Application of the stochastic model to the calculation of the all-loop RFT amplitudes. based on arxiv:1105.3673

<u>Rodion Kolevatov^{1,3}</u>

Konstantin Boreskov² Larissa Bravina¹

¹University of Oslo

²ITEP, Moscow

³Saint-Petersburg State University

TORIC meeting, Heraklion, Greece, 05 September 2011

Outline

- Human face of a Reggeon
- The stochastic approach
- 2 Calculation method
 - Description
 - Peculiarities
- 3 Applications
 - Full propagator
 - Amplitudes and cross sections

Conclusions

Human face of a Reggeon The stochastic approach

REGGEON WITH HUMAN FACE (s-channel point of view)

э

R. Kolevatov Application of the stochastic model

Human face of a Reggeon The stochastic approach

Space-time picture of a Reggeon

The multiperipheral picture of the interaction of hadrons:

• W.f. of a fast hadron consists of soft partons in a coherent state

Human face of a Reggeon The stochastic approach

Space-time picture of a Reggeon

The multiperipheral picture of the interaction of hadrons:

- W.f. of a fast hadron consists of soft partons in a coherent state
- Interaction goes mostly via slowest components of the w.f.

Human face of a Reggeon The stochastic approach

Space-time picture of a Reggeon

The multiperipheral picture of the interaction of hadrons:

- W.f. of a fast hadron consists of soft partons in a coherent state
- Interaction goes mostly via slowest components of the w.f.
- Coherence preserved elastic scattering.

Human face of a Reggeon The stochastic approach

- Ladder (pole) exchange = building block of the apmlitude.
 - Ladder = Reggeon/Pomeron quasiparticle in
 - $(ec{b}/ec{q}_{\perp}) imes(y=\ln s/s_0)$ space

Human face of a Reggeon The stochastic approach

- Ladder (pole) exchange = building block of the apmlitude.
 - Ladder = Reggeon/Pomeron quasiparticle in
 - $(ec{b}/ec{q}_{\perp}) imes(y=\ln s/s_0)$ space
- A single Pomeron $(\alpha(0) = 1 + \Delta)$ exchange breaks unitarity
 - \bullet Unitarity is cured by multiP exchanges and R/P interactions

$$A = g_a^R(q^2) D_R(s, q^2) g_b^R(q^2);$$
$$D_R = \eta_R(q^2) \left(\frac{s}{s_0}\right)^{\alpha_R(q^2)}$$

Human face of a Reggeon The stochastic approach

- Ladder (pole) exchange = building block of the apmlitude.
 - Ladder = Reggeon/Pomeron quasiparticle in
 - $(ec{b}/ec{q}_{\perp}) imes(y=\ln s/s_0)$ space
- A single Pomeron $(lpha(0)=1+\Delta)$ exchange breaks unitarity
 - Unitarity is cured by multiP exchanges and R/P interactions
- Splitting in the multiperipheral ladder = interaction of R/P

Human face of a Reggeon The stochastic approach

- Ladder (pole) exchange = building block of the apmlitude.
 - Ladder = Reggeon/Pomeron quasiparticle in $(\vec{b}/\vec{q}_{\perp}) \times (y = \ln s/s_0)$ space
- A single Pomeron $(lpha(0)=1+\Delta)$ exchange breaks unitarity
 - Unitarity is cured by multiP exchanges and R/P interactions

- Triple vertex () is strongly motivated both phenomenologically & theoretically (pQCD), other types (), etc) are not excluded too.
- Theory of the Pomeron exchanges and interactions = Reggeon Field Theory

Human face of a Reggeon The stochastic approach

The theory of Pomeron and Reggeon exchanges is known to be very successfull phenomenologically:

- Gives reliable predictions of hadronic X-sections
 - The $\sigma_{tot} \sim \ln^2 s$ comes out quite naturally
- Cuts of the RFT diagrams define X-sections of various inelastic processes via Cutkosky rules
- Good description of the events with rapidity gaps (single and double diffraction). At higher energies the loop contributions become increasingly important.

The underlying principles of the RFT are analyticity and *t*-channel unitarity of the elastic amplitude.

Human face of a Reggeon The stochastic approach

RFT

The elastic amplitude $T = A/(8\pi s)$ is written as (Regge factorization):

$$T=\sum_{n,m}V_n\otimes G_{nm}\otimes V_m$$

Green functions G_{mn} are obtained within the effective field theory, process independent

$$\mathcal{L} = \frac{1}{2}\phi^{\dagger}(\overleftarrow{\partial_{y}} - \overrightarrow{\partial_{y}})\phi - \alpha'(\nabla_{\mathbf{b}}\phi^{\dagger})(\nabla_{\mathbf{b}}\phi) + \Delta\phi^{\dagger}\phi + \mathcal{L}_{int}.$$

For $\mathcal{L}_{int} = i r_{3P} \phi^{\dagger} \phi(\phi^{\dagger} + \phi) + \chi \phi^{\dagger^2} \phi^2$ it is possible to use reaction-diffusion (or "stochastic") models for obtaining the Green functions with account of all loops. [Grassberger&Sundermeyer'78; Boreskov'01]

The stochastic approach

The stochastic model.

Consider a system of classic "partons" in the plane with: transverse Diffusion (chaotical movement) D; •₹ • Splitting $(\lambda - \text{prob. per unit time})$ \sim Death (*m*₁) → A • Fusion $(\sigma_{\nu} \equiv \int d^2 b p_{\nu}(b))$ $\rightarrow \bullet \bullet$ • Annihilation ($\sigma_{m_2} \equiv \int d^2 b \, p_{m_2}(b)$) 2:0 Parton number and positions are described in terms of probability densities $\rho_N(y, \mathcal{B}_N)$ $(N = 0, 1, ...; \mathcal{B}_N \equiv \{b_1, ..., b_N\})$ with normalization $p_N(y) \equiv \frac{1}{N!} \int \rho_N(y, \mathcal{B}_N) \prod d\mathcal{B}_N; \quad \sum_{i=1}^{\infty} p_N = 1.$

Human face of a Reggeon The stochastic approach

Inclusive distributions

S-parton inclusive distributions:

$$f_{s}(y; \mathcal{Z}_{s}) = \sum_{N} \frac{1}{(N-s)!} \int d\mathcal{B}_{N} \rho_{N}(y; \mathcal{B}_{N}) \prod_{i=1}^{s} \delta(\mathbf{z}_{i} - \mathbf{b}_{i});$$

$$\int d\mathcal{Z}_s f_s(y;\mathcal{Z}_s) = \sum rac{N!}{(N-s)!} p_N(y) \equiv \mu_s(y).$$
 - factorial moments.

Example: Start with a single parton with only diffusion and splitting allowed.

$$f_1^{1 \text{ parton}}(y,b) = rac{\exp(\lambda y)\exp(-b^2/4Dy)}{4\pi Dy}$$

- imaginary part of the bare Pomeron propagator.

The set of evolution equations for $f_s(\mathcal{Z}_s)$, (s = 1, ...) coincides with the set of equations for the Green functions of the RFT.

Human face of a Reggeon The stochastic approach

The amplitude.

Green functions:

$$\begin{split} f_{s}(y;\mathcal{Z}_{s}) &\propto \sum_{m} \int d\mathcal{X}_{m} \ V_{m}(\mathcal{X}_{m}) G_{mn}(0;\mathcal{X}_{m}|y;\mathcal{Z}_{n}); \\ f_{m}(y = 0,\mathcal{X}_{m}) &\propto \ V_{m}(\mathcal{X}_{m}) \ - \ \text{particle-}m\text{Pomeron}^{0} \\ \text{vertices} \end{split}$$

The amplitude $(g(b) \text{ assumed narrow}; \int g(b)d^2b \equiv \epsilon)$: $T(Y) = \langle A|T|\tilde{A} \rangle =$

$$=\sum_{s=1}^{\infty}\frac{(-1)^{s-1}}{s!}\int d\mathcal{Z}_s d\tilde{\mathcal{Z}}_s f_s(y;\mathcal{Z}_s)\tilde{f}_s(Y-y;\tilde{\mathcal{Z}}_s)\prod_{i=1}^{s}g(z_i-\tilde{z}_i-b).$$

It does not depend on the linkage point y ("boost invariance") if

$$\lambda\int g(b)d^2b=\int p_{m_2}(b)d^2b+rac{1}{2}\int p_
u(b)d^2b\;,$$

イロト イポト イヨト イヨト

Human face of a Reggeon The stochastic approach

Correspondence RFT-Stochastic model

We use the simplest form of g(b), $p_{m_2}(b)$ and $p_{\nu}(b)$:

$$p_{m_2}(\mathbf{b}) = m_2 \ \theta(a - |\mathbf{b}|); \quad p_{\nu}(\mathbf{b}) = \nu \ \theta(a - |\mathbf{b}|);$$
$$g(\mathbf{b}) = \theta(a - |\mathbf{b}|);$$
$$some \ small \ scale; \ \epsilon = \pi a^2$$

with a – some small scale; $\epsilon \equiv \pi a^2$.

RFT	stochastic model				
Rapidity <i>y</i>	Evolution time y				
Slope $lpha'$	Diffusion coefficient D				
$\Delta = lpha(0) - 1$	$\lambda-m_1$				
Splitting vertex r _{3P}	$\lambda\sqrt{\epsilon}$				
Fusion vertex r _{3P}	$(m_2 + \frac{1}{2}\nu)\sqrt{\epsilon}$				
Quartic coupling χ	$\frac{1}{2}(m_2 + \nu)\epsilon$				

Boost invariance $(\lambda = m_2 + rac{
u}{2}) \Leftrightarrow$ equality of fusion and splitting vertices

Description Peculiarities

Calculation method

Taking an explicit note of the initial parton distributions

$$T = \sum_{n,s,k} \frac{(-1)^{s-1}}{s!} \underbrace{\frac{P_n(\mathcal{X}) \otimes f_{ns}(\mathcal{X}|\mathcal{Z})}{f_s(y,\mathcal{Z})}}_{f_s(y,\mathcal{Z})} \otimes \prod g(\mathcal{Z} - \tilde{\mathcal{Z}}) \otimes \underbrace{\tilde{f}_{ks}(\tilde{\mathcal{X}}|\tilde{\mathcal{Z}}) \otimes \tilde{P}_k(\tilde{\mathcal{X}})}_{\tilde{f}_s(Y - y,\tilde{\mathcal{Z}})}$$

æ

-

Description Peculiarities

Calculation method

Taking an explicit note of the initial parton distributions

$$T = \sum_{n,k} P_n(\mathcal{X}) \otimes \underbrace{\sum_{s} \frac{(-1)^{s-1}}{s!} f_{ns}(\mathcal{X}|\mathcal{Z}) \otimes \prod g(\mathcal{Z} - \tilde{\mathcal{Z}}) \otimes \tilde{f}_{ks}(\tilde{\mathcal{X}}|\tilde{\mathcal{Z}}) \otimes \tilde{P}_k(\tilde{\mathcal{X}}).}_{s}$$

Main idea: simulate a sample of $2^{T_{sample}}$ parton sets which correspond to f_s and \tilde{f}_s on the average, compute T_{sample} and make its MC average. For N partons with fixed positions

$$f_{s}(\mathcal{Z}_{s}) = \sum_{\substack{\{\hat{\mathbf{x}}_{i_{1}},..,\hat{\mathbf{x}}_{i_{s}}\}\in\hat{\mathcal{X}}_{N} \\ \mathcal{T}_{sample}}} \delta(\mathbf{z}_{1} - \hat{\mathbf{x}}_{i_{1}}) \dots \delta(\mathbf{z}_{s} - \hat{\mathbf{x}}_{i_{s}})$$
$$\mathcal{T}_{sample} = \sum_{s=1}^{N_{min}} (-1)^{s-1} \sum_{i_{1} < i_{2} \dots < i_{s}} \sum_{j_{1} < \dots < j_{s}} g_{i_{1}j_{1}} \dots g_{i_{s}j_{s}}.$$

• expansion of T_{sample} in the number of **P** exchanges *s*;

• works for any position of the linkage point y.

Description Peculiarities

Calculation method

Setting the linkage point to full rapidity interval y = Y simplifies the calculation: $\tilde{f}_s(y = 0, \mathcal{Z}_s) = N_s(\mathcal{Z}_s)/\epsilon^{s/2}$ and the MC average involves evolution from only one side:

$$T = \sum_{n} P_{n}(\mathcal{X}) \otimes \underbrace{\sum_{s} \frac{(-1)^{s-1}}{s!} f_{ns}(\mathcal{X}|\mathcal{Z}) \otimes \prod_{s} g(\mathcal{Z} - \tilde{\mathcal{X}}) \otimes \tilde{P}_{s}(\tilde{\mathcal{X}})}_{T_{sample}}.$$

Description Peculiarities

Cross sections definitions

$$\sigma^{\mathrm{tot}}(\boldsymbol{Y}) = 2 \operatorname{Im} \mathcal{M}(\boldsymbol{Y}, \mathbf{q} = 0), \quad \sigma^{\mathrm{el}} = \int rac{d^2 q}{(2\pi)^2} |\mathcal{M}(\boldsymbol{Y}, \mathbf{q})|^2 \; ,$$

$$f(Y,\mathbf{b})=rac{1}{(2\pi)^2}\int d^2q\ e^{-i\mathbf{q}\mathbf{b}}M(Y,\mathbf{q})\ .$$

$$\sigma^{\mathrm{tot}}(\mathbf{Y}) = 2 \int d^2 b \, \mathrm{Im} f(\mathbf{Y}, \mathbf{b}) \,, \quad \sigma^{\mathrm{el}} = \int d^2 b \, |f(\mathbf{Y}, \mathbf{b})|^2.$$

$$f(Y, \mathbf{b}) \simeq iT(Y, \mathbf{b}), \quad T \equiv Imf$$

æ

◆□ > ◆□ > ◆豆 > ◆豆 >

Description Peculiarities

Peculiarities of the stochastic approach to the RFT:

- Presence of the 2 \rightarrow 2 coupling
- Regularization scale (equivalient to the cutoff or the Pomeron size in RFT) enters via functions g(b), $p_{m_2}(b)$ and p_{ν}
- Neglect of the real part of the amplitude.

Realization features:

- We do the explicit parton sets evolution starting from initial configuration generated in accord with the vertices
- The realization can be used for both 0D and 2D RFT

Full propagator Amplitudes and cross sections

Applications

- The full Pomeron propagator
 - Role of the slope (in particular between 0D and 2D RFT)
 - $\bullet~$ Role of the 2 \rightarrow 2 coupling
- Amplitude in the quasieikonal approximation
 - Effect of loops
 - $\bullet~$ Role of the 2 \rightarrow 2 coupling and regularization scale

I ≡ ►

Full propagator Amplitudes and cross sections

The full propagator

The propagator coincides with 1-parton inclusive distribution with a single parton at the start of the evolution. We use parameter sets which differ by the values of the couplings only.

Set	λ	ν	m_1	m_2	Δ	$r_{3P}(0D)$	χ (0D)
1	0.1	0.2	0	0	0.1	0.1	0.1
2	0.1	0.1	0	0.05	0.1	0.1	0.075
3	0.1	0	0	0.1	0.1	0.1	0.05
4	0.15	0.3	0.05	0	0.1	0.15	0.15
5	0.15	0	0.05	0.15	0.1	0.15	0.075

For the 2D case we additionaly introduce the partonic interaction distance a = 0.05 fm and the diffusion coefficient D = 0.01 fm⁻²

Full propagator Amplitudes and cross sections

The full propagator, 0D case

 The 2 → 2 coupling is crucial for the asymptotic behavior (in accord with preceding works)
 Non-zero asymptotic behavior needs a special relation btw r_{3P} ∆ and

Full propagator Amplitudes and cross sections

The full propagator, 2D case

• The role of $2 \rightarrow 2$ coupling is negligible.

• $f_1(y, b = fix)$ grows with y, growth is defined exclusively by Δ and r_{3P}

Full propagator Amplitudes and cross sections

The full propagator, 2D case

• The asymptotic behaviour is very much dependent on the slope

Full propagator Amplitudes and cross sections

The quasieikonal approximation

We estimate the role of loop corrections by comparing the full calculation to the quasieikonal fit [Ter-Martirosyan'86] to the experimental data on *pp* cross sections. The starting point :

$$T(Y,\mathbf{b}) = \sum_{n=1}^{\infty} \frac{(-C)^{n-1}}{n!} (T_P(Y,\mathbf{b}))^n = \sum \overline{\underbrace{g_0^2 n_{\gamma_1}^2}}_{Z_2} \overline{\underbrace{g_0^2 n_{\gamma_2}^2}}_{R_P^2},$$
$$T_P(Y,\mathbf{b}) = \frac{g_0^2 \exp(\Delta Y)}{R_P^2 + \alpha' Y} \exp[-\frac{1}{4}b^2/(R_P^2 + \alpha' Y)].$$

$$\begin{split} g_0^2 &= 2.14 \ {\rm GeV}^{-2} \approx 0.083 {\rm fm}^2 \ , R_P^2 &= 3.30 \, {\rm GeV}^{-2} \approx 0.128 {\rm fm}^2 \ , \\ \alpha_P' &= 0.22 \ {\rm GeV}^{-2} \approx 0.0085 {\rm fm}^2 \ , \Delta &= 0.12 \ , \quad C = 1.5 \ . \end{split}$$

We take \bullet the same p-nP vertices (Gaussian) \bullet triple coupling $r_{3P} = 0.087 \text{ GeV}^{-1}$ following[Kaidalov'79].

Full propagator Amplitudes and cross sections

The parameter sets

Quasieikonal vertices
$$\Leftrightarrow$$
 "quasipoissonian" distribution in the # of partons: $P_n = C^{(n-1)/2} \frac{\bar{N}^n}{n!} e^{-C\bar{N}}, n = 1, \dots, \infty;$
 $p_p(\mathbf{b}) = \frac{1}{4\pi R^2} \exp\left[-\frac{b^2}{2R^2}\right]$

The parameter sets:

Set	<i>a</i> , fm	λ	m_1	m_2	ν	<i>N</i>
1	0.018	0.54722	0.42722	0	1.09488	32.02
2	0.018	0.54722	0.42722	0.54722	0	32.02
3	0.036	0.27361	0.15361	0	0.54722	16.01
4	0.036	0.27361	0.15361	0.27361	0	16.01

with $D = \alpha'_P = 0.0085 \text{ fm}^2$ and $R = R_P = 0.36 \text{ fm}$.

$$\chi_1 = \chi_4 = 0.00056 \text{ fm}^2, \ \chi_1 = 2\chi_2, \ \chi_3 = 2\chi_4.$$

 $r_{3P} = 0.017 \text{ fm for all sets.}$

æ

Full propagator Amplitudes and cross sections

The effect of loops

Calculations with $\Delta=0.12$:

• The growth with \sqrt{s} is suppressed compared to the eikonal.

• The role of $2 \rightarrow 2$ coupling is minor.

Full propagator Amplitudes and cross sections

The effect of loops

Full calculation with $\Delta=0.165$ and the same couplings vs the quasieikonal fit.

Conclusions

- Our numerical realization of the RFT allows to obtain the scattering amplitude with all loops taken into account.
- The approach is capable of giving the amplitude as an expansion in the number of Pomeron exchanges at given rapidity *y*.

Conclusions

- Our numerical realization of the RFT allows to obtain the scattering amplitude with all loops taken into account.
- The approach is capable of giving the amplitude as an expansion in the number of Pomeron exchanges at given rapidity *y*.
- On the basis of numerical calculations we conclude:
 - The intercept is effectively reduced as a result of the full account of the Pomeron interactions.
 - The role of 2 \rightarrow 2 coupling is minor at the available energies for α' dictated by the existing fits to data.

Conclusions

- Our numerical realization of the RFT allows to obtain the scattering amplitude with all loops taken into account.
- The approach is capable of giving the amplitude as an expansion in the number of Pomeron exchanges at given rapidity *y*.
- On the basis of numerical calculations we conclude:
 - The intercept is effectively reduced as a result of the full account of the Pomeron interactions.
 - The role of 2 \rightarrow 2 coupling is minor at the available energies for α' dictated by the existing fits to data.

Ongoing work

• Realistic fits to data (with 2-channel eikonal initial conditions)

• All-loop calculation of diffractive X-section.

Backup

Backup slides

注▶ 注

R. Kolevatov Application of the stochastic model

Ryser formula

Simplification in the expression for the amplitude after employing the Ryser formula

$$T_{\text{sample}} = \sum_{s_1 \subseteq \{1, \dots, N\}} \sum_{\substack{s_2 \subseteq \{1, \dots, \tilde{N}\}, \\ |s_2| < |s_1|}} (-1)^{|s_2| - 1} C_{\tilde{N} - |s_2|}^{|s_1| - |s_2|} \prod_{i \in s_1} \left(\sum_{j \in s_2} g_{ij} \right) ;$$

The estimated number of operations is $O(4^N)$.

2D propagator at b = 0

The bare propagator $D_{bare}(y,b=0)\propto \exp(\Delta y)/y$

æ

Quasieikonal within the stochastic model

- Forbid fusion and annihillation
- Each connected component plays in f_s^{sample} only once

