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• Heavy quarkonia as a thermometer

• Dissociation processes:                    
Debye screening vs. Landau damping
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• Velocity dependent EFT
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Dissociation of heavy quarkonia

Debye screening Landau damping

Medium effects

In a thermal medium,  bound states may dissociate by two 
different mechanisms
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The plasma screens the static chromo-electric fields, leading to unbinding of 
quarkonium Matsui and Satz (1986). 
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Debye Screening

Tc

The plasma screens the static chromo-electric fields, leading to unbinding of 
quarkonium Matsui and Satz (1986). Dissociation as a thermometer.
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Landau damping
In a thermal medium, no strictly stationary bound state exists. 
Interactions with the particles of the medium lead to a finite lifetime for all states. 
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Landau damping
In a thermal medium, no strictly stationary bound state exists. 
Interactions with the particles of the medium lead to a finite lifetime for all states. 

Q̄Q

broadening of the energy levels: imaginary part of the energy eigenvalues.
In a Schroedinger equation this corresponds to an imaginary part of the 
potential.

Analogous to photodissociation of molecules like
O2 + γ → 2O

in a heat bath.
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Dissociation in a static thermal bath
Debye screening and Landau damping in principle operate simultaneously.  
Ex. It is easier to dissociate by scattering a loosely bound state rather than 
a tightly bound state.   

Debye screening length

Radius of a bound state
dissociation

rB ∼
1

mQαeff

Td ∼ mQ
αeff

g

Coulombic bound state

rD =
1

mD

rD = 1.2 rB

Imaginary potential
The real part of the potential is smaller than the imaginary part for 

1/r ∼ k > g2/3T

The imaginary part dominates for g2/3T > mD

and leads to dissociation for T ! mQCF g2/16π
Laine et al. 
hep-ph/0611300
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Bound state across the plasma
How does the picture change for a moving bound state?

Plasma (or black-body radiation) in  thermal equilibrium at a temperature T 
and moving with a velocity v with respect to the bound state.

Setting:

Dynamic Debye screening considered by M.C. Chu and T. Matsui (1989)

Dynamic Landau damping considered by T. Song et al. (2008) and by  
F.Dominguez and B.Wu (2009) 

Previous works:
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Distribution function
of particles in the plasma

βµ =
γ

T
(1,v) =

uµ

T

f(βµkµ) =
1

e|βµkµ| ± 1

where

f(k, T, θ, v) =
1

ek/Teff (θ,v) ± 1

Teff(θ, v) =
T
√

1− v2

1− v cos θ

then

Effective temperature
(massless particles)

relative change of temperature as in the Doppler effect



Light-cone variables
We choose v in the z direction and define
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Then the distribution function depends on

where

In the construction of the effective theory one has to take into 
account the existence of these scales. In particular for v ∼ 1

T− ! T ! T+

for more details see Escobedo, MM, Soto   Phys.Rev. D84 (2011) 016008 



Evaluating the potential

HTL approximation, Coulomb gauge.
The potential is obtained by a Fourier transform of the longitudinal 
gauge boson propagator

∆11(k) =
1
2
[∆R(k) + ∆A(k) + ∆S(k)]

∆∗
R(k) = ∆A(k)

∆S(k, u) =
ΠS(k, u)

2i!ΠR(k, u)
(∆R(k, u)−∆A(k, u))

Temperature range mQ ! T ! ΛQCD ! mq

T ! 1/r

where

M. E. Carrington et al. 
Eur. Phys. J. C 7, 347 (1999)



RESULTS



θ = 0 θ = π/2

Potential



Re[V ]/(αmD) Im[V ]/(αT )

Contour lines

v = 0

v = 0.5

v = 0.95



v = 0 v != 0

Re[V ] = Im[V ] k̄ ! g2/3T k̄(v) ! g2/3T
√

1− v2

For            the real part dominates and if                the 
dissociation is due to screening

k < k̄(v)

“critical” velocity: vcr =
√

1− ag2/3

If             dissociation is due to Debye screeningv > vcr

“critical” velocity

k̄(v) < mD

mD gT ∼ gT



Summary
The properties of bound states change in the presence of a 
thermal medium

In the HTL approximation for a static bound state, Landau 
damping dominates

We find that there should be a “critical” velocity, vcr , such 
that for v> vcr , Debye screening dominates.

Next step: evaluation of the yield of HQ in a heavy-ion 
collision


