Masahiro Yoshimoto, He Wang & Xiaohong Zhou

Nature Reviews Physics (2021) | Cite this article

Takehiko R. Saito et al., Nature Reviews Physics, 803-813 (2021)

Fig. 1 | **The WASA-FRS hypernuclear experiment. a** | Schematic drawing of the fragment separator (FRS) at GSI. The 6 Li primary beams at 2 $^{\circ}$ A GeV are delivered to the diamond target located at the mid-focal plane of the FRS, referred to as S2, to produce hypernuclei of interest. Residual nuclei of the π^- weak decays of hypernuclei are transported from S2 to S4 in the FRS, and measured precisely with a momentum-resolving power of 10^{-4} . The π^- mesons produced by the hypernuclear decays are measured at S2 by the Wide Angle Shower Apparatus (WASA) central detector. **b** | The WASA central detector. Panel **b** is adapted with permission from REF. 76 .

GSI REPORT 2023-1

GSI-FAIR SCIENTIFIC REPORT 2022

An overview of the 2022 achievements in science and technology

GSI calendar 2023

Data taking (January – March 2022)

Run	Period	Data size	
Commissioning run	28th Jan 7th Feb.	7 TB	
Physics run for η' nuclei	22nd Feb 28th Feb.	40 TB	
Physics run for HypHI	10th Mar 19th Mar.	48 TB	

92 % of the prop.

Acquired data for S447 (hypernuclei)

Beam	Fragment at S4	Amount	Time	Accepted trigger rate	
⁶ Li beam	³He	3.3×10^{8}	40.9 hours	2600 Hz	³ $_{\Lambda}$ H
	⁴ He	0.9 × 10 ⁸	43.9 hours	1800 Hz	⁴ _Λ H
	deuteron	1.8 × 10 ⁸			nn∆
	proton (mid- rapidity)	5.3 × 10 ⁶	3.2 hours	680 Hz	Λ
¹² C beam	³ He	1.0 × 10 ⁸	- 13.5 hours 2400 Hz	2400 H -	$^3\Lambda$ H
	₉ C	2.4 × 10 ⁵		⁹ _Λ B	

proton-halo $^8B + \Lambda$

The International WASA-FRS collaboration

T.R. Saito^{a,b,c,1}, P. Achenbach^{d,e}, H. Alibrahim Alfaki^b, F. Amjad^b, M. Armstrong^{b,f}, K.-H. Behr^b, J. Benlliure^g, Z. Brencic^{h,i}, T. Dickel^{b,j}, V. Drozd^{b,k}, S. Dubey^b, H. Ekawa^a, S. Escrig^{l,a}, M. Feijoo-Fontán^g, H. Fujioka^m, Y. Gao^{a,n,o}, H. Geissel^{b,j}, F. Goldenbaum^p, A. Graña González^g, E. Haettner^b, M.N. Harakeh^k, Y. He^{a,c}, H. Heggen^b, C. Hornung^b, N. Hubbard^{b,q}, K. Itahashi^{r,s,2}, M. Iwasaki^{r,s}, N. Kalantar-Nayestanaki^k, A. Kasagi^{a,t}, M. Kavatsyuk^k, E. Kazantseva^b, A. Khreptak^{m,v}, B. Kindler^b, R. Knoebel^b, H. Kollmus^b, D. Kostyleva^b, S. Kraft-Bermuth^w, N. Kurz^b, E. Liu^{a,n,o}, B. Lommel^b, V. Metag^j, S. Minami^b, D.J. Morrissey^x, P. Moskal^{v,y}, I. Mukha^b, A. Muneem^{a,z}, M. Nakagawa^a, K. Nakazawa^t, C. Nociforo^b, H.J. Ong^{n,aa,ab}, S. Pietri^b, J. Pochodzalla^{d,e}, S. Purushothaman^b, C. Rappold¹, E. Rocco^b, J.L. Rodríguez-Sánchez^g, P. Roy^b, R. Ruber^{ac}, S. Schadmand^b, C. Scheidenberger^{b,j}, P. Schwarz^b, R. Sekiya^{ad,r,s}, V. Serdyuk^p, M. Skurzok^{v,y}, B. Streicher^b, K. Suzuki^{b,ae}, B. Szczepanczyk^b, Y.K. Tanaka^{a,3}, X. Tang^a, N. Tortorelli^b, M. Vencelj^b, H. Wang^a, T. Weber^b, H. Weick^b, M. Will^b, K. Wimmer^b, A. Yamamoto^{af}, A. Yamamoto^{af}, W.SA3-FRS/Super-FRS Experiment Collaboration)

^a High Energy Nuclear Physics Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, 351-0198 Wako, Saitama, Japan, ^bGSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt, Germany, ^cSchool of Nuclear Science and Technology, Lanzhou University, 730000 Lanzhou, China, ^dInstitute for Nuclear Physics, Johannes Gutenberg University, 55099 Mainz, Germany, ^eHelmholtz Institute Mainz, Johannes Gutenberg University, 55099 Mainz, Germany, fInstitut für Kernphysik, Universität Köln, 50923 Köln, Germany, gUniversidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain, h Jozef Stefan Institute, 1000 Liubliana, Slovenia, ⁱUniversity of Ljubljana, 1000 Ljubljana, Slovenia, JUniversität Gießen, 35392 Gießen, Germany, kUniversity of Groningen, 9747 AA Groningen, The Netherlands. ¹Instituto de Estructura de la Materia - CSIC, 28006 Madrid, Spain, ^mTokyo Institute of Technology, 152-8550 Tokyo, Japan, ⁿInstitute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, China, ^oSchool of Nuclear Science and Technology, University of Chinese Academy of Sciences, 100049 Beijing, China, PInstitut für Kernphysik, Forschungszentrum Jülich, 52425 Jülich, Germany, ^qInstitut für Kernphysik, Technische Universität Darmstadt, 64289 Darmstadt, Germany ^rMeson Science Laboratory, Cluster for Pioneering Research, RIKEN, 2-1 Hirosawa, 351-0198 Wako, Saitama, Japan, ⁸Nishina Center for Accelerator-Based Science, RIKEN, 2-1 Hirosawa, 351-0198 Wako, Saitama, Japan, Graduate School of Engineering, Gifu University, 501-1193 Gifu, Japan, "INFN, Laboratori Nazionali di Frascati, Frascati, 00044 Roma, Italy, VInstitute of Physics, Jagiellonian University, 30-348 Kraków, Poland, "TH Mittelhessen University of Applied Sciences, 35390 Gießen, Germany, *National Superconducting Cyclotron Laboratory, Michigan State University, MI 48824 East Lansing, USA, y Center for Theranostics, Jagiellonian University, 30-348 Krakow, Poland, ² Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, 23640 Topi, Pakistan, aa Joint Department for Nuclear Physics, Lanzhou University and Institute of Modern Physics, Chinese Academy of Sciences, 730000 Lanzhou, China, ab Research Center for Nuclear Physics, Osaka University, 567-0047 Osaka, Japan, Uppsala University, 75220 Uppsala, Sweden, ad Kyoto University, 606-8502 Kyoto, Japan, ae Ruhr-Universiät Bochum, Institut für Experimentalphysik I, 44780 Bochum, Germany, af KEK. 305-0801 Tsukuba, Ibaraki, Japan. ag Saitama University, Sakura-ku, 338-8570 Saitama, Japan, ^{ah}Tohoku University, 980-8578 Sendai, Japan ai Peking University, 100871 Beijing, China,

Part of the collaboration: Photo taken during the experiment Photo by Gabi Ott (GSI/FAIR)

Collaboration of hypernuclear physicists and low-energy nuclear physicists

Author list of the EMIS2022 proceedings

Graph Neural Network (GNN) for WASA

Track Finding

- Multi particles in HI reaction
- Combinatorial background

Track Finding with
Graph Neural Network
(GNN)

Graph

Node : Data point

Edge : Connection

Jie Zhou et al., AI Open 1 (2020) 57-81

Eur. Phys. J. A (2023) 59:103 https://doi.org/10.1140/epja/s10050-023-01016-5 THE EUROPEAN
PHYSICAL JOURNAL A

Special Article - New Tools and Techniques

Development of machine learning analyses with graph neural network for the WASA-FRS experiment

H. Ekawa^{1,a}, W. Dou^{1,2}, Y. Gao^{1,3,4}, Y. He^{1,5}, A. Kasagi^{1,6}, E. Liu^{1,3,4}, A. Muneem^{1,7}, M. Nakagawa¹, C. Rappold⁸, N. Saito¹, T. R. Saito^{1,9,5}, M. Taki^{1,0}, Y. K. Tanaka¹, H. Wang¹, J. Yoshida^{1,1,1}

- ¹ High Energy Nuclear Physics Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Japan
- Department of Physics, Saitama University, Saitama, Japan
 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, Chin
 University of Chinese Academy of Sciences, Beijing, China
- ⁵ School of Nuclear Science and Technology, Lanzhou University, Lanzhou, China
- ⁶ Graduate School of Engineering, Gifu University, Gifu, Japan
- ⁷ Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Pakistan
- ⁸ Instituto de Estructura de la Materia, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- ⁹ GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
- ¹⁰ Graduate School of Artificial Intelligence and Science, Rikkyo University, Tokyo, Japan

Department of Physics, Tohoku University, Sendai, Japan

Received: 29 July 2022 / Accepted: 24 April 2023
© The Author(s), under exclusive licence to Società Italiana di Fisica and Springer-Verlag GmbH Germany, part of Springer Nature 2023
Communicated by Takashi Nakamura

Abstract The WASA-FRS experiment aims to reveal the nature of light Λ hypernuclei with heavy-ion beams. The lifetimes of hypernuclei are measured precisely from their decay lengths and kinematics. To reconstruct a π^- track emitted from hypernuclear decay, track finding is an important issue. In this study, a machine learning analysis method with a graph neural network (GNN), which is a powerful tool for deducing the connection between data nodes, was developed to obtain track associations from numerous combinations of hit information provided in detectors based on a Monte Carlo simulation. An efficiency of 98% was achieved for tracking π^- mesons using the developed GNN model. The GNN model can also estimate the charge and momentum of the particles of interest. More than 99.9% of the negative charged particles were correctly identified with a momentum accuracy of $6\,36\%$

stand it for the middle- and long-range interactions based on a variety of nuclear experiments. To reveal the unknown features of the nuclear force, such as short-range interaction, considering a more detailed structure inside the baryons is essential. All baryons consist of three quarks, and nucleons such as neutrons and protons consist of up and down quarks. By introducing other types of quarks into ordinary nuclear systems, one can study the nuclear force in a more general picture. In particular, because the mass of the strange quark is close to that of the up and down quarks, interactions among these three quarks are described under flavoured-SU(3) symmetry. Therefore, a hyperon, which is a type of baryon that contains strange quark(s), plays an important role in investigating baryon-baryon interactions. As the lifetime of hyperon is short ($\sim 10^{-10}$ s), using them as projectiles or targets is difficult. Therefore, hyperon-nucleon interactions have been studied via hypernuclei, which contain at least

Published in EPJA

H. Ekawa et al., Eur. Phys. J. A (2023) **59**, 103 DOI: 10.1140/epia/s10050-023-01016-5

Data analyses with the GNN

Only partial data with

- T0
- Fiber detectors
- MDC
- PSB
- FRS
- 3 He (WASA)+ π^{-} (WASA)

- GNN node clustering score > 0.995
- MDC hit mul. ≥ 6

p (WASA)+ π^- (WASA)

Analysis by

H. Ekawa (RIKEN)

Y. Gao (RIKEN/IMP)

A. Yanai (RIKEN/Saitama U)

The novel technique with FRS at GSI (2016-)

PRODUCTION TARGET

SIS

TO CAVES

ESR

FRS

Assuming that the momentum of the hypertriton is the same to the ³He decay residues

$$\Delta p/P (FRS) = 5x10^{-4}$$
 $\beta -> 0.95$

Momentum spread of produced hypertriton (5 % in $B\rho$)

θ π 3 He 700

Assuming that the momentum of the hypertriton is the same to the ³He decay residues

 Δ p/P (other exp.) = 5x10⁻² β -> 0.95

Momentum spread of produced hypertriton (5 % in $B\rho$)

Assuming that the momentum of the hypertriton is the same to the ³He decay residues

 Δ p/P (FRS) = 5x10⁻⁴ β -> 0.95 Angular res. (WASA) = 3 m rad

Momentum spread of produced hypertriton (5 % in Bρ)

With the WASA-FRS data

 $(5 \% \text{ in B}\rho)$

Ideas based on Ivan Mukha et al, for studying two-proton emitters at the FRS/GSI Phys. Rev. Lett. 115, 202501, 2015 Assuming that the momentum of the hypertriton is the same to the ³He decay residues

 Δ p/P (FRS) = 5x10⁻⁴ β -> 0.95 Angular res. = 0.7 m rad Si detector at R3B/FAIR

Assuming that the momentum of the hypertriton is the same to the ³He decay residues

h1 pi corr theta open

0.3573

Entries Mean

Std Dev

 $m(^{3}_{\Lambda}H)+0.3 \text{ MeV}$

 $m(^3_{\Lambda}H)$

 Δ p/P (FRS) = 5x10⁻⁴ β -> 0.95 Angular res. = 0.1 m rad Future possibility

 $m(^{3}_{\Lambda}H)-0.3 \text{ MeV}$

For the precise mass measurements

- Excellent FRS resolution is mandatory (unique)
- Not depending on the momentum resolution

The novel technique with FRS at GSI (2016-)

PRODUCTION TARGET

SIS

TO CAVES

ESR

FRS

Difficulties in the WASA-FRS experiment

⁶Li + ¹²C @ 2 A GeV

Distribution of ³He and ³_AH

UrQMD + phase space cut

 \rightarrow Creating distribution of ³He and ³ $_{\Lambda}$ H

Is it realistic?

Empirical parameterization of fragmentation cross section

We observed 10 times more than the EPAX estimation

Difficulties in the WASA-FRS experiment

⁶Li + ¹²C @ 2 A GeV

Distribution of ³He and ³_AH

UrQMD + phase space cut

 \rightarrow Creating distribution of ³He and ³ $_{\Lambda}$ H

Is it realistic?

Cross section of ³He is estimated by EPAX

Empirical parameterization of fragmentation cross section

We observed 10 times more than the EPAX estimation

We need to collaborate with the EXPERTS

Our challenges on Hypernuclei

with <u>image analyses</u> and and <u>machine learning</u>

Nuclear Emulsion:

Charged particle tracker with the best spatial resolution
(easy to be < 1 μm, 11 nm at best)

20µm

Discovery of ${}^{6}_{\Lambda\Lambda}$ He (the Nagara event)

Results in the NAGARA paper

https://doi.org/10.1103/PhysRevLett.87.212502 https://doi.org/10.1103/PhysRevC.88.014003

$$^{12}\text{C} + \Xi^{-} \rightarrow {}_{\Lambda\Lambda}^{6}\text{He} + {}^{4}\text{He} + t$$

 $\hookrightarrow {}_{\Lambda}^{5}\text{He} + p + \pi^{-}.$

VertexA(Production) $\Delta B_{\Lambda \Lambda} - B_{\Xi} = 0.69 \pm 0.20 \text{ MeV}$ VertexB(Decay) $\Delta B_{\Lambda \Lambda} = 0.6 \pm 0.6 \text{ MeV}$

$$B_{\Lambda\Lambda} = 6.79 + 0.91 B_{\Xi}$$
 (± 0.16) MeV $\Delta B_{\Lambda\Lambda} = 0.55 + 0.91 B_{\Xi}$ (± 0.17) MeV

$$B_{\Lambda\Lambda} = 6.91 \pm 0.16 \text{ MeV}$$

 $\Delta B_{\Lambda\Lambda} = 0.67 \pm 0.17 \text{ MeV}$
(Assumpusion: $B_{\Xi} = 0.13 \text{ MeV}$ (3D))

J-PARC E07 experiment

Results from J-PARC E07 (Hybrid method)

3 years

Millions of single-strangeness hypernuclei 1000 double strangeness hypernuclei (formerly only 5)

Setup for analyzing emulsions at the High Energy Nuclear Physics Laboratory in RIKEN

- Hypernuclear physics
- Neutron imaging

Part-timer staffs working for emulsion & microscopes

Current members

Former members

Currently 7 microscope stages running

Challenges for Machine Learning Development

MOST IMPORTANT:

Quantity and quality of training data

Ideas: 2018

Implementations: 2020-2021

However,

No existing data for hypertriton with emulsions for training

Our approaches:

Producing training data with

- Monte Carlo simulations
- Image transfer techniques

Production of training data

Monte Carlo simulations and GAN(Generative Adversarial Networks)

Detection of hypertriton events

With Mask R-CNN model

Detection of each object

At large object density

Training of Mask R-CNN with Simulated image

Mask R-CNN

https://www.cis.upenn.edu/~jshi/ped_html/

Training data (Simulated image)

Masks are automatically produced

Performance of α -decay detection

Efficiency = No. detected/No. total

Purity = Truth Positive/No. candidates

	Efficiency [%]	Purity [%]
Vertex picker	~40%	~1%
Mask R-CNN	~80%	~20%

 \rightarrow 2nd step done

A.Kasagi et.al, NIM A1056, (2023) 168663.

 $50 \mu m$

Hypertriton search with Mask R-CNN

Discovery of the first hypertriton event in E07 emulsions

nature reviews physics

Explore content > About the journal >

Publish with us >

nature > nature reviews physics > perspectives > article

Perspective | Published: 14 September 2021

New directions in hypernuclear physics

Takehiko R. Saito ☑, Wenbou Dou, Vasyl Drozd, Hiroyuki Ekawa, Samuel Escrig, Yan He, Nasser Kalantar-Nayestanaki, Ayumi Kasagi, Myroslav Kavatsyuk, Enqiang Liu, Yue Ma, Shizu Minami, Abdul Muneem, Manami Nakagawa, Kazuma Nakazawa, Christophe Rappold, Nami Saito, Christoph Scheidenberger, Masato Taki, Yoshiki K. Tanaka, Junya Yoshida, Masahiro Yoshimoto, He Wang & Xiaohong Zhou

Nature Reviews Physics (2021) | Cite this article

TRS et al., Nature Reviews Physics, 803-813 (2021) Cover of December 2021 issue

Guaranteeing the determination of the hypertriton binding energy SOON

Precision: 28 keV

E. Liu et al., EPJ A57 (2021) 327

Ayumi Kasagi. Ph.D. thesis (2023)

Towards the hypertriton binding energy

- Calibration of the nuclear emulsion (density/shrinkage) for each event
- Increasing statistics (so far only 0.6 % of the entire data)

	Identified	Calibrated
$^3\Lambda H$	49	49
$4_{\Lambda}H$	101 (163 detected)	101 (138 detected)

A. Kasagi et al., to be published soon

Problems on π^-

MAMI: $P_{\pi^-} = \underline{132.851 \pm 0.011 \text{ (stat.)} \pm 0.101 \text{ (syst.)}}$ MeV/c Nucl. Phys. A 954, 149 (2016)

We confirmed that the Range-Energy Relation for energetic π is not correct

Known Range-Energy Relation is different because the difference of emulsion compositions

May affect emulsion results at KEK (E373) and J-PARC (E07)

A. Kasagi et al., to be published soon

Range of the deduced binding energy


```
3<sub>A</sub>H Binding energy
B<sub>Λ</sub>(3<sub>Λ</sub>H): 0.13 ± 0.05 MeV
G. Bohm et al., NPB 4 (1968) 511
M. Juric et al., NPB 52 (1973) 1

STAR (2020)
0.41 ± 0.12 ± 0.11 MeV

STAR Collaboration,
Nat. Phys. 16 (2020) 409

ALICE
0.102 ± 0.063 ± 0.067 MeV

Phys. Rev. Lett. 131, 102302 (2023)
```

A. Kasagi et al., to be published

Chart of double-strangeness hypernuclei

There is only <u>ONE</u> uniquely unidentified S=-2 hypernucleus Nagara event, ${}^{6}_{\Lambda\Lambda}{\rm He}$

 $\Delta B_{\Lambda\Lambda} = 0.67 \pm 0.17 \text{ MeV}$

$^{6}\Lambda\Lambda$ He (the Nagara event)

Results in the NAGARA paper

https://doi.org/10.1103/PhysRevLett.87.212502 https://doi.org/10.1103/PhysRevC.88.014003

$$^{12}\text{C} + \Xi^{-} \rightarrow {}_{\Lambda\Lambda}^{6}\text{He} + {}^{4}\text{He} + t$$

 $\hookrightarrow {}_{\Lambda}^{5}\text{He} + p + \pi^{-}.$

VertexA(Production)

 $\Delta B_{\Lambda \Lambda} - B_{\Xi} = 0.69 \pm 0.20 \text{ MeV}$ VertexB(Decay)

$$\Delta B_{\wedge \wedge} = 0.6 \pm 0.6 \text{ MeV}$$

$$B_{\Lambda\Lambda} = 6.79 + 0.91B_{\Xi}$$
 (± 0.16) MeV $\Delta B_{\Lambda\Lambda} = 0.55 + 0.91B_{\Xi}$ (± 0.17) MeV

$$B_{\Lambda\Lambda} = 6.91 \pm 0.16 \text{ MeV}$$

 $\Delta B_{\Lambda\Lambda} = 0.67 \pm 0.17 \text{ MeV}$
(Assumpusion: $B_{\Xi} = 0.13 \text{ MeV}$ (3D))

 $\Delta B_{\Lambda\Lambda}$: 2 – 3 times larger

A. Kasagi et al., to be published

Results from J-PARC E07 (Hybrid method)

Only 33 candidates

No unique identification for double- Λ hyp.

Searching for double-strangeness hypernuclei

20 um

20 µm

Yan He (LZU/RIKEN) Ph.D. thesis

- Analyzed <u>0.2%</u> of the entire data, <u>more than 10 candidates</u> found.
- Searching for double-strangeness hypernuclei with newly developed machine-learning method is in progress.

Yan He, et al., submitted to NIMA currently under review

One of potential candidate

As $^{11}_{\Lambda\Lambda}$ Be:

Contradicting to the result of the Mino event as $^{11}\Lambda\Lambda$ Be (J-PARC E07)

As $^{14}_{\Lambda\Lambda}$ C:

Newly discovered Probably $\Lambda\Lambda(1\mathrm{S})$ coupled to 2+ of $^{12}\mathrm{C}$

For both cases, the double hypernuclei decay into ${}^{5}_{\Lambda}{\rm H}$

New discovery

Yan He, et al., to be published

Hypernuclear scattering

 $^4\Lambda H$ scattering

 $^3\Lambda$ H scattering

Nuclear Emulsion + Machine Learning Collaboration

W. Dou^{a,b}, V. Drozd^{a,c,d}, H. Ekawa^a, S. Escrig^{a,e}, Y. Gao^{a,f,g}, Y. He^{a,h}, A. Kasagi^{a,i,j}, E. Liu^{a,f,g}, A. Muneem^{a,k}, M. Nakagawa^a, K. Nakazawa^{a,i,l}, C. Rappold^e, N. Saito^a, T.R. Saito^{a,d,h}, S. Sugimoto^{a,b}, M. Taki^j, Y.K. Tanaka^a, A. Yanai^{a,b}, J. Yoshida^{a,m}, M. Yoshimotoⁿ, and H. Wang^a

^a High Energy Nuclear Physics Laboratory, RIKEN, Japan

^b Department of Physics, Saitama University, Japan

^c Energy and Sustainability Research Institute Groningen, University of Groningen, Netherlands

^d GSI Helmholtz Centre for Heavy Ion Research, Germany

^e Instituto de Estructura de la Materia, Spain

f Institute of Modern Physics, Chinese Academy of Sciences, China

^g University of Chinese Academy of Sciences, China

^h School of Nuclear Science and Technology, Lanzhou University, China

ⁱ Graduate School of Engineering, Gifu University, Japan

^j Graduate School of Artificial Intelligence and Science, Rikkyo University, Japan

^k Faculty of Engineering Sciences, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Pakistan

¹ Faculty of Education, Gifu University, Japan

^m Department of physics, Tohoku University, Japan

ⁿ RIKEN Nishina Center, RIKEN, Japan

Segmentation task to detect hit infomation

- Binary segmentation (background or track)
- Training from scratch (with 40k surrogate images)

Hyperparameter search with Optuna

	loU	0.659
	F1_score	0.795
	Accuracy	0.998
	Precision	0.748
0	Recall	0.805

Raw data

- Noise reduction
- · Datasize: 1/200
- → E07 image data 140 PB -> 750 TB

Segmentation task to detect hit infomation

Raw data: 200 MB

Segmentation: 1MB

 $100~\mu \,\mathrm{m}$

Kasagi, Nakazawa, Rappold, Shimizu, Yokota, to be published

Reconstruction of track

Gabor filter & Connected Components

3D track reconstruction

Image -> meta information of tracks:

Data size will be negligible

Reconstruction of dizzy track & vertex:

Ongoing

Kasagi, Nakazawa, Rappold, Shimizu, Yokota, to be published

New proposal at KLF/JLab

Neutral-K beams behind the Glue-X setup

Hypernuclear station behind the Glue-X

- No beam tracks in the emulsion
 - We can leave emulsions, no movement
 - Main background: high energy gamma-rays

- Intensity: 0.7 X 10⁴ anti-K⁰ /s
 - Two years from 2027: 200 days per year (a total of 400 days)
 - 2.3 times more than J-PARC E07 (2.3 k double-strangeness hypernuclei) with HIGH QUALITY DATA

FNTD (Al₂O₃:C,Mg)

- Used for neutron imaging
- Recyclable

New pro

Neutral-K bea Hypernuclear

- No beam tra
 - We can le
 - Main bac With K- beams like in the J-PA

- Intensity: 0.
 - Two year
 - 2.3 time hypernu

The Hypernuclear station at KLF (Technical Note)

M. Bashkanov*

Department of Physics, University of York, Heslington, York, Y010 5DD, UK

T.R. Saito[†]

High Energy Nuclear Physics Laboratory, RIKEN, Japan (Dated: August 19, 2024)

O (Al₂O₃:C,Mg) sed for neutron aging cyclable