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Space-time picture of a Reggeon

The multiperipheral picture of the interaction of hadrons:

W.f. of a fast hadron consists of soft partons in a coherent state

Interaction goes mostly via slowest components of the w.f.

Strong pz ordering
in the ladder!
Di�usion in the ~b
space.

Coherence preserved �
elastic scattering.

Coherence broken �
particle production.

Ladder exchange = pole in the complex L plane in the t-channel amplitude
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Human face of a Reggeon
The stochastic approach

RFT � a theory of quasiparticle exchanges.

Ladder (pole) exchange = building block of the apmlitude.
Ladder = Reggeon/Pomeron � quasiparticle in

(~b/~q⊥)× (y = ln s/s0) space

A single Pomeron (α(0) = 1 + ∆) exchange breaks unitarity
Unitarity is cured by multiP exchanges and R/P interactions

Splitting in the multiperipheral ladder = interaction of R/P

= ;
A = gR

a (q2)DR(s, q2)gR
b (q2);

DR = ηR(q2)

(
s

s0

)αR(q2)

Triple vertex ( ) is strongly motivated both

phenomenologically & theoretically (pQCD), other types ( ,
etc) are not excluded too.
Theory of the Pomeron exchanges and interactions = Reggeon
Field Theory
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Human face of a Reggeon
The stochastic approach

RFT

The theory of Pomeron and Reggeon exchanges is known to be
very successfull phenomenologically:

Gives reliable predictions of hadronic X-sections

The σtot ∼ ln2 s comes out quite naturally

Cuts of the RFT diagrams de�ne X-sections of various inelastic
processes via Cutkosky rules

Good description of the events with rapidity gaps (single and
double di�raction). At higher energies the loop contributions
become increasingly important.

The underlying principles of the RFT are analyticity and t-channel
unitarity of the elastic amplitude.
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RFT

The elastic amplitude T = A/(8πs) is written as (Regge factorization):

T =
∑
n,m

Vn ⊗ Gnm ⊗ Vm

Green functions Gmn are obtained within the e�ective �eld theory,
process independent

L =
1

2
φ†(
←−
∂y −

−→
∂y )φ− α′(∇bφ

†)(∇bφ) + ∆φ†φ+ Lint .

For Lint = i r3Pφ
†φ(φ† + φ) + χφ†

2
φ2

it is possible to use reaction-di�usion (or �stochastic�) models for
obtaining the Green functions with account of all loops.
[Grassberger&Sundermeyer'78; Boreskov'01]
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The stochastic model.

Consider a system of classic �par-
tons� in the transverse plane with:

Di�usion (chaotical movement) D;

Splitting (λ � prob. per unit time)

Death (m1)

Fusion (σν ≡
∫
d2b pν(b))

Annihilation (σm2 ≡
∫
d2b pm2(b))

Parton number and positions are described in terms of

probability densities ρN(y ,BN) (N = 0, 1, ...;BN ≡ {b1, . . . , bN})

with normalization pN(y) ≡ 1
N!

∫
ρN(y ,BN)

∏
dBN ;

∞∑
0

pN = 1.
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Inclusive distributions

S-parton inclusive distributions:

fs(y ;Zs) =
∑
N

1

(N − s)!

∫
dBN ρN(y ;BN)

s∏
i=1

δ(zi − bi );

∫
dZs fs(y ;Zs) =

∑
N!

(N−s)! pN(y) ≡ µs(y). � factorial moments.

Example: Start with a single parton with only di�usion and splitting
allowed.

f
1 parton
1 (y , b) =

exp(λy) exp(−b2/4Dy)

4πDy
.

� imaginary part of the bare Pomeron propagator.

The set of evolution equations for fs(Zs), (s = 1, . . .) coincides

with the set of equations for the Green functions of the RFT.
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The amplitude.

Green functions:

fs(y ;Zs) ∝
∑
m

∫
dXm Vm(Xm)Gmn(0;Xm|y ;Zn);

fm(y = 0,Xm) ∝ Vm(Xm) � particle�mPomeron
vertices

The amplitude (g(b) assumed narrow;
∫
g(b)d2b ≡ ε):

T (Y ) = 〈A|T |Ã〉 =

=
∞∑
s=1

(−1)s−1

s!

∫
dZsdZ̃s fs(y ;Zs)f̃s(Y − y ; Z̃s)

s∏
i=1

g(zi − z̃i − b).

It does not depend on the linkage point y (�boost invariance�) if

λ

∫
g(b)d2b =

∫
pm2(b)d2b +

1

2

∫
pν(b)d2b ,

R. Kolevatov Application of the stochastic model . . .
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Correspondence RFT�Stochastic model

We use the simplest form of g(b), pm2(b) and pν(b):

pm2(b) = m2 θ(a − |b|); pν(b) = ν θ(a − |b|);
g(b) = θ(a − |b|);.

with a � some small scale; ε ≡ πa2.
RFT stochastic model

Rapidity y Evolution time y
Slope α′ Di�usion coe�cient D

∆ = α(0)− 1 λ−m1

Splitting vertex r3P λ
√
ε

Fusion vertex r3P (m2 + 1
2ν)
√
ε

Quartic coupling χ 1
2(m2 + ν)ε

Boost invariance (λ = m2 + ν
2 ) ⇔ equality of fusion and splitting vertices.
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Description
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Calculation method

Taking an explicit note of the initial parton distributions

T =
∑
n,s,k

(−1)s−1

s!
Pn(X )⊗ fns(X|Z)︸ ︷︷ ︸

fs(y ,Z)

⊗
∏

g(Z − Z̃)⊗ f̃ks(X̃ |Z̃)⊗ P̃k(X̃ )︸ ︷︷ ︸
f̃s(Y − y , Z̃ )

Main idea: simulate a sample of 2 parton sets which correspond to
fs and f̃s on the average, compute Tsample and make its MC average.
For N partons with �xed positions

fs(Zs) =
∑

{x̂i1 ,..,x̂is }∈X̂N

δ(z1 − x̂i1) . . . δ(zs − x̂is )

Tsample =

Nmin∑
s=1

(−1)s−1
∑

i1<i2...<is

∑
j1<...<js

gi1j1 . . . gis js .

expansion of Tsample in the number of P exchanges s;

works for any position of the linkage point y .

R. Kolevatov Application of the stochastic model . . .



Introduction.
Calculation method

Applications
Conclusions

Description
Peculiarities

Calculation method

Taking an explicit note of the initial parton distributions

T =
∑
n,k

Pn(X )⊗
∑
s

(−1)s−1

s!
fns(X|Z)⊗

∏
g(Z − Z̃)⊗ f̃ks(X̃ |Z̃)︸ ︷︷ ︸

Tsample

⊗P̃k(X̃ ).

Main idea: simulate a sample of 2 parton sets which correspond to
fs and f̃s on the average, compute Tsample and make its MC average.
For N partons with �xed positions

fs(Zs) =
∑

{x̂i1 ,..,x̂is }∈X̂N

δ(z1 − x̂i1) . . . δ(zs − x̂is )

Tsample =

Nmin∑
s=1

(−1)s−1
∑

i1<i2...<is

∑
j1<...<js

gi1j1 . . . gis js .

expansion of Tsample in the number of P exchanges s;

works for any position of the linkage point y .

R. Kolevatov Application of the stochastic model . . .



Introduction.
Calculation method

Applications
Conclusions

Description
Peculiarities

Calculation method

Setting the linkage point to full rapidity interval y = Y simpli�es
the calculation: f̃s(y = 0,Zs) = Ns(Zs)/εs/2 and the MC average
involves evolution from only one side:

T =
∑
n

Pn(X )⊗
∑
s

(−1)s−1

s!
fns(X|Z)⊗

∏
g(Z − X̃ )⊗ P̃s(X̃ ).︸ ︷︷ ︸

Tsample
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Cross sections de�nitions

σtot(Y ) = 2 ImM(Y ,q = 0), σel =

∫
d2q

(2π)2
|M(Y ,q)|2 ,

f (Y ,b) =
1

(2π)2

∫
d2q e−iqbM(Y ,q) .

σtot(Y ) = 2

∫
d2b Imf (Y ,b) , σel =

∫
d2b |f (Y ,b)|2.

f (Y ,b) ' iT (Y ,b), T ≡ Imf

R. Kolevatov Application of the stochastic model . . .
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Description
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Peculiarities of the stochastic approach to the RFT:

Presence of the 2→ 2 coupling

Regularization scale (equivalient to the cuto� or the Pomeron
size in RFT) enters via functions g(b), pm2(b) and pν

Neglect of the real part of the amplitude.

Realization features:

We do the explicit parton sets evolution starting from initial
con�guration generated in accord with the vertices

The realization can be used for both 0D and 2D RFT

R. Kolevatov Application of the stochastic model . . .
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Full propagator
Amplitudes and cross sections

Applications

The full Pomeron propagator

Role of the slope (in particular � between 0D and 2D RFT)
Role of the 2→ 2 coupling

Amplitude in the quasieikonal approximation

E�ect of loops
Role of the 2→ 2 coupling and regularization scale
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Full propagator
Amplitudes and cross sections

The full propagator

The propagator coincides with 1-parton inclusive distribution with a
single parton at the start of the evolution. We use parameter sets
which di�er by the values of the couplings only.

Set λ ν m1 m2 ∆ r3P (0D) χ (0D)

1 0.1 0.2 0 0 0.1 0.1 0.1
2 0.1 0.1 0 0.05 0.1 0.1 0.075
3 0.1 0 0 0.1 0.1 0.1 0.05
4 0.15 0.3 0.05 0 0.1 0.15 0.15
5 0.15 0 0.05 0.15 0.1 0.15 0.075

For the 2D case we additionaly introduce the partonic interaction
distance a = 0.05 fm and the di�usion coe�cient D = 0.01 fm−2

R. Kolevatov Application of the stochastic model . . .
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Full propagator
Amplitudes and cross sections

The full propagator, 0D case

The 2→ 2 coupling is crucial for the asymptotic behavior
(in accord with preceding works)
Non-zero asymptotic behavior needs a special relation btw r3P , ∆ and χ.
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Full propagator
Amplitudes and cross sections

The full propagator, 2D case

The role of 2→ 2 coupling is negligible.

f1(y , b = �x) grows with y , growth is de�ned exclusively by ∆ and r3P .
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Full propagator
Amplitudes and cross sections

The full propagator, 2D case

The asymptotic behaviour is very much dependent on the slope
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Full propagator
Amplitudes and cross sections

The quasieikonal approximation

We estimate the role of loop corrections by comparing the full
calculation to the quasieikonal �t [Ter-Martirosyan'86] to the
experimental data on pp cross sections.
The starting point :

T (Y ,b) =
∞∑
n=1

(−C )n−1

n!
(TP(Y ,b))n = ,

TP(Y ,b) =
g20 exp(∆Y )

R2
P + α′Y

exp[−1
4b

2/(R2
P + α′Y )].

g20 = 2.14 GeV−2 ≈ 0.083fm2 ,R2
P = 3.30GeV−2 ≈ 0.128fm2 ,

α′P = 0.22 GeV−2 ≈ 0.0085fm2 ,∆ = 0.12 , C = 1.5 .

We take the same p�nP vertices (Gaussian)
triple coupling r3P = 0.087GeV−1 following[Kaidalov'79].
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Full propagator
Amplitudes and cross sections

The parameter sets

Quasieikonal vertices ⇔ �quasipoissonian� distribution in the # of

partons: Pn = C (n−1)/2 N̄
n

n!
e−CN̄ , n = 1, . . . ,∞;

pp(b) =
1

4πR2
exp

[
− b2

2R2

]
The parameter sets:

Set a, fm λ m1 m2 ν N̄

1 0.018 0.54722 0.42722 0 1.09488 32.02
2 0.018 0.54722 0.42722 0.54722 0 32.02
3 0.036 0.27361 0.15361 0 0.54722 16.01
4 0.036 0.27361 0.15361 0.27361 0 16.01

with D = α′P = 0.0085 fm2 and R = RP = 0.36 fm.

χ1 = χ4 = 0.00056 fm2, χ1 = 2χ2, χ3 = 2χ4.
r3P = 0.017 fm for all sets.
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Full propagator
Amplitudes and cross sections

The e�ect of loops

Calculations with ∆ = 0.12 :

The growth with
√
s is suppressed compared to the eikonal.

The role of 2→ 2 coupling is minor.
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Full propagator
Amplitudes and cross sections

The e�ect of loops

Full calculation with ∆ = 0.165 and the same couplings
vs the quasieikonal �t.

The role of 2→ 2 coupling is minor.
The contribution of loops can be imitated via ∆
renormalization
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Conclusions

Our numerical realization of the RFT allows to obtain the
scattering amplitude with all loops taken into account.

The approach is capable of giving the amplitude as an
expansion in the number of Pomeron exchanges at given
rapidity y .

On the basis of numerical calculations we conclude:

The intercept is e�ectively reduced as a result of the full
account of the Pomeron interactions.

The role of 2→ 2 coupling is minor at the available energies
for α′ dictated by the existing �ts to data.

Ongoing work

Realistic �ts to data (with 2-channel eikonal initial conditions)

All-loop calculation of di�ractive X-section.
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Backup

Backup slides
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Ryser formula

Simpli�cation in the expression for the amplitude after employing
the Ryser formula

Tsample =
∑

s1⊆{1,...,N}

∑
s2⊆{1,...,Ñ},
|s2|<|s1|

(−1)|s2|−1C
|s1|−|s2|
Ñ−|s2|

∏
i∈s1

∑
j∈s2

gij

 ;

The estimated number of operations is O(4N).
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2D propagator at b = 0

The bare propagator Dbare(y , b = 0) ∝ exp(∆y)/y

R. Kolevatov Application of the stochastic model . . .



Introduction.
Calculation method

Applications
Conclusions

Quasieikonal within the stochastic model

Forbid fusion and annihillation

Each connected component plays in f
sample
s only once
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