Jet quenching and elliptic flow in partonic transport simulations including gluons and light quarks

Oliver Fochler

Z. Xu C. Greiner

Institut für Theoretische Physik Goethe-Universität Frankfurt

TORIC Workshop 6 September 2011

H-QM Heimholtz Research School Quark Matter Studies

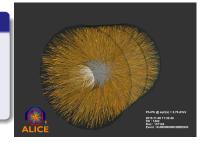
O. Fochler

Jets and v₂ in Partonic Transport

TORIC 2011 1 / 19

Heavy Ion Collisions are Complicated!

Models are needed for:


- Initial state
- Evolution of the medium
- High-p_T physics ("jet physics")
- Phase transition

Some tools:

- Parameterizations (e.g. Bjorken)
- Hydrodynamics
- Transport models

The problem

No model can describe all (most) aspects of the medium evolution.

- Lattice QCD
- AdS / CFT
- pQCD (BDMPS, ASW, AMY, ...)

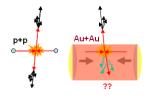
Heavy Ion Collisions are Complicated!

Models are needed for:

- Initial state
- Evolution of the medium
- High-p_T physics ("jet physics")
- Phase transition

Some tools:

- Parameterizations (e.g. Bjorken)
- Hydrodynamics
- Transport models


Lattice QCD

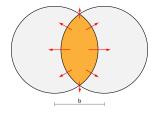
- AdS / CFT
- pQCD (BDMPS, ASW, AMY, ...)

The problem

No model can describe all (most) aspects of the medium evolution.

Elliptic Flow and Suppression of Jets

Jet suppression

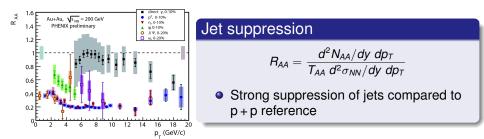

$${\it R}_{AA} = rac{d^2 N_{AA}/dy \ dp_T}{T_{AA} \ d^2 \sigma_{NN}/dy \ dp_T}$$

 Strong suppression of jets compared to p+p reference

Collective behavior of the medium

$$E rac{d^3N}{d^3p} \sim rac{d^2N}{dy \, dp_T} \left(1 + \sum_{n=1}^{\infty} 2v_n \cos\left[n(\phi - \Psi_R)
ight]
ight)$$

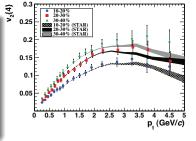
- Elliptic flow: Fourier coefficient v2
- Hydrodynamic behavior



Common description of R_{AA} and v_2 is difficult

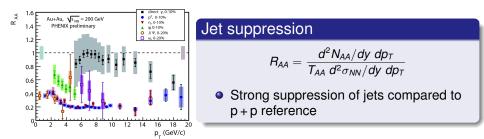
O. Fochler

Jets and v2 in Partonic Transport


Elliptic Flow and Suppression of Jets

Collective behavior of the medium

$$E\frac{d^3N}{d^3p}\sim \frac{d^2N}{dy\,dp_T}\left(1+\sum_{n=1}^{\infty}2v_n\cos\left[n(\phi-\Psi_R)\right]\right)$$


- Elliptic flow: Fourier coefficient v₂
- Hydrodynamic behavior

Common description of R_{AA} and v_2 is difficult, r_{AA} ,

O. Fochler

Elliptic Flow and Suppression of Jets

v₂{4}

0.25 0.2 0.15 0.1 0.05

Collective behavior of the medium

$$E\frac{d^3N}{d^3p}\sim \frac{d^2N}{dy\,dp_T}\left(1+\sum_{n=1}^{\infty}2v_n\cos\left[n(\phi-\Psi_R)\right]\right)$$

- Elliptic flow: Fourier coefficient v2
- Hydrodynamic behavior

Common description of R_{AA} and v_2 is difficult

O. Fochler

Jets and v₂ in Partonic Transport

p. (GeV/c)

2.5

Outline

- 2 The Model BAMPS
- 3 Validity of the Gunion-Betsch approximation
 - 4) Static Medium Brick Scenario
- 5 Simulations of Heavy Ion Collisions

OF, Z. Xu, C. Greiner, PRL 102 (2009) OF, Z. Xu, C. Greiner, PRC 82 (2010)

Partonic Transport Model - BAMPS

BAMPS = Boltzmann Approach to Multiple Particle Scattering ¹

Microscopic transport simulations with full dynamics

Attack various problems within *one* model. (elliptic flow, R_{AA} , thermalization, ...)

Solve Boltzmann equation for 2 \rightarrow 2 and 2 \leftrightarrow 3 processes based on LO pQCD matrix elements.

$$\boldsymbol{\rho}^{\mu}\partial_{\mu}f\left(\boldsymbol{x},\boldsymbol{\rho}\right)=\mathcal{C}_{2\rightarrow2}\left(\boldsymbol{x},\boldsymbol{\rho}\right)+\mathcal{C}_{2\leftrightarrow3}\left(\boldsymbol{x},\boldsymbol{\rho}\right)$$

¹Z. Xu, C. Greiner, Phys. Rev. C71 (2005)

O. Fochler

Jets and v2 in Partonic Transport

Partonic Transport Model - BAMPS

BAMPS = Boltzmann Approach to Multiple Particle Scattering ¹

Microscopic transport simulations with full dynamics

Attack various problems within *one* model. (elliptic flow, *R*_{AA}, thermalization, ...)

Visualization by Jan Uphoff Visualization framework courtesy MADAI collaboration funded by the NSF under grant NSF-PHY-09-41373

¹Z. Xu, C. Greiner, Phys. Rev. C71 (2005)

O. Fochler

Jets and v2 in Partonic Transport

< □ > < @ > < 클 > 클|= TORIC 2011 5/19

Partonic Transport Model - BAMPS

Monte Carlo sampling of interactions

- Massless Boltzmann particles (gluons, quarks)
- Discretize:
 - Spatial cells ΔV
 - Time steps Δt
- Sampling of interaction probabilities from LO pQCD
 - $2 \rightarrow 2$ Small angle cross sections
 - $2 \leftrightarrow 3$ Gunion Bertsch matrix element
- Fixed coupling ($\alpha_s = 0.3$)

gg
ightarrow gg cross section

Gunion Bertsch matrix element

$$\frac{d\sigma_{gg \to gg}}{dq_{\perp}^2} \simeq \frac{9\pi\alpha_s^2}{2(\mathbf{q}_{\perp}^2 + m_D^2)^2} \qquad |\mathcal{M}_{gg \to ggg}|^2 = \frac{72\pi^2\alpha_s^2s^2}{(\mathbf{q}_{\perp}^2 + m_D^2)^2} \frac{48\pi\alpha_s\mathbf{q}_{\perp}^2}{\mathbf{k}_{\perp}^2[(\mathbf{k}_{\perp} - \mathbf{q}_{\perp})^2 + m_D^2]}$$

Debye screening (dynamic): $m_D^2 = d_G \pi \alpha_s \int \frac{d^3 p}{(2\pi)^3} \frac{1}{p} (N_c f_g + N_f f_q)$

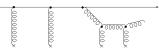
Implemented Processes (gluons and light quarks)

$2 \rightarrow 2 \text{ processes}$			$2 \leftrightarrow 3 \text{ proce}$	sses	
Original BAMPS version ($N_f = 0$): $gg \rightarrow gg$			Original BAMPS version ($N_f = 0$): $gg \leftrightarrow ggg$		
Including light quad $gg ightarrow q \overline{q}$ $q \overline{q} ightarrow g g$ q g ightarrow g g	uarks (<i>N</i>) and and	q=3): $qar{q} ightarrow q'ar{q}'$ $ar{q}g ightarrowar{q}g$	Including light quadratic q $q \leftrightarrow q g g$ $q \bar{q} \leftrightarrow q \bar{q} g$ $q \bar{q} \leftrightarrow q \bar{q} g$ $q q \leftrightarrow q q g$		a = 3): $\bar{q} g \leftrightarrow \bar{q} g g$ $\bar{q} \bar{q} \leftrightarrow \bar{q} \bar{q} g$
$qar{q} ightarrow qar{q}$ qq ightarrow qq qq' ightarrow qq'	and and	$ar{q}ar{q} ightarrowar{q}ar{q}$ $qar{q}' ightarrow qar{q}'$	$q q' \leftrightarrow q q' g$	and	$qar{q}' \leftrightarrow qar{q}'g$

• Emission of gluon factorizes: $|\mathcal{M}_{GB}|^2 = |\mathcal{M}_{coll}|^2 P^g$

- $\begin{aligned} |\mathcal{M}_{X \to Xg}|^2 &= |\mathcal{M}_{X \to X}|^2 \left[|\mathcal{M}_{gg \to ggg}|^2 / |\mathcal{M}_{gg \to gg}|^2 \right] \end{aligned}$
- lackstyle Use small angle cross sections for scaling \rightarrow simple prefactors

Implemented Processes (gluons and light quarks)


$2 \rightarrow 2 \text{ processes}$	$2 \leftrightarrow 3 \text{ processes}$	
Original BAMPS version ($N_f = 0$): $g g \rightarrow g g$	Original BAMPS version ($N_f = 0$): $g g \leftrightarrow g g g$	
Including light quarks ($N_f = 3$): $g g \rightarrow q \bar{q}$ $q \bar{q} \rightarrow g g$ and $q \bar{q} \rightarrow q' \bar{q}'$ $q g \rightarrow q g$ and $\bar{q} g \rightarrow \bar{q} g$ $q \bar{q} \rightarrow q \bar{q}$ $q q \rightarrow q q$ and $\bar{q} \bar{q} \rightarrow \bar{q} \bar{q}$ $q q' \rightarrow q q'$ and $q \bar{q}' \rightarrow q \bar{q}'$	Including light quarks $(N_f = 3)$: $qg \leftrightarrow qgg$ and $\bar{q}g \leftrightarrow \bar{q}gg$ $q\bar{q} \leftrightarrow q\bar{q}g$ $qq \leftrightarrow qqg$ and $\bar{q}\bar{q} \leftrightarrow \bar{q}\bar{q}g$ $qq' \leftrightarrow qq'g$ and $q\bar{q}' \leftrightarrow q\bar{q}'g$	

- Emission of gluon factorizes: $|\mathcal{M}_{GB}|^2 = |\mathcal{M}_{coll}|^2 P^g$
- Re-use $gg \to ggg$ matrix element $|\mathcal{M}_{X \to Xg}|^2 = |\mathcal{M}_{X \to X}|^2 \left[|\mathcal{M}_{gg \to ggg}|^2 / |\mathcal{M}_{gg \to gg}|^2 \right]$
- $\bullet~$ Use small angle cross sections for scaling \rightarrow simple prefactors

Modelling of the LPM Effect

LPM effect

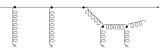
Multiple gluon emission \Rightarrow interference

- Difficult to realize in a semi-classical transport model
- Ansatz: Discard possible interference processes (Bethe-Heitler)

Parent must not scatter during formation time of emitted gluon

$$\left|M_{gg \to ggg}\right|^2 \longrightarrow \left|M_{gg \to ggg}\right|^2 \Theta\left(\lambda - \tau\right)$$

Comparison of λ und τ requires consideration of different Lorentz frames

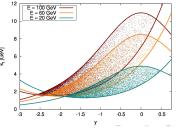

$$\Theta\left(\lambda - au
ight) = \Theta\left(k_{\perp}\lambda - rac{\cosh y}{\sqrt{1 - {eta'}^2}}\left(1 + eta'\, anh y\, \cos heta
ight)
ight)$$

《曰》《曰》《曰》 ([])

Modelling of the LPM Effect

LPM effect

Multiple gluon emission \Rightarrow interference

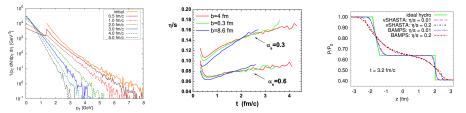

- Difficult to realize in a semi-classical transport model
- Ansatz: Discard possible interference processes (Bethe-Heitler)

Parent must not scatter during formation time of emitted gluon

$$\left| M_{gg \rightarrow ggg} \right|^2 \longrightarrow \left| M_{gg \rightarrow ggg} \right|^2 \Theta \left(\lambda - \tau \right)$$

Comparison of λ und τ requires consideration of different Lorentz frames

$$\Theta\left(\lambda-\tau\right) = \Theta\left(k_{\perp}\lambda - \frac{\cosh y}{\sqrt{1-{\beta'}^2}}\left(1+{\beta'}\,\tanh y\,\cos\theta\right)\right)^{-\frac{5}{2}}$$



Some Results from BAMPS

- Fast thermalization,
 1 fm/c Z. Xu, C. Greiner, PRC 71 (2005)
- Small viscosity, η/s ≃ 0.1 − 0.2
 Z. Xu, C. Greiner, H. Stoecker PRL 101 (2008) / Z. Xu, C. Greiner PRL 100 (2008)
- Investigate heavy quark production and dynamics
 J. Uphoff, OF et al., PRC 82 (2010)
- Can serve as reference for viscous hydro I. Bouras et al. PRL 103 (2009)

Investigate hydrodynamic shocks / Mach cones

I. Bouras et al. PRL 103 (2009) / 1008.4072

▲口▶▲圖▶▲臣▶ 王昌

Jets and v₂ in Partonic Transport

Things that won't be covered in this talk

... but can learned from going to these:

Heavy flavor in BAMPS

 \Rightarrow Jan Uphoff, this afternoon

Shear viscosity in transport models

 \Rightarrow Christian Wesp, this afternoon

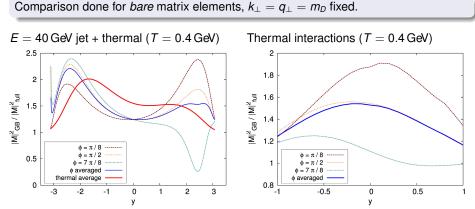
Hydrodynamic behavior within BAMPS and collective excitations

 \Rightarrow Ioannis Bouras, Thursday

Comparison of GB to the Exact Matrix Element

How good is the approximation by the Gunion-Bertsch matrix element?

• Gunion Bertsch matrix element for $gg \rightarrow ggg$


$$\left|\mathcal{M}_{gg \to ggg}^{\text{GB}}\right|^2 = \frac{72\pi^2 \alpha_s^2 s^2}{(\mathbf{q}_{\perp}^2)^2} \, \frac{48\pi \alpha_s \mathbf{q}_{\perp}^2}{\mathbf{k}_{\perp}^2 [(\mathbf{k}_{\perp} - \mathbf{q}_{\perp})^2]}$$

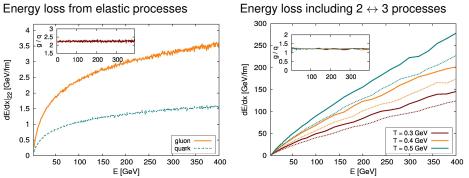
Exact solution by BERENDS et al. (PLB 103, 1981) and by ELLIS / SEXTON (Nucl.Phys.B269, 1986)

$$\begin{split} \left| \mathcal{M}_{gg \to ggg}^{\text{full}} \right|^2 &= \frac{g^6}{2} \left[N^3 / (N^2 - 1) \right] \left[(12345) + (12354) + (12435) + (12453) + (12534) \right. \\ &+ (12543) + (13245) + (13254) + (13425) + (13524) + (14235) + (14325) \right] \\ &\times \frac{\left[(p_1 p_2)^4 + (p_1 p_3)^4 + (p_1 p_4)^4 + (p_1 p_5)^4 + (p_2 p_3)^4 \right]}{(p_1 p_2) (p_1 p_3) (p_1 p_4) (p_1 p_5) (p_2 p_3) (p_2 p_4) (p_2 p_5) (p_3 p_4) (p_3 p_5) (p_4 p_5)} \\ &+ \frac{\left[(p_2 p_4)^4 + (p_2 p_5)^4 + (p_3 p_4)^4 + (p_3 p_5)^4 + (p_4 p_5)^4 \right]}{(p_1 p_2) (p_1 p_3) (p_1 p_4) (p_1 p_5) (p_2 p_3) (p_2 p_4) (p_2 p_5) (p_3 p_4) (p_3 p_5) (p_4 p_5)} \end{split}$$

with $(ijklm) = (p_ip_j)(p_jp_k)(p_kp_l)(p_lp_m)(p_mp_i)$

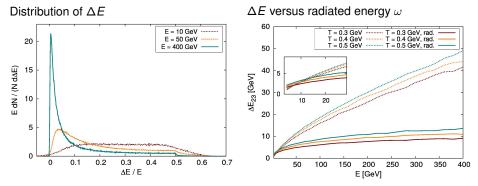
Comparison of GB to the Exact Matrix Element

Approximations by GB are reasonable


GB overestimates the exact matrix element by a factor 1.2 to 2.

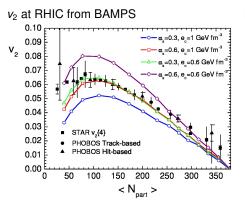
О.	Foch	ler
<u> </u>	1 0011	

◆□ ▶ < 部 ▶ < 王 ▶ 三日 TORIC 2011 12 / 19


Energy Loss in a Static Medium

Static Medium (brick): T = const, no expansion

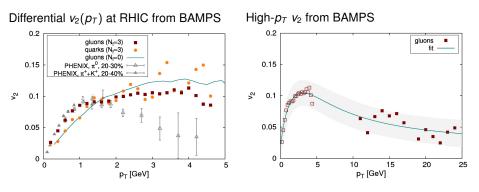
- Strong energy loss from $2 \rightarrow 3$ processes
 - Complex interplay of GB matrix element and LPM cutoff
 - Prefered gluon radiation into *y* < 0 (backward) direction
- Only small difference between quarks and gluons
 - Iterative computation of rates due to LPM restriction


Energy Loss in a Static Medium

• Broad distribution of energy loss ΔE per collision

• ΔE is larger than the energy of the radiated gluon

•
$$\Delta E = E_{in} - max(E^i_{out}) \ge \omega$$

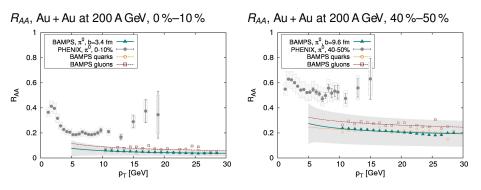


Parameters:

- Coupling $\alpha_s = 0.3$ to $\alpha_s = 0.6$
- Freeze-out energy density $\varepsilon_c = 0.6 \text{ GeV fm}^{-3}$ to $\varepsilon_c = 1.0 \text{ GeV fm}^{-3}$
- $N_f = 0$ (purely gluons)
- Mini jet initial conditions (p₀ = 1.4 GeV)

- Medium develops strong collectivity using pQCD-based interactions Xu, Greiner, PRC 79 (2009)
- $\langle v_2 \rangle$ can be described over a large range of centrality

Elliptic flow at RHIC

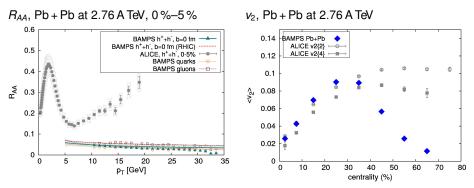


- Differential elliptic flow of gluons and quarks is (almost) the same
- NCQ scaling the experimental data, the magnitude of quark v₂(p_T) is ok, but peak shifts ⇒ hadronization mechanisms?
- Qualitative features of high- $p_T v_2$ agree with PHENIX π^0 data
 - fitted using $v_2(p_T) = \left(a + \frac{1}{p_T^n}\right) \frac{(p_T/\lambda)^m}{1 + (p_T/\lambda)^m}$

→ 프네님

• • • • • • • • • •

Jet Suppression in BAMPS Simulations at RHIC



- Hadronization via AKK fragmentation functions
- Suppression in BAMPS is too strong
 - $\bullet~$ Strong mean energy loss in 2 \rightarrow 3 processes
 - Sizeable conversion of quark jets into gluon jets
 - Small difference in the energy loss of quarks and gluons

→ 프네님

• • • • • • • • • •

Jet Suppression and Elliptic Flow at LHC

- PYTHIA initial conditions (Uphoff, OF et al. PRC 82 (2010)), $\alpha_{s} = 0.3$
- R_{AA} almost identical to RHIC, does not reproduce rise towards large p_T
- Integrated v₂ shows increase, drops below data at about 50 % centrality

Summary

- Partonic transport provides means of:
 - exploring the dynamics of the medium evolution based on pQCD processes
 - exploring different observables within a common framework
- Strong collective flow of the medium is reproduced
- Suppression of jets is too strong using the same parameters

Summary

- Partonic transport provides means of:
 - exploring the dynamics of the medium evolution based on pQCD processes
 - exploring different observables within a common framework
- Strong collective flow of the medium is reproduced
- Suppression of jets is too strong using the same parameters

Possible improvements:

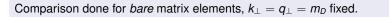
- Implementation of running coupling α_s(Q²)
- Revisit LPM effect, explore prospects of Monte Carlo implementation?
- Hadronization scheme for low and medium p_T range ...,

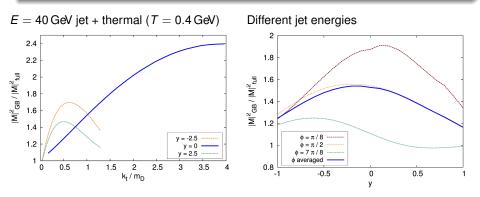
```
O. Fochler
```

Jets and v2 in Partonic Transport

Summary

- Partonic transport provides means of:
 - exploring the dynamics of the medium evolution based on pQCD processes
 - exploring different observables within a common framework
- Strong collective flow of the medium is reproduced
- Suppression of jets is too strong using the same parameters

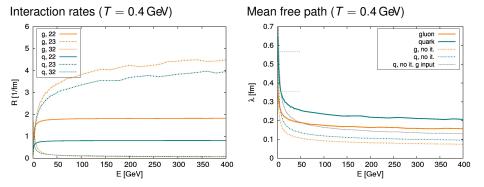

Ongoing work:


- Restructuring and improving code
- Preparing code for publication

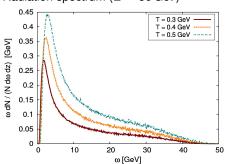
Additional material

□ ▶ < 🗗 ▶ < Ē ▶ Ē = TORIC 2011 20 / 19

Comparison of GB to the Exact Matrix Element


Approximations by GB are reasonable

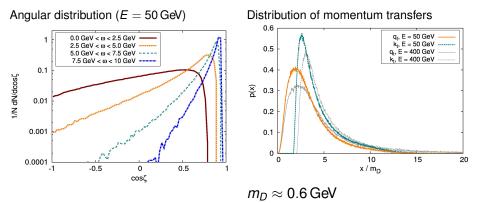
GB overestimates the exact matrix element by a factor 1.2 to 2.


\cap	Foch	lor
Ο.		

< □ > < @ > < ≧ > ≧ ⊨
 TORIC 2011 21 / 19

Rates and Mean Free Paths

▲ □ ▷ ▲ @ ▷ ▲ 필 ▷ 필 □ TORIC 2011 22 / 19


Radiation spectrum (E = 50 GeV)

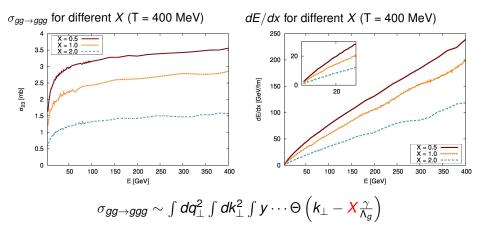
O. Fochler

Jets and v2 in Partonic Transport

▲ □ ▷ < @ ▷ < 분 ▷ 분 1 =
 TORIC 2011 23 / 19

Radiation Distributions

▲ □ ▷ < @ ▷ < 필 ▷ 필 □
 TORIC 2011 24 / 19

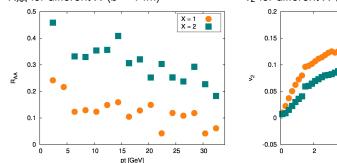

Parameters in BAMPS

- Coupling strength \(\alpha_s\)
- Critical freeze-out energy density ε_c
- LPM cut-off

The effective implementation of the LPM cut-off requires $\Lambda_g > \tau$. Only qualitative argument, introduce factor *X* to test sensitivity.

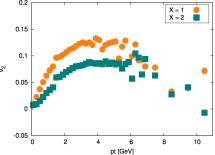
$$\Theta\left(\mathbf{k}_{\perp}-\frac{\gamma}{\Lambda_{g}}\right) \rightarrow \Theta\left(\mathbf{k}_{\perp}-\mathbf{X}\frac{\gamma}{\Lambda_{g}}\right)$$

Sensitivity on the LPM Cut-Off



- Large X reduces total cross section
- Sampling of outgoing particles affected in non-trivial way
- Energy loss per collision only slightly affected, main contribution to the change in energy loss from change in σ.

```
O. Fochler
```


Jets and v₂ in Partonic Transport

Sensitivity on the LPM Cut-Off

R_{AA} for different X (b = 7 fm)

 v_2 for different X (b = 7 fm)

TORIC 2011 27 / 19

315

• • • • • • • • •