

Nonequilibrium effects in Polyakov loop extended chiral fluid dynamics

Christoph Herold

TORIC workshop, Heraklion, September 2011

Marcus Bleicher, Carsten Greiner, Igor Mishustin, Marlene Nahrgang

The phase diagram of QCD

The phase diagram of QCD

Symmetries and order parameters in QCD

 $SU(2)_V \times SU(2)_A$ chiral symmetry

- explicitly broken by m_q
- approximate symmetry for small m_q
- order parameter:
 chiral condensate (q
 qq), sigma field σ
- Z_{N_c} center symmetry of $SU(N_c)$ gauge group
 - only exact in pure gauge theory
 - approximate symmetry for large m_q
 - order parameter for confinement-deconfinement phase transition: Polyakov loop $\ell = \frac{1}{N_c} \langle tr_c \mathcal{P} \rangle_{\beta}$ with $\mathcal{P} = P \exp \left(ig_{QCD} \int_0^{\beta} d\tau A_0 \right)$

Phase transitions

first order phase transition

- two degenerate minima at T_c
- phase coexistence

nucleation

- supercooled, $\frac{\partial^2 V}{\partial \sigma^2} > 0$
- large fluctuations
- bubble formation and growth

spinodal decomposition

- unstable, $\frac{\partial^2 V}{\partial \sigma^2} < 0$
- small fluctuations
- phase separation uniformly

Phase transitions

critical point

- $m_{\sigma} = 0$
- divergent correlation length

critical phenomena

- divergent susceptibilities
- critical slowing down
- Iong-range fluctuations

The search for the critical point in heavy-ion collisions

• event-by-event fluctuations of multiplicity, mean p_T

$$\langle \Delta n_{\rho} \Delta n_{k} \rangle = v_{\rho}^{2} \delta_{\rho k} + \frac{1}{m_{\sigma}^{2}} \frac{G^{2}}{T} \frac{v_{\rho}^{2} v_{k}^{2}}{\omega_{\rho} \omega_{k}}$$

(Stephanov, Rajagopal and Shuryak, PRD 60 (1999))

(K. Grebieszkow, NA49 collaboration Nucl. Phys. A 830 (2009))

• higher cumulants even more sensitive, e. g. $\kappa_4 \sim \xi^7$

(M. A. Stephanov, Phys. Rev. Lett. 102 (2009))

The search for the critical point in heavy-ion collisions

• event-by-event fluctuations of multiplicity, mean p_T

$$\langle \Delta n_p \Delta n_k \rangle = v_p^2 \delta_{pk} + \frac{1}{m_\sigma^2} \frac{G^2}{T} \frac{v_p^2 v_k^2}{\omega_p \omega_k}$$

(Stephanov, Rajagopal and Shuryak, PRD 60 (1999))

system size dependence

Chiral fluid dynamics with a Polyakov loop

- quarks: heat bath in local thermal equilibrium, locally interacting with:
- σ : mesonic field, propagated via Langevin equation
- l: Polyakov loop, coupled to heat bath
- dynamical, self-consistent and energy-conserving
- nonequilibrium effects
- (I. N. Mishustin and O. Scavenius, Phys. Rev. Lett. 83 (1999),
- K. Paech, H. Stöcker and A. Dumitru, Phys. Rev. C 68 (2003),
- M. Nahrgang, S. Leupold, C. H. and M. Bleicher, Phys. Rev. C 84 (2011))

The Polyakov loop extended linear- σ -model

The Lagrangian

$$\mathcal{L} = \overline{q} \left[i \left(\gamma^{\mu} \partial_{\mu} - i g_{QCD} \gamma^{0} A_{0} \right) - g \sigma \right] q + \frac{1}{2} \left(\partial_{\mu} \sigma \right)^{2} \\ - U(\sigma) - \mathcal{U}(\ell, \overline{\ell})$$

with the mesonic potential

$$U(\sigma) = \frac{\lambda^2}{4} \left(\sigma^2 - \nu^2\right)^2 - h_q \sigma - U_0$$

and the Polyakov loop potential

$$\frac{\mathcal{U}}{T^{4}}\left(\ell,\bar{\ell}\right) = -\frac{b_{2}(T)}{4}\left(\left|\ell\right|^{2} + \left|\bar{\ell}\right|^{2}\right) - \frac{b_{3}}{6}\left(\ell^{3} + \bar{\ell}^{3}\right) + \frac{b_{4}}{16}\left(\left|\ell\right|^{2} + \left|\bar{\ell}\right|^{2}\right)^{2}$$

(C. Ratti, M. A. Thaler, W. Weise, Phys. Rev. D 73 (2006), B.-J. Schaefer, J. M. Pawlowski and J. Wambach, Phys. Rev. D 76 (2007))

Thermodynamics

grand canonical potential at $\mu_B = 0$, $\ell = \overline{\ell}$, mean-field

$$\Omega_{\bar{q}q} = -4N_f T \int \frac{\mathrm{d}^3 p}{(2\pi)^3} \ln\left[1 + 3\ell \mathrm{e}^{-\beta E} + 3\ell \mathrm{e}^{-2\beta E} + \mathrm{e}^{-3\beta E}\right]$$

effective potential

$$V_{\text{eff}}\left(\sigma,\ell,T\right) = U\left(\sigma\right) + \mathcal{U}\left(\ell\right) + \Omega_{\bar{q}q}\left(\sigma,\ell,T\right)$$

The equations of motion

$$\partial_{\mu}\partial^{\mu}\sigma + \eta_{\sigma}\partial_{t}\sigma + \frac{\partial V_{\text{eff}}}{\partial\sigma} = \xi_{\sigma}$$
with damping coefficient η_{σ} for $\mathbf{k} = \mathbf{0}$

$$\eta_{\sigma} = \frac{12g^{2}}{\pi} \left[1 - 2n_{\text{F}} \left(\frac{m_{\sigma}}{2} \right) \right] \frac{\left(\frac{m_{\sigma}^{2}}{4} - m_{q}^{2} \right)^{\frac{3}{2}}}{m_{\sigma}^{2}} \int_{1}^{\frac{2}{5}} \int_{1}^{\frac{$$

and the dissipation-fluctuation theorem

$$\langle \xi_{\sigma}(t)\xi_{\sigma}(t')\rangle = \frac{1}{V}\delta(t-t')m_{\sigma}\eta_{\sigma}\coth\left(\frac{m_{\sigma}}{2T}\right)$$

(M. Nahrgang, S. Leupold, C. H. and M. Bleicher, Phys. Rev. C 84 (2011))

The equations of motion

Allow for dynamical evolution of the Polyakov loop

$$\mathcal{L}
ightarrow \mathcal{L} + rac{N_c}{g_{QCD}^2} |\partial_\mu \ell|^2 T^2$$

and add a phenomenological damping term $\eta_\ell \sim 1/fm$

(A. Dumitru and R. D. Pisarski, Nucl. Phys. A 698 (2002))

$$\frac{2N_c}{g_{QCD}^2}\partial_{\mu}\partial^{\mu}\ell T^2 + \eta_{\ell}\partial_{t}\ell + \frac{\partial V_{\text{eff}}}{\partial\ell} = \xi_{\ell}$$
$$\langle \xi_{\ell}(t)\xi_{\ell}(t')\rangle = \frac{1}{V}\delta(t-t')2\eta_{\ell}T$$

Thermodynamic consistency currently under investigation ...

Nucleation and phase coexistence

correlate stochastic noise field over volume of 1 fm³:

quench first order scenario from 177 MeV to 169 MeV, phase coexistence

Nucleation and phase coexistence

bubble-

- formation
- growth
- melting

evolution of average value of ℓ

Propagation of the quark fluid

ideal relativistic fluid dynamics

$$\partial_{\mu}\left(T_{q}^{\mu\nu}+T_{\sigma}^{\mu\nu}+T_{\ell}^{\mu\nu}\right)=0$$

equation of state e = e(p) from

$$\begin{aligned} \boldsymbol{\Theta}(\sigma,\ell,T) &= T \frac{\partial \boldsymbol{\rho}(\sigma,\ell,T)}{\partial T} - \boldsymbol{\rho}(\sigma,\ell,T) \\ \boldsymbol{\rho}(\sigma,\ell,T) &= -\Omega_{\bar{\boldsymbol{q}}\boldsymbol{q}}(\sigma,\ell,T) \end{aligned}$$

investigate two scenarios:

- fluid and fields in a box, temperature quench
- fluid dynamic expansion of a hot and plasma

Box: Relaxation to equilibrium

Box: Fluctuations at the critical point

long-range fluctuations at the CP over space and time

The expanding plasma

- σ-field: large barrier, different damping
- Polyakov loop: small barrier, equal damping

Effects on the temperature: Reheating

critical point

first order phase transition

supercooled phase

Nonequilibrium fluctuations

$$\begin{array}{lll} \langle \Delta \sigma \rangle & = & \sqrt{\langle \left(\sigma - \sigma_{eq} \right)^2 \rangle} \\ \langle \Delta \ell \rangle & = & \sqrt{\langle \left(\ell - \ell_{eq} \right)^2 \rangle} \end{array}$$

- enhanced fluctuations at the first order PT
- particle production

Summary and Outlook

Summary

- Polyakov loop extended chiral fluid dynamics model
- nonequilibrium effects visible:
 - domain formation and growth
 - supercooling and reheating
 - critical slowing down
 - large fluctuations at first order phase transition

Outlook

- go to finite baryo-chemical potential µ_B
- include pions and study event-by-event fluctuations (Marlene Nahrgang)
- propagate quarks by Vlasov equation (Christian Wesp, Carsten Greiner)

Thermodynamics

The equations of motion

The influence functional

- integrate out the quarks in a path integral over Keldysh contour

$$S_{\mathrm{IF}}\left[ar{\sigma},\Delta\sigma
ight] = \int \mathrm{d}^4 x D(x) \Delta\sigma(x) + rac{i}{2} \int \mathrm{d}^4 x \int \mathrm{d}^4 y \Delta\sigma(x) \mathcal{N}(x,y) \Delta\sigma(y) \,,$$

with $\Delta \sigma = \sigma^+ - \sigma^-$ and $\bar{\sigma} = \frac{1}{2}(\sigma^+ + \sigma^-)$ on the CTP contour

The equations of motion

Damping kernel

$$D(x) = ig^2 \int_{y_0}^{x_0} d^4 y \bar{\sigma}(y) \left[S^< (x - y) S^> (y - x) - S^> (x - y) S^< (y - x)
ight]$$

and noise kernel

$$\mathcal{N}(x,y) = -\frac{1}{2}g^2 \left[S^{<}(x-y)S^{>}(y-x) + S^{>}(x-y)S^{<}(y-x)\right]$$

determine equation of motion

$$-\frac{\delta S_{cl}[\bar{\sigma}]}{\delta \bar{\sigma}} - D = \xi \,,$$

$$\langle \xi(\boldsymbol{x})\xi(\boldsymbol{y})\rangle = \mathcal{N}(\boldsymbol{x},\boldsymbol{y}).$$

The expanding plasma: initial conditions

Temperature: Woods-Saxon distribution

 σ -field:

 $\sigma = \sigma_{eq}(T) + \delta\sigma(T)$

thermal distribution, corr. 1fm

$$\ell = \ell_{eq}(\sigma, T)$$

 $e = e(\sigma, \ell, T)$

Nucleation: critical bubble profiles

minimize free energy with respect to the fields σ and ℓ

$$\mathcal{F}(\sigma,\ell,T) = \int \mathrm{d}^3 x \left[\frac{1}{2} \left(\nabla \sigma \right)^2 + \frac{N_c}{g_{QCD}^2} \left(\nabla \ell \right)^2 T^2 + V_{\text{eff}}(\sigma,\ell,T) \right]$$

size of critical bubbles increases significantly near transition temperature

(cf. Scavenius, Dumitru, Fraga, Lenaghan and Jackson, Phys. Rev. D 63 (2001))