

The 10th International Symposium on Non-equilibrium Dynamics (NeD-2024), Nov. 25-29, 2024

Elliptic flow in heavy-ion collisions at intermediate energies

Yongjia Wang (Huzhou University, China)

Hunter (Huzhou nuclear theory group)

Outline

Ø**1. Background**

Ø**2. Elliptic flow**

- \times 2.1 The role of nuclear potential and collision term
- ü **2.2 The density interval at which the nuclear equation of state is probed by the elliptic flow**
- ü **2.3 Effects of rapidity and transverse momentum cuts**

\triangleright 3. Bayesian analysis with FOPI data

≥ 4 . Summary

Protons_(Z)

intermediate energies HIC

Nuclear equation of state (EOS)

The thermodynamic relationship between the binding energy *E* (or pressure *P*) and density ρ , as $E(\rho,\delta) = E(\rho,0) + E_{sym}(\rho)\delta^2 + \cdots, \quad \delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}$

01

$$
E(\rho,\delta) = E(\rho,0) + E_{sym}(\rho)\delta^2 + \cdots, \quad \delta = \frac{\rho_n - \rho_p}{\rho_n + \rho_p}
$$

 K_0 and *L* determine the EOS in the vicinity of the saturation density.

The incompressibility K_0 from properties of nuclei

Data:isoscalar giant monopole resonances (GMR), nuclear masses, nuclear decay...

Model: Skyrme-Hartree-Fock model, Skyrme-Hartree- Fock-Bogoliubov, ...

Ning Wang, et al. PLB(2015) Jun Xu, et al. PRC(2021)

Zhenzhen Li, et al. PRL(2023)

Xiao Liu, et al. PRC(2024)

The incompressibility K_0 from heavy-ion physics

VOLUME 55, NUMBER 24

PHYSICAL REVIEW LETTERS

9 DECEMBER 1985

Subthreshold Kaon Production as a Probe of the Nuclear Equation of State

J. Aichelin and Che Ming $Ko^{(a)}$ Joint Institute for Heavy Ion Research, Holifield Heavy Ion Research Facility, Oak Ridge, Tennessee 37831 (Received 11 June 1985; revised manuscript received 23 September 1985)

The production of kaons at subthreshold energies from heavy-ion collisions is sensitive to the nuclear equation of state. In the Boltzmann-Uehling-Uhlenbeck model, the number of produced kaons from central collisions between heavy nuclei at incident energies around 700 MeV/nucleon can vary by a factor of \sim 3, depending on the equation of state.

Data: pion and kaon production, collective flow

Model: QMD and BUU

Further evidence for a stiff nuclear equation of state from a transverse-momentum analysis of Ar(1800 MeV/nucleon) + KCl

Joseph J. Molitoris and Horst Stöcker

Show more

Phys. Rev. C 32, 346(R) - Published 1 July, 1985

Evidence for a Soft Nuclear Equation-of-State from Kaon Production in Heavy-Ion Collisions

C. Sturm¹, I. Böttcher⁴, M. Debowski⁵, A. Förster¹, E. Grosse^{6,7}, P. Koczoń², B. Kohlmeyer⁴, F. Laue², and M. Mang² et al.

Show more

Phys. Rev. Lett. 86, 39 - Published 1 January, 2001

Hadronic Matter Is Soft

Ch. Hartnack¹, H. Oeschler², and Jörg Aichelin¹

Show more

Stiff: K0>380 MeV

Soft: K0<200 MeV

Phys. Rev. Lett. 96, 012302 - Published 9 January, 2006

HIC offers a unique way to create nuclear matter with high density and isospin asymmetry in laboratory.

EOS can be deduced from the comparision bewteen experimental observables and transport model calculations.

01 Nuclear equation of state $\begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$

nature

About the journal v Publish with us v Explore content v

nature > articles > article

Article | Open Access | Published: 08 June 2022

Constraining neutron-star matter with microscopic and macroscopic collisions

Sabrina Huth $\text{M}_{\text{Peter T. H. Pang}}$ $\text{M}_{\text{Hgo Tews}}$, Iim Dietrich, Arnaud Le Fèvre, Achim Schwenk, Wa nature astronomy

Trautmann, Kshitij Agarwal, Mattia Bulla, Michael W. Coughlin & Chris Van Den Broeck

Article | Published: 05 January 2024

Determination of the equation of state from nuclear experiments and neutron star observations

Chun Yuen Tsang, ManYee Betty Tsang¹, William G. Lynch, Rohit Kumar & Charles J. Horowitz

Nature Astronomy 8, 328-336 (2024) Cite this article

01 Nuclear equation of state

Progress in Particle and Nuclear Physics Available online 19 September 2023, 104080 In Press, Journal Pre-proof (?) What's this? 7

Two White papers

 arxiv: 21V > nucl-th > arXiv:2211.02224

Nuclear Theory

[Submitted on 4 Nov 2022 (v1), last revised 8 Nov 2022 (this version, v2)]

Review

Dense nuclear matter equation of state from heavy-ion collisions

Agnieszka Sorensen¹ & a_s, Kshitij Agarwal², Kyle W. Brown³⁴, Zbigniew Chajecki⁵, Paweł Danielewicz 3 6, Christian Drischler ⁷, Stefano Gandolfi ⁸, Jeremy W. Holt ^{9 10}, Matthias Kaminski¹¹, Che-Ming Ko⁹¹⁰, Rohit Kumar³, Bao-An Li¹², William G. Lynch³⁶, Alan B. McIntosh 10, William G. Newton 12, Scott Pratt 3 6, Oleh Savchuk 3 13, Maria Stefaniak 14 15, Ingo Tews 8, ManYee Betty Tsang 3 6... Yi Yin 94

Show more

+ Add to Mendeley of Share 55 Cite

https://doi.org/10.1016/j.ppnp.2023.104080 7

Get rights and content 7

Abstract

This White Paper highlights the essential role of hadronic transport simulations of heavyion collisions in studies involving the equation of state of nuclear matter. It also elucidates many connections between inferences of the equation of state from heavy-ion collision data and other efforts aiming to understand the properties of nuclear matter.

Long Range Plan: Dense matter theory for heavy-ion collisions and neutron stars

Alessandro Lovato, Travis Dore, Robert D. Pisarski, Bjoern Schenke, Katerina Chatziloannou, Jocelyn S. Read, Philippe Landry, Paw Hannah Elfner, Veronica Dexheimer, Rajesh Kumar, Michael Strickland, Johannes Jahan, Claudia Ratti, Volodymyr Vovchenko, Mikh Hippert, Jacquelyn Noronha-Hostler, Jorge Noronha, Enrico Speranza, Nicolas Yunes, Chuck J. Horowitz, Steven P. Harris, Larry Mc Stefano Gandolfi, Ingo Tews, M. Coleman Miller, Cecilia Chirenti, Zohreh Davoudi, Jamie M. Karthein, Krishna Rajagopal, Salvatore ' Vladimir Skokov, Ulrich Heinz, Christian Drischler, Daniel R. Phillips, Madappa Prakash, Zoltan Fodor, David Radice, Christopher Plu Fraga, Aleksi Kurkela, James M. Lattimer, Andrew W. Steiner, Jeremy W. Holt, Bao-An Li, Chun Shen, Mark Alford, Alexander Haber,

Since the release of the 2015 Long Range Plan in Nuclear Physics, major events have occurred that reshaped our understanding of quantum chromodyr of equilibrium. The US nuclear community has an opportunity to capitalize on advances in astrophysical observations and nuclear experiments and engamatter that connects low- and high-energy nuclear physics, astrophysics, gravitational waves physics, and data science

Submission nistory

From: Jacquelyn Noronha-Hostler [view email] [v1] Fri, 4 Nov 2022 02:15:29 UTC (2,372 KB) [v2] Tue, 8 Nov 2022 01:52:13 UTC (2,373 KB)

01 Elliptic flow (v_2)

Le Fevre, A., Leifels, Y., Reisdorf, W., Aichelin, J., & Hartnack, C. (2016). Constraining the nuclear matter equation of state around twice saturation density. *Nuclear Physics A*, *945*, 112-133.

01 Elliptic flow (v_2)
 Elliptic flow (v_2)
 Elliptic flow (v_1)
 Elliptic flow (v_2)
 Elliptic flow (v_1)
 Elliptic flow (v_2)
 Elliptic flow (v_1) *c n Elliptics* *****Elli*

Determination of the nuclear incompressibility from the rapidity-dependent elliptic flow in heavy-ion collisions at beam energies 0.4A-1.0A GeV

Yongjia Wang^{a,*}, Chenchen Guo^b, Qingfeng Li^{a,c,**}, Arnaud Le Fèvre^d, Yvonne Leifels^d, Wolfgang Trautmann^d

Physics Letters B 778 (2018) 207–212.

P14

01 Elliptic flow (v_2)

Study of the nuclear symmetry energy from the rapidity-dependent elliptic flow in heavy-ion collisions around 1 GeV/nucleon regime

Yongjia Wang^a, Qingfeng Li^{a,b,*}, Yvonne Leifels^c, Arnaud Le Fèvre^c

Physics Letters B 802 (2020) 135249

Au+Au 0.25
b_o<0.45 u_m>0.4

02 Ultrarelativistic Quantum Molecular Dynamics (UrQMD) Model

1).Initialization Get the coordinate **r** and the momentum **p**

2).Propagation Nucleon moves in nuclear potential.
Density, momentum, isospin-dependent. $\vec{p}_i = -\frac{\partial \langle H \rangle}{\partial \vec{r}_i}$ Density, momentum, isospin-dependent.

3).Collision term Medium modified cross section. Density, momentum, isospin-dependent. Pauli blocking.

4). Cluster recognition an isospin-dependent Minimum Spanning Tree

YJW, et al. PRC 83.044617; 89.034606.

02 Elliptic flow The momentum of each nucleon can be changed either by the \blacksquare The momentum of each nucleon can be changed either by the nucleon-nucleon (NN) scattering.

 $b = 6$ fm

 $Au+Au$ $E_{lab} = 0.4A$ GeV $b = 6$ fm Au+Au $E_{lab} = 0.4A$ GeV

Reversely tracing nucleons that are finally emitted at mid-rapidity $(-0.1 \le y_0 \le 0.1)$. Recording the momentum changes casued by MF and NN collisions.

12 Experience in the contract of $P17$ **Physics Letters B 838 (2023) 137685**

Solid dots with arrows represent the traced nucleons (those will be appeared at mid-rapidity at the final stage), while circles denote other nucleons.

⁰² Elliptic flow

Time evolution of v_2 of the **traced nucleons finally emitted at mid-rapidity** ($|y_0|$ < 0.1) with different impact parameters.

At the initial time, v_2 is non-zero, indicating that those nucleons **are not randomly "selected"** out of the uniform distribution in the initial state. This is especially so for large b where $v_2(t=0 \text{ fm/c})$ is positive because nucleons with larger |px| and smaller |py| tend to have higher probability to experience NN scattering and finally emerge at midrapidity.

$$
v_2 = \langle V_2 \rangle = \left\langle \frac{p_x^2 - p_y^2}{p_t^2} \right\rangle.
$$

\n
$$
\Delta v_2^{\text{coll}}(t) = \left\langle V_2^{\text{aff.coll}}(t) - V_2^{\text{bef.coll}}(t) \right\rangle.
$$

\n
$$
\Delta v_2^{\text{mf}}(t) = \left\langle V_2^{\text{aff.mf}}(t + \Delta t) - V_2^{\text{bef.mf}}(t) \right\rangle.
$$

02 The density interval at which the nuclear equation of state is probed by the elliptic flow

 ρ_c denotes the density at the central region. ρ_t denotes the density experienced by the traced nucleons.

$$
\langle \rho \rangle_{v_2} = \frac{\int_0^{t_{sat}} |\Delta v_2(t)| \rho_t(t) dt}{\int_0^{t_{sat}} |\Delta v_2(t)| dt}.
$$

The most relevant density probed by v_2 of nucleons at mid-rapidity lies in $(0.9-1.3)\rho_0$ and dependent of the impact parameter.

Their values are found to be **60%** of the maximum density reached during the collisions.

02 The density interval at which the nuclear equation of state is probed by the elliptic flow Wang, et al. PRC110, 044606 (2024)

Anonymous referee: different nucleons reach their maximum densities at different times.

 (ρ_{max}) defined for each traced nucleon. \blacksquare average density created in the central region. \blacksquare The average of ρ_{max} is about **80%** of the maximum The distributions of the maximum density The average of ρ_{max} is about **80%** of the maximum (ρ_{max}) defined for each traced nucleon. average density created in the central region.

02 Effects of rapidity and transverse momentum cuts
Au+Au Elab=0.4 GeV/nucleon b = 6 fm Wang at al DDC110 044606 (2004)

02 Effects of rapidity and transverse momentum cuts

Initial-final state correlation in the momentum space. This correlation becomes rather weak at $E_{\text{lab}} = 0.8$ GeV/nucleon.

03 Bayesian analysis of properties of nuclear matter with FOPI data

150 runs of different parameter sets in UrQMD to train emulator, and 20 runs for validate the trained emulator. 100, 000 events for each run. $\frac{197_{Au} + 197_{Au} E_{lab} = 0.25 \text{ GeV/nucleon}}{197_{Au} + 197_{Au} E_{lab}}$

Table I. List of observables used in the analysis in $197Au +$ 197 Au collisions with a beam energy of 0.25 GeV/nucleon

Table III. Parameters used in the present work

Gaussian process (GP) model $\frac{0.250}{0.225}$ is trained as an **emulator** of UrQMD model to interpolate $\frac{6.206 \times 200}{0.225 \times 200 \times 250} \frac{0.275}{v_{11}^{true}}$ the simulation results in the $\int_{0.040 \left| \right|}$ $\frac{b_0 \left| 0.25 \right|}{b_0 \left| 0.25 \right|}$ parameter space.

In preparation. 0.08.0 0.2 0.4

03 Bayesian analysis of properties of nuclear matter with FOPI data

03 Bayesian Inference of properties of nuclear matter with FOPI data

1. Nucleon-nucleon collisions always suppress the value of v² (enhance the out-of-plane emission), while the nuclear mean field potential effect is more complex, which depends on both impact parameter and reaction time.

2. The density interval at which the nuclear equation of state is probed by the elliptic flow is about 60–80% of the maximum average density created in the central region of heavy-ion collision.

3.m*/m=0.79±0.09 and F=σin-med./σfree=0.73±0.07 with FOPI data at Elab=0.25 GeV/nucleon, and the obtained values increased to m*/m=0.91±0.04 and $F = 0.85 \pm 0.07$ at $E_{lab} = 0.4$ GeV/nucleon. No tight constraint on $K_0!$

Thanks!