Shear viscosity in an NJL pion gas

Michael Buballa

TORIC workshop, Heraklion, Crete, September 5-8, 2011

Collaborators

- based on
- Klaus Heckmann, Ph.D. thesis, TU Darmstadt, 2011
- K. Heckmann, M.B., J. Wambach, work in progress

Motivation

- flow data at RHIC

[P. \& U. Romatschke, PRL (2007)]

- conventional interpretation: QGP = "nearly perfect fluid" $\left(\eta / s \sim \frac{1}{4 \pi}\right)$

Motivation

[P. \& U. Romatschke, PRL (2007)]

[H. Niemi et al., PRL (2011)]

- conventional interpretation: QGP = "nearly perfect fluid" $\left(\eta / s \sim \frac{1}{4 \pi}\right)$
- more recent: hydrodynamics more sensitive to hadronic phase

Motivation

[P. \& U. Romatschke, PRL (2007)]

[H. Niemi et al., PRL (2011)]

- conventional interpretation: QGP = "nearly perfect fluid" $\left(\eta / s \sim \frac{1}{4 \pi}\right)$
- more recent: hydrodynamics more sensitive to hadronic phase
\rightarrow aim: microscopic understanding of the shear viscosity in the hadronic phase

Motivation

[P. \& U. Romatschke, PRL (2007)]

[H. Niemi et al., PRL (2011)]

- conventional interpretation: QGP = "nearly perfect fluid" $\left(\eta / s \sim \frac{1}{4 \pi}\right)$
- more recent: hydrodynamics more sensitive to hadronic phase
\rightarrow aim: microscopic understanding of the shear viscosity in the hadronic phase
- here: BUU approach to $\pi \pi$-scattering in the NJL model
- correct low-temperature limit
- imprints of the chiral crossover and the compositeness of the pions

Viscous relativistic hydrodynamics

- basic ingredients and conservation laws:
- fluid 4-velocity $u^{\mu}(x), \quad u^{\mu}(x) u_{\mu}(x)=1$
- energy-momentum tensor $T^{\mu \nu}(x)$,
$\partial_{\mu} T^{\mu \nu}(x)=0$
- particle current $J^{\mu}(x)=n(x) u^{\mu}(x)$,
$\partial_{\mu} J^{\mu}(x)=0$
- additional assumption:

Eos + local thermal equilibrium $\rightarrow \epsilon(x)=\epsilon(p(x))$

Viscous relativistic hydrodynamics

- basic ingredients and conservation laws:
- fluid 4-velocity $u^{\mu}(x), \quad u^{\mu}(x) u_{\mu}(x)=1$
- energy-momentum tensor $T^{\mu \nu}(x)$,
$\partial_{\mu} T^{\mu \nu}(x)=0$
- particle current $J^{\mu}(x)=n(x) u^{\mu}(x)$,
$\partial_{\mu} J^{\mu}(x)=0$
- additional assumption:

Eos + local thermal equilibrium $\rightarrow \epsilon(x)=\epsilon(p(x))$

- gradient expansion:
$T^{\mu \nu}=T^{(0) \mu \nu}+T^{(1) \mu \nu}+\ldots$
(and similar for J^{μ})
- ideal fluid:

$$
T^{(0) \mu \nu}=(\epsilon+p) u^{\mu} u^{\nu}-p g^{\mu \nu}
$$

- 1st-order viscous correction:

$$
\begin{aligned}
T^{(1) \mu \nu}= & \eta\left(\partial^{\mu} u^{\nu}+\partial^{\nu} u^{\mu}+u^{\mu} u^{\lambda} \partial_{\lambda} u^{\nu}+u^{\nu} u^{\lambda} \partial_{\lambda} u^{\mu}\right) \\
& +\left(\zeta-\frac{2}{3} \eta\right)\left(g^{\mu \nu}-u^{\mu} u^{\nu}\right) \partial_{\lambda} u^{\lambda}
\end{aligned}
$$

Quantum relativistic kinetic theory

- underlying assumption: mean free path $\lambda \gg$ interaction range r

Quantum relativistic kinetic theory

- underlying assumption: mean free path $\lambda \gg$ interaction range r
- particle phase-space distribution function: $f_{a}(\vec{x}, \vec{p}, t)$

$$
\rightarrow \quad T^{\mu \nu}(x)=\sum_{a} g_{a} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{\mu} p^{\nu}}{E_{p}} f_{a}(\vec{x}, \vec{p}, t)
$$

Quantum relativistic kinetic theory

- underlying assumption: mean free path $\lambda \gg$ interaction range r
- particle phase-space distribution function: $f_{a}(\vec{x}, \vec{p}, t)$

$$
\rightarrow \quad T^{\mu \nu}(x)=\sum_{a} g_{a} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{\mu} p^{\nu}}{E_{p}} f_{a}(\vec{x}, \vec{p}, t)
$$

- Boltzmann-Uehling-Uhlenbeck (BUU) equation $(2 \rightarrow 2)$

$$
\begin{aligned}
\frac{d}{d t} f_{a}(\vec{x}, \vec{p}, t)=\sum_{b} \frac{g_{b}}{1+\delta_{a b}} \int \frac{d^{3} p^{\prime}}{(2 \pi)^{3}} & \int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \int \frac{d^{3} p_{1}^{\prime}}{(2 \pi)^{3}}\left\{\left|\mathcal{M}_{a b}\right|^{2} \frac{(2 \pi)^{4} \delta^{4}\left(p+p_{1}-p^{\prime}-p_{1}^{\prime}\right)}{16 E E_{1} E^{\prime} E_{1}^{\prime}}\right. \\
& \left.\times\left[f_{a}^{\prime} f_{1 b}^{\prime}\left(1+f_{a}\right)\left(1+f_{1 b}\right)-f_{a} f_{1 b}\left(1+f_{a}^{\prime}\right)\left(1+f_{1 b}^{\prime}\right)\right]\right\}
\end{aligned}
$$

Quantum relativistic kinetic theory

- underlying assumption: mean free path $\lambda \gg$ interaction range r
- particle phase-space distribution function: $f_{a}(\vec{x}, \vec{p}, t)$

$$
\rightarrow \quad T^{\mu \nu}(x)=\sum_{a} g_{a} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{\mu} p^{\nu}}{E_{p}} f_{a}(\vec{x}, \vec{p}, t)
$$

- Boltzmann-Uehling-Uhlenbeck (BUU) equation $(2 \rightarrow 2)$

$$
\begin{aligned}
& \frac{d}{d t} f_{a}(\vec{x}, \vec{p}, t)=\sum_{b} \frac{g_{b}}{1+\delta_{a b}} \int \frac{d^{3} p^{\prime}}{(2 \pi)^{3}} \int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \int \frac{d^{3} p_{1}^{\prime}}{(2 \pi)^{3}}\left\{\left|\mathcal{M}_{a b}\right|^{2} \frac{(2 \pi)^{4} \delta^{4}\left(p+p_{1}-p^{\prime}-p_{1}^{\prime}\right)}{16 E E_{1} E^{\prime} E_{1}^{\prime}}\right. \\
&\left.\times\left[f_{a}^{\prime} f_{1 b}^{\prime}\left(1+f_{a}\right)\left(1+f_{1 b}\right)-f_{a} f_{1 b}\left(1+f_{a}^{\prime}\right)\left(1+f_{1 b}^{\prime}\right)\right]\right\}
\end{aligned}
$$

- linearization ($2^{\text {nd }}$-order Chapman-Enskog expansion) $f_{a}=f_{a}^{(0)}+f_{a}^{(1)}+\ldots, \quad$ local equilibrium: $\quad f_{a}^{(0)}(x, p)=\frac{1}{\exp \left[\left(p^{\mu} u_{\mu}(x)-\mu_{\pi}(x)\right) / T(x)-1\right]}$

Quantum relativistic kinetic theory

- underlying assumption: mean free path $\lambda \gg$ interaction range r
- particle phase-space distribution function: $f_{a}(\vec{x}, \vec{p}, t)$

$$
\rightarrow \quad T^{\mu \nu}(x)=\sum_{a} g_{a} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{\mu} p^{\nu}}{E_{p}} f_{a}(\vec{x}, \vec{p}, t)
$$

- Boltzmann-Uehling-Uhlenbeck (BUU) equation $(2 \rightarrow 2)$

$$
\begin{aligned}
& \frac{d}{d t} f_{a}(\vec{x}, \vec{p}, t)=\sum_{b} \frac{g_{b}}{1+\delta_{a b}} \int \frac{d^{3} p^{\prime}}{(2 \pi)^{3}} \int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \int \frac{d^{3} p_{1}^{\prime}}{(2 \pi)^{3}}\left\{\left|\mathcal{M}_{a b}\right|^{2} \frac{(2 \pi)^{4} \delta^{4}\left(p+p_{1}-p^{\prime}-p_{1}^{\prime}\right)}{16 E E_{1} E^{\prime} E_{1}^{\prime}}\right. \\
&\left.\times\left[f_{a}^{\prime} f_{1 b}^{\prime}\left(1+f_{a}\right)\left(1+f_{1 b}\right)-f_{a} f_{1 b}\left(1+f_{a}^{\prime}\right)\left(1+f_{1 b}^{\prime}\right)\right]\right\}
\end{aligned}
$$

- linearization ($2^{\text {nd }}$-order Chapman-Enskog expansion) $f_{a}=f_{a}^{(0)}+f_{a}^{(1)}+\ldots, \quad$ local equilibrium: $\quad f_{a}^{(0)}(x, p)=\frac{1}{\exp \left[\left(p^{\mu} u_{\mu}(x)-\mu_{\pi}(x)\right) / T(x)-1\right]}$
\rightarrow linear integral equation for η

Quantum relativistic kinetic theory

- underlying assumption: mean free path $\lambda \gg$ interaction range r
- particle phase-space distribution function: $f_{a}(\vec{x}, \vec{p}, t)$

$$
\rightarrow \quad T^{\mu \nu}(x)=\sum_{a} g_{a} \int \frac{d^{3} p}{(2 \pi)^{3}} \frac{p^{\mu} p^{\nu}}{E_{p}} f_{a}(\vec{x}, \vec{p}, t)
$$

- Boltzmann-Uehling-Uhlenbeck (BUU) equation ($2 \rightarrow 2$)

$$
\begin{aligned}
\frac{d}{d t} f_{a}(\vec{x}, \vec{p}, t)=\sum_{b} \frac{g_{b}}{1+\delta_{a b}} \int \frac{d^{3} p^{\prime}}{(2 \pi)^{3}} & \int \frac{d^{3} p_{1}}{(2 \pi)^{3}} \int \frac{d^{3} p_{1}^{\prime}}{(2 \pi)^{3}}\left\{\left|\mathcal{M}_{a b}\right|^{2} \frac{(2 \pi)^{4} \delta^{4}\left(p+p_{1}-p^{\prime}-p_{1}^{\prime}\right)}{16 E E_{1} E^{\prime} E_{1}^{\prime}}\right. \\
& \left.\times\left[f_{a}^{\prime} f_{1 b}^{\prime}\left(1+f_{a}\right)\left(1+f_{1 b}\right)-f_{a} f_{1 b}\left(1+f_{a}^{\prime}\right)\left(1+f_{1 b}^{\prime}\right)\right]\right\}
\end{aligned}
$$

- linearization ($2^{\text {nd }}$-order Chapman-Enskog expansion) $f_{a}=f_{a}^{(0)}+f_{a}^{(1)}+\ldots, \quad$ local equilibrium: $\quad f_{a}^{(0)}(x, p)=\frac{1}{\exp \left[\left(p^{\mu} u_{\mu}(x)-\mu_{\pi}(x)\right) / T(x)-1\right]}$
\rightarrow linear integral equation for η
- physics input: scattering matrix element $\mathcal{M}_{a b}$ here: $\pi \pi \rightarrow \pi \pi$ in NJL

Mesons in the NJL model

- Lagrangian: $\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+g\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]$
- gap equation: $\rightarrow \rightarrow+$ dynamical quark masses
- mesons (RPA):

Mesons in the NJL model

- Lagrangian: $\mathcal{L}=\bar{\psi}(i \not \partial-m) \psi+g\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]$
- gap equation: $\rightarrow \rightarrow+$ dynamical quark masses
- mesons (RPA):

- in-medium masses:

Mesons in the NJL model

- Lagrangian: $\mathcal{L}=\bar{\psi}(i \not \partial\rangle-m) \psi+g\left[(\bar{\psi} \psi)^{2}+\left(\bar{\psi} i \gamma_{5} \vec{\tau} \psi\right)^{2}\right]$
\rightarrow gap equation: $\rightarrow=\rightarrow+$ dynamical quark masses
- mesons (RPA):

- in-medium masses:

- characteristic temperatures: [Quack et al., PLB (1995)]
- σ-dissociation temperature:

$$
\begin{aligned}
& m_{\sigma}\left(T_{\text {diss }}\right)=2 m_{\pi}\left(T_{\text {diss }}\right) \\
& \text { here: } \quad T_{\text {diss }}=180 \mathrm{MeV}
\end{aligned}
$$

- Mott temperature:

$$
\begin{aligned}
& m_{\pi}\left(T_{\text {Mott }}\right)=2 m_{\pi}\left(T_{\text {Mott }}\right) \\
& \text { here: } \quad T_{\text {Mott }}=199 \mathrm{MeV}
\end{aligned}
$$

In-medium $\pi \pi$-scattering

- scattering amplitude
[Bernard et al., PLB (1991), Schulze, JPG (1995)]

- leading order $1 / N_{c}$
- to be taken in s-, t-, and u-channel
- consistent with chiral low-energy theorems

In-medium $\pi \pi$-scattering

- scattering amplitude
[Bernard et al., PLB (1991), Schulze, JPG (1995)]

- leading order $1 / N_{c}$
- to be taken in s-, t-, and u-channel
- consistent with chiral low-energy theorems
- scattering length

$$
a^{\prime}=\frac{1}{32 \pi m_{\pi}} \mathcal{M}_{\pi \pi}^{l}\left(s=4 m_{\pi}^{2}, t=u=0\right)
$$

- chiral expansion [Weinberg, PRL (1966)]

$$
a_{W}^{0}=\frac{7 m_{\pi}}{32 \pi f_{\pi}^{2}}, \quad a_{W}^{2}=-\frac{2 m_{\pi}}{32 \pi f_{\pi}^{2}}
$$

In-medium $\pi \pi$-scattering

- scattering amplitude
[Bernard et al., PLB (1991), Schulze, JPG (1995)]

- leading order $1 / N_{c}$
- to be taken in s-, t-, and u-channel
- consistent with chiral low-energy theorems
- scattering length

$$
a^{\prime}=\frac{1}{32 \pi m_{\pi}} \mathcal{M}_{\pi \pi}^{\prime}\left(s=4 m_{\pi}^{2}, t=u=0\right)
$$

- chiral expansion [Weinberg, PRL (1966)]

$$
a_{W}^{0}=\frac{7 m_{\pi}}{32 \pi f_{\pi}^{2}}, \quad a_{W}^{2}=-\frac{2 m_{\pi}}{32 \pi f_{\pi}^{2}}
$$

- numerical results
cf. [Quack et al. PLB (1995)]

- Weinberg values at low T
- "Feshbach resonances" at $T_{\text {diss }}$ and $T_{\text {Mott }}$

In-medium cross section

- isospin averaged cross section: $\left(\frac{d \sigma}{d \Omega}\right)_{c m}=\frac{1}{9} \sum_{l=0}^{2}(2 l+1) \frac{\left|\mathcal{M}_{\pi \pi}^{\prime}\right|^{2}}{64 \pi^{2} s}$
$-i \mathcal{M}_{\pi \pi}=>+\square$

In-medium cross section

- isospin averaged cross section: $\quad\left(\frac{d \sigma}{d \Omega}\right)_{c m}=\frac{1}{9} \sum_{l=0}^{2}(2 l+1) \frac{\left|\mathcal{M}_{\pi \pi}^{\prime}\right|^{2}}{64 \pi^{2} s}$
$-i \mathcal{M}_{\pi \pi}=>+\square$
- approximations:

1. Weinberg amplitude

$$
\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a_{w}^{\prime}
$$

(T and momentum independent)
2. evaluate \mathcal{M} at threshold

$$
\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a^{\prime}(T)
$$

In-medium cross section

- isospin averaged cross section: $\left(\frac{d \sigma}{d \Omega}\right)_{c m}=\frac{1}{9} \sum_{l=0}^{2}(2 l+1) \frac{\left|\mathcal{M}_{\pi \pi}^{\prime}\right|^{2}}{64 \pi^{2} s}$
- $i \mathcal{M}_{\pi \pi}=\downarrow \circ<+\square$
- approximations:
total cross section ($T=0$)

1. Weinberg amplitude

$$
\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a_{w}^{\prime}
$$

(T and momentum independent)
2. evaluate \mathcal{M} at threshold

$$
\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a^{\prime}(T)
$$

In-medium cross section

- isospin averaged cross section: $\left(\frac{d \sigma}{d \Omega}\right)_{c m}=\frac{1}{9} \sum_{l=0}^{2}(2 l+1) \frac{\left|\mathcal{M}_{\pi \pi}^{\prime}\right|^{2}}{64 \pi^{2} s}$
$-i \mathcal{M}_{\pi \pi}=>+\square$
- approximations:
total cross section ($T=150 \mathrm{MeV}$)

1. Weinberg amplitude

$$
\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a_{w}^{\prime}
$$

(T and momentum independent)
2. evaluate \mathcal{M} at threshold

$$
\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a^{\prime}(T)
$$

In-medium cross section

isospin averaged cross section: $\left(\frac{d \sigma}{d \Omega}\right)_{c m}=\frac{1}{9} \sum_{l=0}^{2}(2 l+1) \frac{\left|\mathcal{M}_{\pi \pi}^{\prime}\right|^{2}}{64 \pi^{2} s}$
$-i \mathcal{M}_{\pi \pi}=>+\square$

- approximations:
total cross section ($T=177 \mathrm{MeV}$)

1. Weinberg amplitude

$$
\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a_{w}^{\prime}
$$

(T and momentum independent)
2. evaluate \mathcal{M} at threshold

$$
\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a^{\prime}(T)
$$

In-medium cross section

- isospin averaged cross section: $\quad\left(\frac{d \sigma}{d \Omega}\right)_{c m}=\frac{1}{9} \sum_{l=0}^{2}(2 l+1) \frac{\left|\mathcal{M}_{\pi \pi}^{\prime}\right|^{2}}{64 \pi^{2} s}$
- $i \mathcal{M}_{\pi \pi}=\downarrow \circ<+\square$
- approximations:
total cross section ($T=188 \mathrm{MeV}$)

1. Weinberg amplitude

$$
\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a_{W}^{\prime}
$$

(T and momentum independent)
2. evaluate \mathcal{M} at threshold

$$
\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a^{\prime}(T)
$$

In-medium cross section

- isospin averaged cross section: $\left(\frac{d \sigma}{d \Omega}\right)_{c m}=\frac{1}{9} \sum_{l=0}^{2}(2 l+1) \frac{\left|\mathcal{M}_{\pi \pi}^{\prime}\right|^{2}}{64 \pi^{2} s}$
$-i \mathcal{M}_{\pi \pi}=\downarrow \circ\langle+\square$
- approximations:
total cross section ($T=0$)

1. Weinberg amplitude
$\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a_{W}^{\prime}$
(T and momentum independent)
2. evaluate \mathcal{M} at threshold
$\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a^{\prime}(T)$
3. keep momentum dependence of the σ exchange (but still evaluate quark triangles and boxes at threshold)

In-medium cross section

- isospin averaged cross section: $\quad\left(\frac{d \sigma}{d \Omega}\right)_{c m}=\frac{1}{9} \sum_{l=0}^{2}(2 l+1) \frac{\left|\mathcal{M}_{\pi \pi}^{\prime}\right|^{2}}{64 \pi^{2} s}$
- $i \mathcal{M}_{\pi \pi}=\downarrow \circ<+\square$
- approximations:
total cross section ($T=0$)

1. Weinberg amplitude
$\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a_{W}^{\prime}$
(T and momentum independent)
2. evaluate \mathcal{M} at threshold
$\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a^{\prime}(T)$
3. keep momentum dependence of the σ exchange (but still evaluate quark triangles and boxes at threshold)

In-medium cross section

- isospin averaged cross section: $\left(\frac{d \sigma}{d \Omega}\right)_{c m}=\frac{1}{9} \sum_{l=0}^{2}(2 l+1) \frac{\left|\mathcal{M}_{\pi \pi}^{\prime}\right|^{2}}{64 \pi^{2} s}$
$-i \mathcal{M}_{\pi \pi}=\downarrow \circ\langle+\square$
- approximations:
total cross section ($T=150 \mathrm{MeV}$)

1. Weinberg amplitude
$\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a_{W}^{\prime}$
(T and momentum independent)
2. evaluate \mathcal{M} at threshold $\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a^{\prime}(T)$
3. keep momentum dependence of the σ exchange (but still evaluate quark triangles and boxes at threshold)

(1)

In-medium cross section

- isospin averaged cross section: $\left(\frac{d \sigma}{d \Omega}\right)_{c m}=\frac{1}{9} \sum_{l=0}^{2}(2 l+1) \frac{\left|\mathcal{M}_{\pi \pi}^{\prime}\right|^{2}}{64 \pi^{2} s}$
$-i \mathcal{M}_{\pi \pi}=\downarrow \circ\langle+\square$
- approximations:
total cross section ($T=177 \mathrm{MeV}$)

1. Weinberg amplitude
$\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a_{W}^{\prime}$
(T and momentum independent)
2. evaluate \mathcal{M} at threshold
$\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a^{\prime}(T)$
3. keep momentum dependence of the σ exchange (but still evaluate quark triangles and boxes at threshold)

(1)

In-medium cross section

- isospin averaged cross section: $\left(\frac{d \sigma}{d \Omega}\right)_{c m}=\frac{1}{9} \sum_{l=0}^{2}(2 l+1) \frac{\left|\mathcal{M}_{\pi \pi}^{\prime}\right|^{2}}{64 \pi^{2} s}$
$-i \mathcal{M}_{\pi \pi}=\downarrow \circ\langle+\square$
- approximations:
total cross section ($T=188 \mathrm{MeV}$)

1. Weinberg amplitude
$\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a_{W}^{\prime}$
(T and momentum independent)
2. evaluate \mathcal{M} at threshold
$\mathcal{M}_{\pi \pi}^{\prime}=32 \pi m_{\pi} a^{\prime}(T)$
3. keep momentum dependence of the σ exchange (but still evaluate quark triangles and boxes at threshold)

0

Including the sigma-decay width

- physical inconsistency:
$\sigma \leftrightarrow \pi \pi$ considered in scattering, but not in RPA sigma propagator
\Rightarrow width strongly underestimated

Including the sigma-decay width

- physical inconsistency:
$\sigma \leftrightarrow \pi \pi$ considered in scattering,
but not in RPA sigma propagator
\Rightarrow width strongly underestimated
\rightarrow include
- $1 / N_{c}$-correction term
- but there are many more
\Rightarrow inconsistency with chiral symmetry

Including the sigma-decay width

- physical inconsistency:
$\sigma \leftrightarrow \pi \pi$ considered in scattering,
but not in RPA sigma propagator
\Rightarrow width strongly underestimated
\rightarrow include
- $1 / N_{c}$-correction term
- but there are many more
\Rightarrow inconsistency with chiral symmetry
\rightarrow include only imaginary part:

$$
\begin{aligned}
\Pi^{d r e s s e d} & =\Pi_{\sigma}^{R P A}+\operatorname{Im} \Pi_{\sigma}^{\pi \pi} \\
D_{\sigma}^{d r e s s e d} & =\frac{-2 g}{1-2 g \Pi_{\sigma}^{\text {dressed }}}
\end{aligned}
$$

Including the sigma-decay width

- physical inconsistency:
$\sigma \leftrightarrow \pi \pi$ considered in scattering, but not in RPA sigma propagator
\Rightarrow width strongly underestimated
\rightarrow include
- $1 / N_{c}$-correction term
- but there are many more
\Rightarrow inconsistency with chiral symmetry
\rightarrow include only imaginary part:

$$
\begin{aligned}
\Pi^{\text {dressed }} & =\Pi_{\sigma}^{R P A}+\operatorname{Im} \Pi_{\sigma}^{\pi \pi} \\
D_{\sigma}^{\text {dressed }} & =\frac{-2 g}{1-2 g \Pi_{\sigma}^{\text {Iosesed }}}
\end{aligned}
$$

- (unnormalized) spectral function

$$
\rho_{\sigma}(q)=-2 \operatorname{lm} D_{\sigma}(q)
$$

$$
T=0
$$

Including the sigma-decay width

- physical inconsistency:
$\sigma \leftrightarrow \pi \pi$ considered in scattering, but not in RPA sigma propagator
\Rightarrow width strongly underestimated
\rightarrow include
- $1 / N_{c}$-correction term
- but there are many more
\Rightarrow inconsistency with chiral symmetry
\rightarrow include only imaginary part:

$$
\begin{aligned}
\Pi^{\text {dressed }} & =\Pi_{\sigma}^{R P A}+\operatorname{Im} \Pi_{\sigma}^{\pi \pi} \\
D_{\sigma}^{\text {dressed }} & =\frac{-2 g}{1-2 g \Pi_{\sigma}^{\text {Iosesed }}}
\end{aligned}
$$

- (unnormalized) spectral function

$$
\rho_{\sigma}(q)=-2 \operatorname{lm} D_{\sigma}(q)
$$

$T=150 \mathrm{MeV}$

Including the sigma-decay width

- physical inconsistency:
$\sigma \leftrightarrow \pi \pi$ considered in scattering, but not in RPA sigma propagator
\Rightarrow width strongly underestimated
\rightarrow include

- $1 / N_{c}$-correction term
- but there are many more
\Rightarrow inconsistency with chiral symmetry
\rightarrow include only imaginary part:

$$
\begin{aligned}
\Pi^{d r e s s e d} & =\Pi_{\sigma}^{R P A}+\operatorname{Im} \Pi_{\sigma}^{\pi \pi} \\
D_{\sigma}^{d r e s s e d} & =\frac{-2 g}{1-2 g \Pi_{\sigma}^{\text {dressed }}}
\end{aligned}
$$

- (unnormalized) spectral function

$$
\rho_{\sigma}(q)=-2 \operatorname{Im} D_{\sigma}(q)
$$

$$
T=177 \mathrm{MeV}
$$

Including the sigma-decay width

- physical inconsistency:
$\sigma \leftrightarrow \pi \pi$ considered in scattering, but not in RPA sigma propagator
\Rightarrow width strongly underestimated
\rightarrow include

- $1 / N_{c}$-correction term
- but there are many more
\Rightarrow inconsistency with chiral symmetry
\rightarrow include only imaginary part:

$$
\begin{aligned}
\Pi^{d r e s s e d} & =\Pi_{\sigma}^{R P A}+\operatorname{Im} \Pi_{\sigma}^{\pi \pi} \\
D_{\sigma}^{d r e s s e d} & =\frac{-2 g}{1-2 g \Pi_{\sigma}^{\text {dressed }}}
\end{aligned}
$$

- (unnormalized) spectral function

$$
\rho_{\sigma}(q)=-2 \operatorname{lm} D_{\sigma}(q)
$$

$T=188 \mathrm{MeV}$

Cross section with sigma-decay width

- $T=0$:
$\sigma=\sigma_{\text {Weinberg }}$ at threshold

Cross section with sigma-decay width

- $T=0$:
$\sigma=\sigma_{\text {Weinberg }}$ at threshold
- small and intermediate T :
$\sigma \gg \sigma(\mathcal{M})_{\text {thresh }} \gg \sigma_{\text {Weinberg }}$

Cross section with sigma-decay width

- $T=0$:
$\sigma=\sigma_{\text {Weinberg }}$ at threshold
- small and intermediate T :
$\sigma \gg \sigma(\mathcal{M})_{\text {thresh }} \gg \sigma_{\text {Weinberg }}$
- $T \approx T_{\text {diss }}:$
$\sigma(\mathcal{M})_{\text {thresh }} \gg \sigma \gg \sigma_{\text {Weinberg }}$

Cross section with sigma-decay width

total cross section ($T=188 \mathrm{MeV}$)

- $T=0$:
$\sigma=\sigma_{\text {Weinberg }}$ at threshold
- small and intermediate T :
$\sigma \gg \sigma(\mathcal{M})_{\text {thresh }} \gg \sigma_{\text {Weinberg }}$
- $T \approx T_{\text {diss }}:$
$\sigma(\mathcal{M})_{\text {thresh }} \gg \sigma \gg \sigma_{\text {Weinberg }}$
- $T>T_{\text {diss }}$:
$\sigma \rightarrow \pi \pi$ irrelevant

Shear viscosity: numerical results

- Weinberg
- $\mathcal{M}=\mathcal{M}_{\text {threshold }}$
- RPA σ-propagator
- dressed σ-propagator
- validity of the kinetic aproach:
- criterion: $\quad \frac{\lambda}{r} \gg 1$ (dilute gas)
- $\lambda=\frac{1}{n \sigma}$ mean free path
- $r=$ interaction range
(e.g., $1 / m_{\sigma}, 1 / m_{\pi}$, hard sphere: $\sqrt{\frac{\sigma}{\pi}}$)

Fluidity

- most popular measure: η / s
- η from our "best model" (dressed σ-meson)
- entropy density of an ideal pion gas
- alternative measure: L_{η} / L_{n} [Liao \& Koch, PRC (2010)]
- $L_{\eta}=\frac{\eta}{h c_{s}}, \quad L_{n}=n^{-1 / 3}$

Fluidity

- most popular measure: η / s
- η from our "best model" (dressed σ-meson)
- entropy density of an ideal pion gas
- alternative measure: L_{η} / L_{n} [Liao \& Koch, PRC (2010)]
- $L_{\eta}=\frac{\eta}{h c_{s}}, \quad L_{n}=n^{-1 / 3}$

- qualitative agreement!

Fluidity

- most popular measure: η / s
- η from our "best model" (dressed σ-meson)
- entropy density of an ideal pion gas
- alternative measure: L_{η} / L_{n} [Liao \& Koch, PRC (2010)]
- $L_{n}=\frac{\eta}{h c_{s}}, \quad L_{n}=n^{-1 / 3}$

- qualitative agreement!
- simple estimate: $\eta \approx \frac{1}{3} n \bar{p} \lambda=\frac{\bar{p}}{3 \sigma(\bar{p})}$

Fluidity

- most popular measure: η / s
- η from our "best model" (dressed σ-meson)
- entropy density of an ideal pion gas
- alternative measure: L_{η} / L_{n} [Liao \& Koch, PRC (2010)]
- $L_{\eta}=\frac{\eta}{h c_{s}}, \quad L_{n}=n^{-1 / 3}$

- qualitative agreement!
- simple estimate: $\eta \approx \frac{1}{3} n \bar{p} \lambda=\frac{\bar{p}}{3 \sigma(\bar{p})} \quad$ works quite well ...

Conclusions

- summary:
- shear viscosity from $\pi \pi$-scattering in the NJL model in kinetic theory
- agreement with lowest-order χ PT (Weinberg) at low T, much lower values when approaching the crossover
- quantitative results very sensitive to details of the model

Conclusions

- summary:
- shear viscosity from $\pi \pi$-scattering in the NJL model in kinetic theory
- agreement with lowest-order χ PT (Weinberg) at low T, much lower values when approaching the crossover
- quantitative results very sensitive to details of the model
- outlook:
- better description of p-wave $\pi \pi$ scattering (include ρ-meson)
- further scattering channels, e.g., kaons
- ...

