Correlations and fluctuations from lattice QCD

Claudia Ratti Torino University and INFN, Italy

S.Borsanyi, Z.Fodor, S.Katz, S.Krieg, C.R. and K.Szabó, forthcoming

Choice of the action

no consensus: which action offers the most cost effective approach Aoki, Fodor, Katz, Szabo, JHEP 0601, 089 (2006)

• our choice tree-level $O(a^2)$ -improved Symanzik gauge action

2-level (stout) smeared improved staggered fermions

$$\mathbf{V} = \mathbf{P} \left[\longrightarrow + \rho \left(\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right) + \left(\begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right) \right]$$

one of best known ways to improve on taste symmetry violation

Pseudo-scalar mesons in staggered formulation

- Staggered formulation: four degenerate quark flavors ('tastes') in the continuum limit
- Rooting procedure: replace fermion determinant in the partition function by its fourth root
- At finite lattice spacing the four tastes are not degenerate
 - each pion is split into 16
 - the sixteen pseudo-scalar mesons have unequal masses
 - only one of them has vanishing mass in the chiral limit

 $N_f = 2 + 1$ susceptibilities

with physical quark masses

and
$$N_t = 6, 8, 10, 12$$

Motivation

- The deconfined phase of QCD can be reached in the laboratory
- Need for unambiguous observables to identify the phase transition
 - fluctuations of conserved charges (baryon number, electric charge, strangeness)
 S. Jeon and V. Koch (2000), M. Asakawa, U. Heinz, B. Müller (2000)
- These observables are sensitive to the microscopic structure of the matter
- A rapid change of these observables in the vicinity of T_c provides an unambiguous signal for deconfinement
- They can be measured on the lattice as combinations of quark number susceptibilities

Results: light quark susceptibilities

 $\bullet c_2^{uu}$ measures how easy it is to create an excess of u quarks by a finite chemical potential

- igoplus quark number susceptibilities exhibit a rapid rise close to T_c
- \blacklozenge at large T they reach $\sim 90\%$ of the ideal gas limit

Results: strange quark susceptibilities

$$\chi_2^s = \left. \frac{T}{V} \frac{\partial^2 \ln Z}{\partial \mu_s^2} \right|_{\mu_i = 0}$$

igstarrow strange quark susceptibilities rise more slowly as functions of T

Results: nondiagonal susceptibilities

$$\mathbf{c}_{2}^{us} = c_{2}^{ds} = \left. \frac{1}{2} \frac{T}{V} \frac{\partial^{2} \ln Z}{\partial \mu_{u} \partial \mu_{s}} \right|_{\mu_{i} = 0}$$

- non-diagonal susceptibilities look at the linkage between different flavors
- in the hadronic phase they are non-zero due to mesons
- they vanish in the QGP phase at large temperatures

a particle carrying a flavor does not exhibit quantum numbers of another flavor Claudia Ratti

Results: fluctuations of baryon number

$$\chi_B = \frac{1}{9} \left(2c_2^{uu} + \chi_2^s + 2c_2^{ud} + 4c_2^{us} \right)$$

lacktriangle rapid rise around T_c

• It reaches $\sim 90\%$ of ideal gas value at large temperatures

How can we test the presence of bound states in the QGP?

- Simple QGP: strangeness is carried by strange quarks
 - → Baryon number and strangeness are correlated
- Hadron gas: strangeness is carried mostly by mesons
 - Baryon number and strangeness are uncorrelated
- Bound state QGP: strangeness is carried mostly by partonic bound states
 - → Baryon number and strangeness are uncorrelated

We define the following object $C_{BS} = -3 \frac{\langle BS \rangle}{\langle S^2 \rangle}$

V. Koch, A. Majumder, J. Randrup, PRL95 (2005). E. Shuryak, I. Zahed, PRD70 (2004).

Simple estimates

hadron gas phase:

 $C_{BS} = 0.66$

In a QGP phase:
•
$$-3\langle BS \rangle = \langle (n_{\bar{s}} - n_{s})^{2} \rangle$$

 $\langle S^{2} \rangle = \langle (n_{\bar{s}} - n_{s})^{2} \rangle$
at all T and μ
 $C_{BS} = 1$
In bound state QGP:
• heavy quark, antiquark quasiparticle contribute both to $\langle BS \rangle$ and to $\langle S^{2} \rangle$
• bound states of the form sg or $\bar{s}g$ contribute both to $\langle BS \rangle$ and to $\langle S^{2} \rangle$
• bound states of the form $s\bar{g}$ or $\bar{s}g$ contribute both to $\langle SS \rangle$ and to $\langle S^{2} \rangle$

o $\langle BS
angle$ and to $\langle S^2
angle$ |BS
angle and to $\langle S^2
angle$ und states of the form s ar q or ar s q contribute only to $\langle S^2
angle$ at $T=1.5~T_c$ MeV and $\mu=0$ $C_{BS} = 0.62$

Results: baryon-strangeness correlator

$$C_{BS} = 1 + rac{c_2^{us} + c_2^{ds}}{\chi_2^s}$$

 $\bullet C_{BS}$ rules out the possibility of bound states soon above T_c

igoplus there is a window immediately above the transition where $C_{BS} < 1$

the presence of pure gluon clusters cannot be ruled out

Conclusions

- \clubsuit diagonal and non-diagonal susceptibilities for $N_f = 2 + 1$ dynamical flavors
- baryon number fluctuations: signals of QCD phase transition
 - \blacksquare rapid rise close to T_c
- \bullet correlations between different flavors vanish soon above T_c
 - \rightarrow there is a window above T_c where they are non-zero
 - bound states melt in the QGP
 - the possibility of pure gluon clusters cannot be ruled out

All path approach

Our goal:

- determine the equation of state for several pion masses
- reduce the uncertainty related to the choice of β^0

conventional path: A, though B, C or any other paths are possible

generalize: take all paths into account

Finite volume and discretization effects

• finite $V: N_s/N_t = 3$ and 6 (8 times larger volume): no sizable difference

- finite a: improvement program of lattice QCD (action observables)
 - \rightarrow tree-level improvement for p (thermodynamic relations fix the others)
 - \blacksquare trace anomaly for three T-s: high T, transition T, low T
 - \rightarrow continuum limit $N_t = 6, 8, 10, 12$: same with or without improvement
- igoplus improvement strongly reduces cutoff effects: slope $\simeq 0$ ($1-2\sigma$ level)

Results: fluctuations of baryon number over entropy

it is supposed to be different in hadronic and QGP phases

- it can be measured experimentally
- it is a good signal for QGP formation