Investigation of $\Delta(1232)\text{, }N(1520)\text{, and }N(1535)$ Structures in $p\gamma^* \rightarrow N^*$ Reactions

Yupeng Yan

School of Physics and Center of Excellence in High Energy Physics and Astrophysics, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand

Task Force: Ayut Limphirat, Kai Xu, Attaphon Kaewsnod

(日) (四) (日) (日) (日)

Outline

Introduction

- $\Delta(1232)$ with L=2 Components
- Pentaquark States in Constituent Quark Model.
- \bullet Transition Amplitudes of N(1520) and N(1535) in $q^3+q^4\bar{q}$ Picture.
- Summary

Nucleon Resonances below 2 GeV

Resonance	Status	J^P	M_{BW}^{exp} MeV	Γ^{exp}_{BW} MeV
N(1440)	****	$\frac{1}{2}^{+}$	1410-1470	250-450
N(1680)	****	$\frac{5}{2}$ +	1665-1680	115-130
N(1710)	****	$\frac{1}{2}^{+}$	1680-1740	80-200
N(1720)	****	$\frac{3}{2}$ +	1680-1750	150-400
N(1860)	**	$\frac{5}{2}$ +	1800-1980	220-410
N(1880)	***	$\frac{\overline{1}}{2}^+$	1830-1930	200-400
N(1900)	****	$\frac{3}{2}$ +	1890-1950	100-320
N(1990)	**	$\frac{7}{2}$ +	1950-2100	200-400
N(2000)	**	$\frac{5}{2}$ +	2030-2090	335-445
N(1520)	****	$\frac{3}{2}^{-}$	1510-1520	100-120
N(1535)	****	$\frac{\overline{1}}{2}$	1525-1545	125-175
N(1650)	****	$\frac{\overline{1}}{2}$	1645-1670	100-150
N(1675)	****	$\frac{5}{2}$ -	1670-1680	130-160
N(1685)	*	$\frac{1}{2}^{-}?$	1665-1675	15-45
N(1700)	***	$\frac{3}{2}$ -	1650-1750	100-300
N(1875)	***	$\frac{3}{2}$ -	1850-1920	120-250
N(1895)	****	$\frac{1}{2}^{-}$	1870-1920	80-200

Wrong Mass Ordering

In the traditional q^3 picture, the Roper N(1440) usually gets a mass $\sim 100~{\rm MeV}$ above N(1520) and N(1535), but not 100 MeV below it.

LQCD Data on N^{\ast}

Spectrum of Nucleons and Deltas at $m_{\pi} =$ 396 MeV, in units of Ω mass (HSC: PRD84 (2011) 074508)

NeD-2024

LQCD Data on N^{\ast}

Review paper: arXiv:1511.09146

On Roper

- $\bullet~N(1440)$ is usually blamed sitting at a wrong place or intruding the q^3 spectrum.
- N(1400) has been studied intensively in various pictures like $q^4\bar{q}$ pentaquark, q^3g hybrid, $q^3(q\bar{q})$ resonance, radial excitation of nucleon, ...

< □ > < 同 > < 回 > < Ξ > < Ξ

Introduction

Data of Helicity Transition Amplitude of $N_{1/2+}(1440)$

• The sign change in the helicity amplitude may suggest a node in the wave function, and hence N(1440) ia likely the first radial excitation state.

Physics (SUT)

Introduction

 $S_{1/2}$ Amplitudes of N(1535)/N(1520) in q^3 Picture [EPJA 58, 185 (2022)]

- \bullet Fitting A: N(1520) and N(1535) as L=1 excitations, taking the same spatial wave function
- Fitting B (C): N(1520) (N(1535)) is fitted alone as L = 1 excitations

- The results are upper limits of the three-quark contributions
- N(1520) and N(1535) resonances may have considerable other components besides $q^3 \ L=1$ three-quark state.

Image: A math a math

9/51

On $\Delta(1232)$

• $\Delta(1232)$ is traditionally interpreted as an $L=0 \ q^3$ resonance with S=3/2 and I=3/2,

• For an $L = 0 \ \Delta(1232)$, the helicity transition amplitude $S_{1/2}$ in $p\gamma^* \rightarrow \Delta(1232)$ vanishes in quark models.

Physics (SUT)

Ansatz on $\Delta(1232)\text{, }N(1440)\text{, }N(1520)$ and N(1535)

Considering

- Proton form factors and N(1440) transition amplitudes are well reproduced in q^3 picture [PRD105, 016008 (2022)]
- \bullet It is difficult, if not say impossible, to understand $S_{1/2}$ of N(1520) and N(1535) in q^3 picture
- Helicity transition amplitude $S_{1/2}$ of L=0 $\Delta(1232)$ vanishes.

One may assume

- $\Delta(1232)$ may have considerable L=2 components.
- N(1440) is dominantly the first redial excitation of q^3 .
- N(1520) and N(1535) may have large ground-state (L=0) pentaquark components.

Physics (SUT)

Wave Function of $\Delta(1232)$

• The spin-spatial part of $\Delta(1232)$ state may take the form in q^3 picture,

$$A \psi_{l=0}^{S} \chi^{S} + B \psi_{l=2}^{S} \chi^{S} + C \frac{1}{\sqrt{2}} \left(\psi_{l=2}^{\lambda} \chi^{\lambda} + \psi_{l=2}^{\rho} \chi^{\rho} \right),$$

with

$$\begin{split} \psi_{2m}^{S} &= Y_{2m}(\boldsymbol{\rho}) + Y_{2m}(\boldsymbol{\lambda}), \\ \psi_{2m}^{\rho} &= \left[Y_{1m_{\rho}}(\boldsymbol{\rho}) \otimes Y_{1m_{\lambda}}(\boldsymbol{\lambda})\right]_{2m}, \ \psi_{2m}^{\lambda} = Y_{2m}(\boldsymbol{\rho}) - Y_{2m}(\boldsymbol{\lambda}) \end{split}$$

• ψ^{lpha}_{lm} may be expanded in the complete basis of H.O. wave functions,

$$\psi_{lm}^{\alpha} = \sum_{n} a_n \, \Psi_{nlm}^{\alpha},$$

$$\Psi_{nlm}^{\alpha} = \sum_{n_{\lambda}, n_{\rho}, l_{\lambda}, l_{\rho}} A(n_{\lambda}, n_{\rho}, l_{\lambda}, l_{\rho}) \cdot \psi_{n_{\lambda} l_{\lambda} m_{\lambda}}(\boldsymbol{\lambda}) \cdot \psi_{n_{\rho} l_{\rho} m_{\rho}}(\boldsymbol{\rho})$$

2

Quark Core Contribution to $p\gamma \rightarrow \Delta(1232)$

- Helicity amplitudes of $p\gamma \to \Delta(1232)$

$$\begin{aligned} A_{1/2}^{q^3} &= \frac{1}{\sqrt{2K}} \left\langle N', S_z' = 1/2 \left| q_1' q_2' q_3' \right\rangle T^+ (q_1 q_2 q_3 \to q_1' q_2' q_3') \left\langle q_1 q_2 q_3 \left| N, S_z = -1/2 \right\rangle, \\ A_{3/2}^{q^3} &= \frac{1}{\sqrt{2K}} \left\langle N', S_z' = 3/2 \left| q_1' q_2' q_3' \right\rangle T^+ (q_1 q_2 q_3 \to q_1' q_2' q_3') \left\langle q_1 q_2 q_3 \left| N, S_z = 1/2 \right\rangle, \\ S_{1/2}^{q^3} &= \frac{1}{\sqrt{2K}} \left\langle N', S_z' = 1/2 \left| q_1' q_2' q_3' \right\rangle T^0 (q_1 q_2 q_3 \to q_1' q_2' q_3') \left\langle q_1 q_2 q_3 \left| N, S_z = 1/2 \right\rangle. \end{aligned}$$

$$\begin{split} T^{\lambda}(q_1q_2q_3 \to q_1'q_2'q_3') &= \langle q_1' | \, Q_1 \bar{u}_{s'}(p') \gamma^{\mu} u_s(p) \epsilon_{\mu}^{\lambda}(k) \, | q_1 \rangle \, \langle q_2'q_3' \, | \, q_2q_3 \rangle \\ \epsilon_{\mu}^0 &= \frac{1}{Q}(|\mathbf{k}|, 0, 0, \omega), \ \epsilon_{\mu}^+ = -\frac{1}{\sqrt{2}}(0, 1, i, 0), \ Q^2 &= -k^2, \ K = \frac{M_{N^*}^2 - M_N^2}{2M_{N^*}} \end{split}$$

(日) (四) (日) (日) (日)

Meson Cloud Contribution to $p\gamma \rightarrow \Delta(1232)$

- Interaction Lagrangians: $\mathcal{L}_{\pi\pi\gamma} = e\epsilon_{3jk}\pi_j\partial^{\nu}\pi_kA_{\nu},$ $\mathcal{L}_{qq\pi} = \frac{1}{2F}\partial_{\mu}\pi_i\bar{u}\gamma^{\mu}\gamma^5\tau^i u \qquad \Leftarrow F = 88 \text{ MeV}$
- Form factor: $\frac{1}{1+k^2/\Lambda_\pi^2}$, $\qquad \Longleftrightarrow \Lambda_\pi = 0.732~{\rm GeV}$
- Pauli-Villars Regularization: $\frac{1}{p^2 m_{\pi}^2} \rightarrow \frac{1}{p^2 m_{\pi}^2} \frac{1}{p^2 M^2}$, $\Leftarrow M = 0.154 \text{ GeV}$

Physics (SUT)

э

Helicity Amplitudes of $\Delta(1232)$ with L = 2 Components

Results of Helicity Transition Amplitudes of $p\gamma \rightarrow \Delta(1232)$

- For $S_{1/2}$, no contribution from $\Delta(1232)$ with L = 0. Only the L = 2 component contributes to $S_{1/2}$.
- \bullet In this work, $\Delta(1232)$ resonance consists of:

•
$$L = 0$$
: 83% ($A = 0.908$)

- Symmetric L = 2: 8% (B = 0.29)
- Mixed-symmetric L = 2: 9% (C = 0.3)

Pentaquarks

- Pentaquarks are states of four quarks and one antiquark, $q^4 \bar{q}$. QCD does not rule out the existence of pentaquarks, but there is no solid experimental evidence of compact pentaquarks.
- Pentaquarks may be analyzed under the fundamental representation of SU(n) for quarks and the conjugate representation of SU(n) for antiquarks, with n=2,3,3,6 for the spin, flavor, color and spin-flavor degree of freedom, respectively.
- The corresponding algebraic structure consists of the usual spin-flavor and color algebras

$$SU_{\rm sf}(6) \otimes SU_{\rm c}(3)$$
 (1)

with

$$SU_{\rm sf}(6) = SU_{\rm f}(3) \otimes SU_{\rm s}(2) \tag{2}$$

$q^4 \, \overline{q}$ Systems

- One may construct pentaquark states by considering
 - It is a color singlet;
 - ${\scriptstyle \bullet}$ It is antisymmetric under any permutation of q^4 configurations.
- The permutation symmetry of q^4 configurations is characterized by S_4 Young tabloids [4], [31], [22], [211] and [1111].
- That it is a color singlet demands that the color part must be a $[222]_1$ singlet.
- \bullet Since the color part of antiquark is a $[11]_3$ antitriplet

$$\psi_{[11]}^c(\bar{q}) = \boxed{\qquad} \tag{3}$$

the color wave function of q^4 must be a $[211]_3$ triplet

$$\psi_{[211]}^c(q^4) =$$

q^4 Wave Functions

• The total state of q^4 is antisymmetric implies that the orbital-spin-flavour part must be a [31] state

l

$$\psi_{[31]}^{osf}(q^4) =$$
(5)

which is the conjugacy of the Young tabloid of the colour part.

 $\bullet\,$ Total wave function of q^4 configuration may be written in the general form

$$\Psi^{(q^4)} = \sum_{i,j=\lambda,\rho,\eta} a_{ij} \psi^c_{[211]_i} \psi^{osf}_{[31]_j}$$
(6)

By applying the permutations of S_4 to the above equation, one gets,

$$\Psi_{A}^{(q^{4})} = \frac{1}{\sqrt{3}} \left(\psi_{[211]_{\lambda}}^{c} \psi_{[31]_{\rho}}^{osf} - \psi_{[211]_{\rho}}^{c} \psi_{[31]_{\lambda}}^{osf} + \psi_{[211]_{\eta}}^{c} \psi_{[31]_{\eta}}^{osf} \right)$$
(7)

Spatial-Spin-Flavor Configurations of q^4

All the possible spin-flavor, spin, and flavor configurations may be determined by the representation characters of S_4 .

	$[31]_{OSF}$
$[4]_{O}$	$[31]_{SF}$
$[1111]_O$	$[211]_{SF}$
$[22]_{O}$	$[31]_{SF}, [211]_{SF}$
$[211]_O$	$[31]_{SF}, [211]_{SF}, [22]_{SF}, [1111]_{SF}$
$[31]_{O}$	$[4]_{SF}, [31]_{SF}, [211]_{SF}, [22]_{SF}$

• For example for the $[31]_{FS}$ configuration,

 $\begin{array}{c} [31]_{FS} \\ \hline [31]_{FS} [31]_{F} [22]_{S} & [31]_{FS} [31]_{F} [31]_{S} & [31]_{FS} [31]_{F} [4]_{S} & [31]_{FS} [211]_{F} [22]_{S} \\ \hline [31]_{FS} [211]_{F} [31]_{S} & [31]_{FS} [22]_{F} [31]_{S} & [31]_{FS} [4]_{F} [31]_{S} \end{array}$

۰.

イロト イボト イヨト イヨ

Constituent Quark Model with Cornell-like Potential

• Realistic Hamiltonian for a N-quark system:

$$H = H_0 + H_{hyp}^{OGE},$$

$$H_0 = \sum_{k=1}^N (m_k + \frac{p_k^2}{2m_k}) + \sum_{i

$$H_{hyp}^{OGE} = -C_{OGE} \sum_{i
(8)$$$$

- The model parameters are determined by fitting theoretical results to experimental data:
 - 1. The mass of all the ground state baryons.

2. The mass of light baryon resonances up to $N \leq 2$, including the first radial excitation state N(1440), and orbital excited l = 1 and l = 2 baryons.

(日) (四) (日) (日) (日)

Ground State Pentaquark Mass Spectra

J^P	$q^4 ar q$ configurations	$(S^{q^4}, S^{\bar{q}}, S)$	$M^{EV}(q^4\bar{q})$
$\frac{5}{2}$ -	$\Psi^{sf}_{[31]_F[4]_S}(q^4\bar{q})$	(2,1/2,5/2)	2269
$\frac{3}{2}^{-}$	$\Psi^{sf}_{[4]_F[31]_S}(q^4\bar{q})$	(1,1/2,3/2)	2269
	$\left(\Psi^{sf}_{[31]_F[4]_S}(q^4\bar{q})\right)$	(2,1/2,3/2)	(1805)
	$\left(\Psi_{[31]_F[31]_S}^{sf}(q^4\bar{q})\right)$	(1,1/2,3/2)	(2269)
	$\Psi^{sf}_{[22]_F[31]_S}(q^4\bar{q})$	(1,1/2,3/2)	2049
$\frac{1}{2}^{-}$	$\Psi^{sf}_{[4]_F[31]_S}(q^4\bar{q})$	(1,1/2,1/2)	2562
	$\left(\Psi^{sf}_{[31]_F[31]_S}(q^4\bar{q})\right)$	(1,1/2,1/2)	(1986)
	$\left(\Psi^{sf}_{[31]_F[22]_S}(q^4\bar{q})\right)$	(0,1/2,1/2)	(2162)
	$\Psi^{sf}_{[22]_F[31]_S}(q^4\bar{q})$	(1,1/2,1/2)	1683

A Surprising Byproduct [PRD. 101, 076025 (2020)]:

- $q^4 \bar{q}$ state with $I(J^P) = \frac{1}{2}(\frac{1}{2})$ in $[31]_{FS}[22]_F[31]_S$ configuration has the lowest mass, 1683 MeV.
- The mass is quite close to the I=1/2 narrow resonance $N(1685),\,$ which can not be accommodated in the baryon spectrum in q^3 picture.

Physics (SUT)

Experimental Situation of N(1685)

- N(1685) was firstly reported in the photoproduction of η meson off the quasi-free neutron. Its width is less than 30 MeV, much less than the width of other low-lying nucleon resonances [PLB 647, 23-29(2007)].
- Quasifree Compton scattering $\gamma N \rightarrow \gamma N$ on the neutron [PRC 83, 022201(R) (2011)] and the invariant mass spectra of ηN at GRAAL [JETP Letters 106, 693-699(2017)]

Physics (SUT)

22 / 51

Experimental Situation of N(1685)

• A2 at Mainz MAMI accelerator, η photoproduction with deuterium and ${}^{3}He$ target also establish this narrow structure [PRL 111, 232001 (2013), PRL 117, 132502 (2016)].

Helicity Transition Amplitudes of N^* in $q^4 \bar{q}$ picture

Process with $\gamma q q$ vertex

Process with $\gamma q\bar{q}$ vertex

Physics (SUT)

N(1520) and N(1535) with q^3 and $q^4\bar{q}$ Components

• These baryon resonances may be expressed as linear combinations of an l = 1 q^3 state and ground $q^4 \bar{q}$ states which have the same quantum numbers as the q^3 state,

$$a_0|q^3
angle + \sum_lpha a_lpha |q^4 ar q
angle^lpha \,.$$

• We consider a simple case, where only the $[31]_{SF}[22]_F[31]_S$ pentaquark configuration is included in the present work. That is

$$|N(1520)\rangle = a_0 |q^3(l=1, s=3/2)\rangle + a_1 |q^4 \bar{q}(2049)\rangle,$$

$$|N(1535)\rangle = b_0 |q^3(l=1, s=1/2)\rangle + b_1 |q^4 \bar{q}(1683)\rangle$$

• Spatial wave functions of q^3 and $q^4\bar{q}$ pentaquark are fitted to the helicity amplitudes of N(1520) and N(1535) in the mixing pictures.

25 / 51

Helicity Transition Amplitudes of N(1520) and N(1535)

Helicity Transitions Amplitude of N(1520) with q^3 and $q^4\bar{q}$ Components

Fitting Results:

•
$$\lambda^c = 5$$

• $C_{(q^3)} : C_{(q^4\bar{q})} = 0.87 : 0.13$

Helicity Transition Amplitudes of N(1520) and N(1535)

Helicity Transitions Amplitude of N(1535) with q^3 and $q^4\bar{q}$ Components

• $\lambda^c = 5$

•
$$C_{(q^3)}: C_{(q^4\bar{q})} = 0.66: 0.34$$

< □ > < 同 >

Summary

- Helicity transition amplitude $S_{1/2}$ vanishes for $\Delta(1232)(L=0)$ in q^3 picture.
- $\Delta(1232)$ may comprise large L = 2 components.
- Inclusion of pentaquark components in N(1520) and N(1535) largely improves the results of helicity transition amplitude $S_{1/2}$.

Thank You Very Much for Your Patience

28 / 51

(日) (四) (日) (日) (日)

Form Factor and Helicity Transition Amplitudes in q^3 Picture

• Proton electric form factor G_E in the impulse approximation,

$$G_{E} = \left\langle N, S_{z}' = \frac{1}{2} \left| q_{1}' q_{2}' q_{3}' \right\rangle T_{B}(q_{1}q_{2}q_{3} \to q_{1}' q_{2}' q_{3}') \times \left\langle q_{1}q_{2}q_{3} \left| N, S_{z} = \frac{1}{2} \right\rangle \right|_{\text{Breit frame}}, \\ T_{s's}^{\lambda}(q_{1}q_{2}q_{3} \to q_{1}' q_{2}' q_{3}') = e_{3} \bar{u}_{s'}(q_{3}') \gamma^{\mu} u_{s}(q_{3}) \epsilon_{\mu}^{\lambda}(k) \left\langle q_{1}' q_{2}' \left| q_{1}q_{2} \right\rangle$$
(9)

In the Breit frame, the momenta of the initial and finil proton states and the photon are respectively $P_i = (E_N, 0, 0, k)$ and $P_f = (E_N, 0, 0, -k)$ and k = (0, 0, 0, k).

(日) (同) (日) (日)

Proton Form Factor and Quark Distribution

- Dashed Curves: Proton spatial wave function is imported from the mass spectrum calculations
- Solid Curves: Proton spatial wave function is fitted to experimental data.

Figures from [PRD **105**, 016008 (2022)] One may conclude:

• The three-quark core dominantly contribute to the proton electric form factor.

30 / 51

(日) (同) (日) (日)

Spatial-Spin-Favor Configurations of q^4

- Definition: Let $\Gamma = \{D(g)\}$ be the representation of the group G of order n, the traces of the n D(g) form the characters of the representation Γ .
- The orthogonal theorem in group theory leads to the property for the characters of a group,

$$\chi(g) = \sum_{\beta=1}^{h} m_{\beta} \chi^{(\beta)}(g), \quad m_{\beta} = \frac{1}{n} \sum_{g} \chi^{(\beta)*}(g) \chi(g)$$
(10)

where g are group elements, $\chi(g)$ are the characters of a product (reducible) representation of the group and $\chi^{(\beta)}(g)$ are the characters of the irreducible representation labeled by β .

• From the above equation and the properties of characters, one gets

$$m_{[31]_{OSF}} = \frac{1}{n} \sum_{g} \chi^{[31]_{OSF}*}(g) \left(\chi^{[X]_O}(g) \chi^{[Y]_{SF}}(g) \right)$$
(11)

• By applying Eq. (11), we get all the spatial-spin-flavor configurations. The spin-flavor configurations of the q^4 cluster of pentaquarks can be derive the same way.

Physics (SUT)

1/51

Helicity Transitions Amplitude of N(1520) in mixing picture

• Helicity amplitudes of both $A_{3/2}$ and $S_{1/2}$ were better fitted in the mixing q^3 and pentaquark picture.

< □ > < □ > < □ > < □ > < □ >

Helicity Transitions Amplitude of ${\cal N}(1535)$ in q^3 picture

• N(1535): $C_{(q^3)}: C_{(q^4\bar{q})} = 0.66: 0.34$

- Pentaquark component largely contributes to $S_{1/2}$, more than the contribution of the q^3 components, but very little to $A_{1/2}$.
- Inclusion of sizable pentaquark contributions in the three-quark state helps to give a better description of helicity amplitudes of N(1520) and N(1535).

(日) (同) (日) (日)

Contributions of q^3 and Pentaquarks for varied λ^c (added)

• The ratios of contributions of three-quark and pentaquark components in N(1520) and N(1535) when we get best fit for varied range of λ^c from 1-10.

λ^c	1	2	3	4	5	6	7	8	9	10	20
N(1520): $\frac{C_{(q^3)}}{C_{(q^4\bar{q})}}$	$\frac{0.650}{0.350}$	$\tfrac{0.590}{0.410}$	$\tfrac{0.538}{0.462}$	$\tfrac{0.510}{0.490}$	$\tfrac{0.498}{0.501}$	$\tfrac{0.497}{0.503}$	$\tfrac{0.499}{0,501}$	$\tfrac{0.502}{0.498}$	$\tfrac{0.504}{0.496}$	$\tfrac{0.506}{0.494}$	$\tfrac{0.509}{0.491}$
N(1535): $\frac{C_{(q^3)}}{C_{(q^4\bar{q})}}$	$\frac{0.624}{0.376}$	$\tfrac{0.618}{0.382}$	$\tfrac{0.620}{0.380}$	$\tfrac{0.630}{0.370}$	$\tfrac{0.657}{0.343}$	$\tfrac{0.692}{0.308}$	$\tfrac{0.720}{0.280}$	$\tfrac{0.739}{0.261}$	$\tfrac{0.751}{0.249}$	$\frac{0.758}{0.242}$	$\tfrac{0.774}{0.226}$

- The pentaquark components contribute to N(1520) at maximum 50.3% when λ =6, to N(1535) at maximum 38.2% when λ =2.
- λ =4 should be the best case for both N(1520) and N(1535), $N(1520): C_{(q^3)}: C_{(q^4\bar{q})} = 0.51: 0.49,$ $N(1535): C_{(q^3)}: C_{(q^4\bar{q})} = 0.63: 0.37.$

34 / 51

Model parameters

- The model parameters are determined by fitting the theoretical results to the experimental data:
 - 1. The mass of all the ground state baryons.

2. The light baryon resonances in Harmonic oscillation model of energy level $N \leq 2$, including the first radial excitation state N(1440), and orbital excited l = 1 and l = 2 baryons.

All these baryons are believed to be mainly 3q states whose masses were taken from Particle Data Group.

• The 3 model coupling constants and 4 constituent quark masses are fitted,

$$m_u = m_d = 327 \text{ MeV}, \quad m_s = 498 \text{ MeV},$$

 $m_c = 1642 \text{ MeV}, \quad m_b = 4960 \text{ MeV},$
 $C_m = 18.3 \text{ MeV}, \quad a = 49500 \text{ MeV}^2, \quad b = 0.75$
(12)

(日) (同) (日) (日)

Possible Mixtures of q^3 and $q^4 \bar{q}$ States

- We expect to derive the right mass for $N(1520),\,N(1535),\,\Delta(1620)$ and $\Delta(1700)$ by mixing the q^3 states with $q^4\,\bar{q}$ components.
- All four q^3 states take the same mass, 1380 MeV. As examples, we take the lowest pentaquark states (except the 1683 MeV state) to mix with the four q^3 states.

J^P	ψ_1 State	ψ_2 State	q^3	$q^4 ar q$ config.	$q^4 ar q$ Mass
$\frac{1}{2}^{-}$	1530	1882	1380	$q^3 s \bar{s}_{[211]_F[31]_S}$	2032
$\frac{3}{2}^{-}$	1515	1895	1380	$q^4 \bar{q}_{[31]_F[4]_S}$	2025
$\frac{1}{2}^{-}$	1610	1893	1380	$q^4 \bar{q}_{[31]_F[31]_S}$	2123
$\frac{3}{2}^{-}$	1700	1923	1380	$q^3 s \bar{s}_{[22]_F[31]_S}$	2243

- $N(1520)3/2^-$ and $N(1875)3/2^-$ form a non-strange pair, and $N(1535)1/2^-$ and $N(1895)1/2^-$ form a strange pair.
- $\Delta(1620)1/2^-$ and $\Delta(1900)1/2^-$ form a non-strange pair. $\Delta(1700)3/2^-$ and $\Delta(1940)3/2^-$ form a strange pair.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Normalized q^3 symmetric type spatial wave functions

• N(1520) and N(1535) wave functions are fitted to experimental data of helicity transition amplitudes:

$$b_n = \{0.799, -0.143, 0.563, 0.045, 0.136, 0.059\},\$$

$$c_n = \{0.852, -0.081, 0.515, -0.031, -0.014, 0.009\},\$$

$$d_n = \{0.613, 0.134, 0.631, -0.261, 0.352, -0.128\}$$
(13)

$$\begin{split} & \Psi_{1}^{[21]\rho} & \phi_{011}(\rho)\phi_{000}(\lambda) \\ & \Psi_{2}^{[21]\rho} & \frac{\sqrt{10}}{4}\phi_{111}(\rho)\phi_{000}(\lambda) + \frac{\sqrt{6}}{4}\phi_{011}(\rho)\phi_{100}(\lambda) \\ & \Psi_{3}^{[21]\rho} & \frac{\sqrt{10}}{4}\phi_{211}(\rho)\phi_{000}(\lambda) + \frac{\sqrt{6}}{4}\phi_{011}(\rho)\phi_{100}(\lambda) + \frac{\sqrt{3}}{4}\phi_{011}(\rho)\phi_{200}(\lambda) \\ & \Psi_{3}^{[21]\rho} & \frac{\sqrt{10}}{4}\phi_{311}(\rho)\phi_{000}(\lambda) + \frac{\sqrt{21}}{8}\phi_{211}(\rho)\phi_{100}(\lambda) + \frac{\sqrt{15}}{8}\phi_{111}(\rho)\phi_{200}(\lambda) + \frac{\sqrt{7}}{8}\phi_{011}(\rho)\phi_{300}(\lambda) \\ & \Psi_{5}^{[21]\rho} & \frac{\sqrt{66}}{16}\phi_{411}(\rho)\phi_{000}(\lambda) + \frac{\sqrt{18}}{8}\phi_{311}(\rho)\phi_{100}(\lambda) + \frac{\sqrt{15}}{8}\phi_{211}(\rho)\phi_{200}(\lambda) + \frac{\sqrt{10}}{8}\phi_{111}(\rho)\phi_{300}(\lambda) \\ & + \frac{\sqrt{18}}{16}\phi_{011}(\rho)\phi_{400}(\lambda) \\ & \Psi_{6}^{[21]\rho} & \frac{\sqrt{56}}{64}\phi_{511}(\rho)\phi_{000}(\lambda) + \frac{3\sqrt{10}}{64}\phi_{411}(\rho)\phi_{100}(\lambda) + \frac{15}{32}\phi_{311}(\rho)\phi_{200}(\lambda) + \frac{5\sqrt{7}}{32^{7}}\phi_{211}(\rho)\phi_{300}(\lambda) \\ & + \frac{15\sqrt{2}}{64}\phi_{111}(\rho)\phi_{400}(\lambda) + \frac{3\sqrt{22}}{64}\phi_{011}(\rho)\phi_{500}(\lambda) \\ \hline & \Psi_{1}^{[21]\lambda} & \frac{\sqrt{10}}{4}\phi_{000}(\rho)\phi_{111}(\lambda) + \frac{\sqrt{6}}{4}\phi_{100}(\rho)\phi_{011}(\lambda) \\ & \Psi_{3}^{[21]\lambda} & \frac{\sqrt{10}}{4}\phi_{000}(\rho)\phi_{211}(\lambda) + \frac{\sqrt{3}}{4}\phi_{100}(\rho)\phi_{111}(\lambda) + \frac{\sqrt{15}}{8}\phi_{200}(\rho)\phi_{011}(\lambda) \\ & \Psi_{5}^{[21]\lambda} & \frac{\sqrt{66}}{66}\phi_{000}(\rho)\phi_{311}(\lambda) + \frac{\sqrt{18}}{8}\phi_{100}(\rho)\phi_{311}(\lambda) + \frac{\sqrt{15}}{8}\phi_{200}(\rho)\phi_{211}(\lambda) + \frac{\sqrt{16}}{8}\phi_{300}(\rho)\phi_{011}(\lambda) \\ & + \frac{\sqrt{18}}{16}\phi_{400}(\rho)\phi_{011}(\lambda) \\ & \Psi_{5}^{[21]\lambda} & \frac{\sqrt{58}}{66}\phi_{000}(\rho)\phi_{411}(\lambda) + \frac{\sqrt{18}}{8}\phi_{100}(\rho)\phi_{311}(\lambda) + \frac{\sqrt{15}}{8}\phi_{200}(\rho)\phi_{211}(\lambda) + \frac{\sqrt{10}}{8}\phi_{300}(\rho)\phi_{111}(\lambda) \\ & + \frac{\sqrt{18}}{16}\phi_{400}(\rho)\phi_{011}(\lambda) \\ & + \frac{\sqrt{18}}{16}\phi_{400}(\rho)\phi_{401}(\lambda) \\ & + \frac{\sqrt{18}}{16}\phi_{400}(\rho)\phi_{401}(\lambda) \\ & + \frac{\sqrt{18}}{16}\phi_{400}(\rho)\phi_{401}(\lambda) \\ & + \frac{\sqrt{18}}{16}\phi_{400}(\rho)\phi_{401}(\lambda$$

Nucleon resonances of positive parity applied to fit the model parameters.

$(\Gamma, {}^{2s+1}D, N, L^P)$	Status	J^P	$M^{exp}(MeV)$	$M^{cal}(MeV)$
$N(56, {}^{2}8, 0, 0^{+})$	****	$\frac{1}{2}^{+}$	939	939
$N(56, {}^{2}8, 2, 0^{+})$	****	$\frac{1}{2}^{+}$	N(1440)	1499
$N(56, {}^{2}8, 2, 2^{+})$	****	$\frac{5}{2}$ +	N(1720)	1655
$N(56, {}^{2}8, 2, 2^{+})$	****	$\frac{\bar{3}}{2}^{+}$	N(1680)	1655
$N(20, {}^{2}1, 2, 1^{+})$	***	$\frac{1}{2}^{+}$	N(1880)	1749
$N(20, {}^{4}1, 2, 1^{+})$	-	$\frac{\bar{3}}{2}^{+}$	missing	1749
$N(70, {}^{2}10, 2, 0^{+})$	****	$\frac{1}{2}^{+}$	N(1710)	1631
$N(70, {}^{4}10, 2, 0^{+})$	****	$\frac{3}{2}$ +	N(1900)	1924
$N(70, {}^{2}10, 2, 2^{+})$	-	$\frac{3}{2}$ +	missing	1702
$N(70, {}^{2}10, 2, 2^{+})$	**	$\frac{5}{2}$ +	N(1860)	1702
$N(70, {}^{4}10, 2, 2^{+})$	***	$\frac{1}{2}$ +	N(2100)	1994
$N(70, {}^{4}10, 2, 2^{+})$	*	$\frac{3}{2}$ +	N(2040)	1994
$N(70, {}^{4}10, 2, 2^{+})$	**	$\frac{5}{2}$ +	N(2000)	1994
$N(70, {}^{4}10, 2, 2^{+})$	**	$\frac{1}{2}^{+}$	N(1990)	1994

メロト メロト メヨト メヨト

38 / 51

æ

Baryons Masses in the Constituent Quark Model

$(\Gamma, {}^{2s+1}D, N, L^P)$	Status	J^P	$M^{exp}(MeV)$	$M^{cal}(MeV)$
$N(70, ^{2}10, 1, 1^{-})$	****	$\frac{3}{2}$ -	N(1520)	1380
$N(70, {}^{2}10, 1, 1^{-})$	****	$\frac{1}{2}$ -	N(1535)	1380
$N(70, {}^{4}10, 1, 1^{-})$	****	$\frac{1}{2}$ -	N(1650)	1672
$N(70, {}^{4}10, 1, 1^{-})$	****	$\frac{5}{2}$ -	N(1675)	1672
$N(70, {}^{4}10, 1, 1^{-})$	***	$\frac{3}{2}$ -	N(1700)	1672
$\Delta(70,^{2}10,1,1^{-})$	****	$\frac{1}{2}$ -	Δ (1620)	1380
$\Delta(70,^210,1,1^-)$	****	$\frac{3}{2}$ -	Δ (1700)	1380

- All the ground state baryons are well reproduced.
- $N(1520),\,N(1535),\,\Delta(1620)$ and $\Delta(1700)$ are poorly described.
- \bullet No room for N(1685) in the q^3 negative party spectrum.

(日) (同) (日) (日)

Baryons masses assumption

• A simple unitary transformation of the baryon wave functions may take the form,

$$\begin{pmatrix} |\psi_1\rangle \\ |\psi_2\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} |q^3\rangle \\ |q^4\overline{q}\rangle \end{pmatrix},$$
(14)

where ψ_1 and ψ_2 are respectively the lower and higher negative-parity physical states, and the mixing angle θ between the q^3 and $q^4\bar{q}$ states is generally complex.

• The masses of the physical states, M_{ψ_1} and M_{ψ_2} are derived as follows:

$$M_{\psi_{1}} = M_{q^{3}} \cos^{2} \theta + M_{q^{4}\bar{q}} \sin^{2} \theta - m_{\delta} ,$$

$$M_{\psi_{2}} = M_{q^{3}} \sin^{2} \theta + M_{q^{4}\bar{q}} \cos^{2} \theta + m_{\delta} ,$$

$$m_{\delta} = \frac{(M_{q^{4}\bar{q}} - M_{q^{3}})}{2} \tan 2\theta \sin 2\theta$$
(15)

 $\bullet\,$ We always have the mass condition: $M_{\psi_1}+M_{\psi_2}=M_{q^3}+M_{q^4\bar{q}}.$

• General wave functions for lower and higher mixing states,

$$\psi_{1} = A|q^{3}\rangle + B|q^{4}\bar{q}\rangle,$$

$$\psi_{2} = B|q^{3}\rangle - A|q^{4}\bar{q}\rangle,$$

$$A^{2} + B^{2} = 1.$$
(16)

40 / 51

Helicity Transitions Amplitude of N(1520) in mixing picture

- From the relation of the mixing three-quark and pentaquark picture, we can derive the helicity amplitudes of higher energy state.
- \bullet Compare to N(1875)3/2 $^-$ and N(1895)1/2 $^-$

< □ > < 同 >

→ Ξ →

Helicity Transitions Amplitude of N(1535) in q^3 picture

- Upper limit of both three quark and pentaquark pictures, not same as the mixing states of the mass eigenstates.
- Predictions of possible mixing states of higher energy.

LARGE Model Parameters

- The model parameters are determined by fitting the theoretical results to the experimental data:
 - 1. The mass of all the ground state baryons.

2. The light baryon resonances in Harmonic oscillation model of energy level $N \leq 2$, including the first radial excitation state N(1440), and orbital excited l = 1 and l = 2 baryons.

All these baryons are believed to be mainly 3q states whose masses were taken from Particle Data Group.

• The 3 model coupling constants and 4 constituent quark masses are fitted,

$$\begin{split} m_u &= m_d = 327 \,\,\mathrm{MeV}\,, \quad m_s = 498 \,\,\mathrm{MeV}\,, \\ m_c &= 1642 \,\,\mathrm{MeV}\,, \quad m_b = 4960 \,\,\mathrm{MeV}\,, \\ C_m &= 18.3 \,\,\mathrm{MeV}, \quad a = 49500 \,\,\mathrm{MeV^2}, \quad b = 0.75 \end{split}$$

(日) (同) (日) (日)

Feynman Diagrams with one gluon exchange

 $T_{1}^{g} = (-ieg_{s}^{2})\bar{u}_{s'}(p_{3})\gamma_{S}\epsilon_{S}^{\lambda}(k)QS_{F}(p_{3}+p_{4}+p_{5})\lambda^{\alpha}u_{s}(pp_{3})\bar{u}_{s'}(p_{4})D_{F}(p_{4}+p_{5})\lambda^{\alpha}v_{s}(p_{5})$ $T_{2}^{g} = (-ieg_{s}^{2})\bar{u}_{s'}(p_{3})\lambda^{\alpha}u_{s}(pp_{3})D_{F}(k-p_{4}-p_{5})\bar{u}_{s'}(p_{4})S_{F}(k-p_{5})\gamma_{S}\epsilon_{S}^{\lambda}(k)Q\lambda^{\alpha}v_{s}(p_{5})$ (18)

• Effective vertex diagram was supposed to contain all the possible interaction including gluon, meson exchange...

helicity amplitudes in effective scalar vertex and photon creation diagrams

- $A_{1/2}$, $A_{3/2}$ and $S_{1/2}$ of ground state pentaquark in possible configurations for t channel.
- helicity amplitudes of isospin I = 1/2 for effective scalar vertex diagram,

$q^4 ar q$ configurations	J^P	$M(q^4 \bar{q})$ (MeV)	$A_{1/2}^{q^4\overline{q}}$
$\Psi^{sf}_{[4]_F[31]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	2562	$-\frac{\sqrt{5}}{9\sqrt{3}}T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}}$
	$\frac{3}{2}^{-}$	2269	$\frac{\sqrt{5}}{18\sqrt{6}}T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}}$
$\Psi^{sf}_{[31]_F[31]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	2123	$-\frac{1}{6\sqrt{3}}T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}}$
	$\frac{3}{2}^{-}$	2049	$-\frac{\sqrt{2}}{3\sqrt{3}}T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}}$
$\Psi^{sf}_{[31]_F[22]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	2025	$\frac{1}{2\sqrt{3}}T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}}$
$\Psi^{sf}_{[22]_F[31]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	1683	$-\frac{1}{6\sqrt{3}}T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}}$
	$\frac{3}{2}^{-}$	2049	$-\frac{\sqrt{2}}{3\sqrt{3}}T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}}$

helicity amplitudes in effective scalar vertex and photon creation diagrams

$q^4 \bar{q}$ configurations	J^P	$M(q^4 \bar{q})$ (MeV)	$S_{1/2}^{q^4\overline{q}}$
$\Psi^{sf}_{[31]_F[31]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	2123	$-\frac{1}{6\sqrt{3}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$
	$\frac{3}{2}^{-}$	2049	$-\frac{\sqrt{2}}{3\sqrt{3}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$
$\Psi^{sf}_{[31]_F[22]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	2025	$\frac{1}{2\sqrt{3}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$
$\Psi^{sf}_{[22]_F[31]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	1683	$-\frac{1}{6\sqrt{3}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$
	$\frac{3}{2}^{-}$	2049	$-\frac{\sqrt{2}}{3\sqrt{3}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$
$q^4 \bar{q}$ configurations	J^P	$M(q^4 \bar{q})$ (MeV)	$A^{q^4\overline{q}}_{3/2}$
$\Psi^{sf}_{[4]_F[31]_S}(q^4\bar{q})$	$\frac{3}{2}^{-}$	2269	$\frac{\sqrt{5}}{6\sqrt{2}}T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}}$

 $\bullet \ A_{1/2}, \ A_{3/2}$ and $S_{1/2}$ of ground state pentaquark in possible configurations for s channel.

Dhursier	(SUT)	Ш.	licity Amplitudes	NoD 202/		46 / E
				・ロン ・白ン ・ヨン・	≅) (≣	୬ ୯ ୯
	$\Psi^{s_J}_{[22]_F[31]_S}(q^4\bar{q})$	$\frac{3}{2}^{-}$	2049	$\frac{1}{3\sqrt{2}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$		
	$\Psi^{sf}_{[31]_F[31]_S}(q^4\bar{q})$	$\frac{3}{2}$	2049	$-\frac{1}{3\sqrt{2}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$		
	$q^4 \bar{q}$ configurations	J^P	$M(q^4 \bar{q})$ (MeV)	$A^{q^4\overline{q}}_{3/2}$		

${\cal A}_{1/2}$ and ${\cal S}_{1/2}$ of pentaquarks in photon creation diagram

$q^4 \bar{q}$ configurations	J^P	$M(q^4 \bar{q})$ (MeV)	$A_{1/2}^{q^4\overline{q}}$
$\Psi^{sf}_{[31]_F[31]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	2123	$\frac{1}{6\sqrt{3}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$
	$\frac{3}{2}^{-}$	2049	$-\frac{1}{3\sqrt{6}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$
$\Psi^{sf}_{[31]_F[22]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	2025	$-\frac{1}{2\sqrt{3}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$
$\Psi^{sf}_{[22]_F[31]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	1683	$-\frac{1}{3\sqrt{6}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$
	$\frac{3}{2}^{-}$	2049	$\frac{1}{3\sqrt{6}}T_{S_{\frac{1}{2}},S_{\frac{1}{2}}}$
$q^4 \bar{q}$ configurations	J^P	$M(q^4 \bar{q})$ (MeV)	$S_{1/2}^{q^4\overline{q}}$
$\Psi^{sf}_{[31]_F[31]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	2123	$\frac{1}{6\sqrt{3}} \left(T_{S_{-\frac{1}{2}},S_{\frac{1}{2}}} - 2T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}} \right)$
	$\frac{3}{2}^{-}$	2049	$-\frac{1}{3\sqrt{6}} \left(T_{S_{-\frac{1}{2}},S_{\frac{1}{2}}} + T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}} \right)$
$\Psi^{sf}_{[31]_F[22]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	2025	$\frac{1}{2\sqrt{3}}T_{S_{-\frac{1}{2}},S_{\frac{1}{2}}}$
$\Psi^{sf}_{[22]_F[31]_S}(q^4\bar{q})$	$\frac{1}{2}^{-}$	1683	$\frac{1}{3\sqrt{6}} \left(T_{S_{-\frac{1}{2}},S_{\frac{1}{2}}} + T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}} \right)$
	$\frac{3}{2}^{-}$	2049	$\frac{1}{3\sqrt{6}} \left(T_{S_{-\frac{1}{2}},S_{\frac{1}{2}}} + T_{S_{\frac{1}{2}},S_{-\frac{1}{2}}} \right)$
Physics (SUT)		Helicity Amplitudes	NeD-2024

Matrix elements of the single quark transition $\gamma q \to q'$ for the helicity $\lambda=0,1$

$$T_{\uparrow\uparrow\uparrow}^{0} = \left[\frac{(E'+m)(E+m)}{4E'E}\right]^{\frac{1}{2}} \left[1 + \frac{p'_{z}p_{z} + 2p'_{-}p_{+}}{(E'+m)(E+m)}\right],$$

$$T_{\uparrow\downarrow\downarrow}^{0} = \left[\frac{(E'+m)(E+m)}{4E'E}\right]^{\frac{1}{2}} \left[\frac{\sqrt{2}(p'_{z}p_{-} - p'_{-}p_{z})}{(E'+m)(E+m)}\right],$$

$$T_{\downarrow\downarrow\uparrow}^{0} = \left[\frac{(E'+m)(E+m)}{4E'E}\right]^{\frac{1}{2}} \left[\frac{\sqrt{2}(-p'_{z}p_{+} + p'_{+}p_{z})}{(E'+m)(E+m)}\right],$$

$$T_{\downarrow\downarrow\downarrow}^{0} = \left[\frac{(E'+m)(E+m)}{4E'E}\right]^{\frac{1}{2}} \left[1 + \frac{p'_{z}p_{z} + 2p'_{+}p_{-}}{(E'+m)(E+m)}\right],$$

$$T_{\uparrow\uparrow\downarrow}^{+} = \left[\frac{(E'+m)(E+m)}{4E'E}\right]^{\frac{1}{2}} \left[\frac{2p_{+}}{E+m}\right],$$

$$T_{\uparrow\downarrow\downarrow}^{+} = 0,$$

$$T_{\downarrow\downarrow\downarrow}^{+} = \left[\frac{(E'+m)(E+m)}{4E'E}\right]^{\frac{1}{2}} \left[\frac{2p'_{+}}{E'+m}\right], \quad \text{True of the expension of the expensi$$

Physics (SUT)

Helicity Amplitudes

NeD-2024

Matrix elements of quark-antiquark pair creation for the helicity $\lambda=0,1$

$$\mathcal{M}_{\frac{1}{2}\frac{1}{2}}^{(0)} = ie\sqrt{\frac{(E'+m)(E+m)}{4E'E}} \left[\frac{p_{-}}{E+m} + \frac{p'_{-}}{E'+m}\right]$$
(20)

$$\mathcal{M}_{\frac{1}{2}-\frac{1}{2}}^{(0)} = -ie\sqrt{\frac{(E'+m)(E+m)}{4E'E}} \left[\frac{p_z}{E+m} + \frac{p'_z}{E'+m}\right]$$
(21)

$$\mathcal{M}_{-\frac{1}{2}\frac{1}{2}}^{(0)} = ie\sqrt{\frac{(E'+m)(E+m)}{4E'E}} \left[\frac{-p_z}{E+m} + \frac{-p'_z}{E'+m}\right]$$
(22)

$$\mathcal{M}_{-\frac{1}{2}-\frac{1}{2}}^{(0)} = -ie\sqrt{\frac{(E'+m)(E+m)}{4E'E}} \left[\frac{p_+}{E+m} + \frac{p'_+}{E'+m}\right]$$
(23)

$$\mathcal{M}_{\frac{1}{2}\frac{1}{2}}^{(1)} = i\sqrt{2}e\sqrt{\frac{(E'+m)(E+m)}{4E'E}} \left[1 - \frac{p'_z p_z}{(E'+m)(E+m)}\right]$$
(24)

$$\mathcal{M}_{\frac{1}{2}-\frac{1}{2}}^{(1)} = -i\sqrt{2}e\sqrt{\frac{(E'+m)(E+m)}{4E'E}} \left[\frac{\sqrt{2}p'_{z}p_{+}}{(E'+m)(E+m)}\right]$$
(25)

$$\mathcal{M}_{-\frac{1}{2}\frac{1}{2}}^{(1)} = i\sqrt{2}e\sqrt{\frac{(E'+m)(E+m)}{4E'E}} \left[\frac{-\sqrt{2}p'_+p_z}{(E'+m)(E+m)}\right]$$
(26)

$$\mathcal{M}_{-\frac{1}{2}-\frac{1}{2}}^{(1)} = -i\sqrt{2}e\sqrt{\frac{(E'+m)(E+m)}{4E'E}} \left[\frac{2p'_{+}p_{+}}{(E'_{+}+m)(E+m)}\right] \tag{27}$$

Physics (SUT)

49 / 51

$q^4 \bar{q}$ spatial wave functions

• The spatial wave functions are in symmetric type for ground state pentaquarks. And we constructed the spatial wave functions to high orders in the harmonic oscillator interaction as complete bases.

$\Psi^{q^4 \overline{q}}_{000_{[4]_S}}$	$\psi^{q^4}_{000}{}_{[4]_S}\psi_{0,0}(ec{m{\xi}})$
$\Psi^{q^4 \overline{q}}_{200_{[4]_S}}$	$\psi^{q^4}_{200_{[4]_S}}\psi_{0,0}(ec{\xi}),\psi^{q^4}_{000_{[4]_S}}\psi_{1,0}(ec{\xi})$
$\Psi^{q^4 \overline{q}}_{400_{[4]_S}}$	$\psi^{q^4}_{400_{[4]_S}}\psi_{0,0}(\vec{\xi}),\psi^{q^4}_{200_{[4]_S}}\psi_{1,0}(\vec{\xi}),\psi^{q^4}_{000_{[4]_S}}\psi_{2,0}(\vec{\xi})$
$\Psi^{q^4 \overline{q}}_{600_{[4]_S}}$	$\psi^{q^4}_{600_{[4]_S}}\psi_{0,0}(\vec{\xi}),\psi^{q^4}_{400_{[4]_S}}\psi_{1,0}(\vec{\xi}),\psi^{q^4}_{200_{[4]_S}}\psi_{2,0}(\vec{\xi}),\psi^{q^4}_{000_{[4]_S}}\psi_{3,0}(\vec{\xi})$
$\Psi^{q^4 \overline{q}}_{800_{[4]_S}}$	$\psi_{800_{[4]_S}}^{q^4}\psi_{0,0}(\vec{\xi}),\psi_{600_{[4]_S}}^{q^4}\psi_{1,0}(\vec{\xi}),\psi_{400_{[4]_S}}^{q^4}\psi_{2,0}(\vec{\xi}),\psi_{200_{[4]_S}}^{q^4}\psi_{3,0}(\vec{\xi}),\psi_{000_{[4]_S}}^{q^4}\psi_{4,0}(\vec{\xi})$
$\Psi^{q^4 \overline{q}}_{1000_{[4]_S}}$	$\psi_{1000_{[4]_S}}^{q^4}\psi_{0,0}(\vec{\xi}), \psi_{800_{[4]_S}}^{q^4}\psi_{1,0}(\vec{\xi}), \psi_{600_{[4]_S}}^{q^4}\psi_{2,0}(\vec{\xi}), \psi_{400_{[4]_S}}^{q^4}\psi_{3,0}(\vec{\xi}), \psi_{200_{[4]_S}}^{q^4}\psi_{4,0}(\vec{\xi})$
$\Psi^{q^4 \overline{q}}_{1200_{[4]_S}}$	$\psi_{1200_{[4]_S}}^{q4}\psi_{0,0}(\vec{\xi}),\psi_{1000_{[4]_S}}^{q4}\psi_{1,0}(\vec{\xi}),\psi_{800_{[4]_S}}^{q4}\psi_{2,0}(\vec{\xi}),\psi_{600_{[4]_S}}^{q4}\psi_{3,0}(\vec{\xi}),\psi_{400_{[4]_S}}^{q4}\psi_{4,0}(\vec{\xi})$
$\Psi^{q^4 \overline{q}}_{1400_{[4]_S}}$	$\psi_{1400_{[4]_S}}^{q^4}\psi_{0,0}(\vec{\xi}), \psi_{1200_{[4]_S}}^{q^4}\psi_{1,0}(\vec{\xi}), \psi_{1000_{[4]_S}}^{q^4}\psi_{2,0}(\vec{\xi}), \psi_{800_{[4]_S}}^{q^4}\psi_{3,0}(\vec{\xi}), \psi_{600_{[4]_S}}^{q^4}\psi_{4,0}(\vec{\xi})$
$\Psi^{q^4 \overline{q}}_{1600_{[4]_S}}$	$\left \psi_{1600_{[4]_S}}^{q^4}\psi_{0,0}(\vec{\xi}),\psi_{1400_{[4]_S}}^{q^4}\psi_{1,0}(\vec{\xi}),\psi_{1200_{[4]_S}}^{q^4}\psi_{2,0}(\vec{\xi}),\psi_{1000_{[4]_S}}^{q^4}\psi_{3,0}(\vec{\xi}),\psi_{800_{[4]_S}}^{q^4}\psi_{4,0}(\vec{\xi})\right $
$\Psi^{q^4 \overline{q}}_{1800_{[4]_S}}$	$ \psi_{1800_{[4]_S}}^{q^4} \psi_{0,0}(\vec{\xi}), \psi_{1600_{[4]_S}}^{q^4} \psi_{1,0}(\vec{\xi}), \psi_{1400_{[4]_S}}^{q^4} \psi_{2,0}(\vec{\xi}), \psi_{1200_{[4]_S}}^{q^4} \psi_{3,0}(\vec{\xi}), \psi_{1000_{[4]_S}}^{q^4} \psi_{4,0}(\vec{\xi}) $
$\Psi^{q^4 \overline{q}}_{2000_{[4]_S}}$	$ \psi_{2000_{[4]_S}}^{q^4} \psi_{0,0}(\vec{\xi}), \psi_{1800_{[4]_S}}^{q^4} \psi_{1,0}(\vec{\xi}), \psi_{1600_{[4]_S}}^{q^4} \psi_{2,0}(\vec{\xi}), \psi_{1400_{[4]_S}}^{q^4} \psi_{3,0}(\vec{\xi}), \psi_{1200_{[4]_S}}^{q^4} \psi_{4,0}(\vec{\xi}) $
$\Psi^{q^4 \overline{q}}_{2200_{[4]_S}}$	$\left \psi_{2200_{[4]_{S}}}^{q^{4}}\psi_{0,0}(\vec{\xi}),\psi_{2000_{[4]_{S}}}^{q^{4}}\psi_{1,0}(\vec{\xi}),\psi_{1800_{[4]_{S}}}^{q^{4}}\psi_{2,0}(\vec{\xi}),\psi_{1600_{[4]_{S}}}^{q^{4}}\psi_{3,0}(\vec{\xi}),\psi_{1400_{[4]_{S}}}^{q^{4}}\psi_{4,0}(\vec{\xi})\right $

(日) (同) (日) (日)

q^4 sub-group spatial wave function

NLM	Wave function
0 00	$\Psi^{0}_{00S} = \Psi_{000}(\rho)\Psi_{000}(\lambda)\Psi_{000}(\eta)$
2 00	$\Psi_{00S}^2 = \frac{1}{\sqrt{3}} \left[\Psi_{100}(\rho) \Psi_{000}(\lambda) \Psi_{000}(\eta) + \Psi_{000}(\rho) \Psi_{100}(\lambda) \Psi_{000}(\eta) + \Psi_{000}(\rho) \Psi_{000}(\lambda) \Psi_{100}(\eta) \right]$
4 00	$\Psi_{00S}^4 = \sqrt{\frac{5}{33}} [\Psi_{200}(\rho)\Psi_{000}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{200}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\lambda)\Psi_{200}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00$
	$+\sqrt{\frac{6}{5}}\Psi_{100}(\rho)\Psi_{100}(\lambda)\Psi_{000}(\eta)+\sqrt{\frac{6}{5}}\Psi_{100}(\rho)\Psi_{000}(\lambda)\Psi_{100}(\eta)+\sqrt{\frac{6}{5}}\Psi_{000}(\rho)\Psi_{100}(\lambda)\Psi_{100}(\eta)]$
6 00	$\Psi_{00S}^{6} = \sqrt{\frac{35}{429}} [\Psi_{300}(\rho)\Psi_{000}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{300}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\lambda)\Psi_{300}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\rho)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\rho)\Psi_{000}(\rho)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)$
	$+\frac{3}{\sqrt{7}}\Psi_{200}(\rho)\Psi_{100}(\lambda)\Psi_{000}(\eta)+\frac{3}{\sqrt{7}}\Psi_{200}(\rho)\Psi_{000}(\lambda)\Psi_{100}(\eta)+\frac{3}{\sqrt{7}}\Psi_{000}(\rho)\Psi_{200}(\lambda)\Psi_{100}(\eta)$
	$+\frac{3}{\sqrt{7}}\Psi_{100}(\rho)\Psi_{200}(\lambda)\Psi_{000}(\eta)+\frac{3}{\sqrt{7}}\Psi_{100}(\rho)\Psi_{000}(\lambda)\Psi_{200}(\eta)+\frac{3}{\sqrt{7}}\Psi_{000}(\rho)\Psi_{100}(\lambda)\Psi_{200}(\eta)$
	$+3\sqrt{rac{6}{35}}\Psi_{100}(ho)\Psi_{100}(\lambda)\Psi_{100}(\eta)]$
8 00	$\Psi_{00S}^{8} = \sqrt{\frac{7}{143}} [\Psi_{400}(\rho)\Psi_{000}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{400}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\lambda)\Psi_{400}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\lambda)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\rho)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{000}(\rho)\Psi_{000}(\eta) + \Psi_{000}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_{00}(\rho)\Psi_$
	$+\frac{2}{\sqrt{3}}\Psi_{300}(\rho)\Psi_{100}(\lambda)\Psi_{000}(\eta)+\frac{2}{\sqrt{3}}\Psi_{300}(\rho)\Psi_{000}(\lambda)\Psi_{100}(\eta)+\frac{2}{\sqrt{3}}\Psi_{000}(\rho)\Psi_{300}(\lambda)\Psi_{100}(\eta)$
	$+\frac{2}{\sqrt{3}}\Psi_{100}(\rho)\Psi_{300}(\lambda)\Psi_{000}(\eta) +\frac{2}{\sqrt{3}}\Psi_{100}(\rho)\Psi_{000}(\lambda)\Psi_{300}(\eta) +\frac{2}{\sqrt{3}}\Psi_{000}(\rho)\Psi_{100}(\lambda)\Psi_{300}(\eta)$
	$+\sqrt{\frac{10}{7}}\Psi_{200}(\rho)\Psi_{200}(\lambda)\Psi_{000}(\eta)+\sqrt{\frac{10}{7}}\Psi_{200}(\rho)\Psi_{000}(\lambda)\Psi_{200}(\eta)+\sqrt{\frac{10}{7}}\Psi_{000}(\rho)\Psi_{200}(\lambda)\Psi_{200}(\eta)$
	$+2\sqrt{\frac{3}{7}}\Psi_{200}(\rho)\Psi_{100}(\lambda)\Psi_{100}(\eta)+2\sqrt{\frac{3}{7}}\Psi_{100}(\rho)\Psi_{200}(\lambda)\Psi_{100}(\eta)+2\sqrt{\frac{3}{7}}\Psi_{100}(\rho)\Psi_{100}(\lambda)\Psi_{200}(\eta)]$

2

メロト メタト メヨト メヨト