

Institut für Theoretische Physik I

Chiral magnetic effect and evolution of electromagnetic field in relativistic heavy-ion collisions

Volodya Konchakovski

Network Workshop "TORIC" Heraklion, Crete, Greece 6 September 2011

Outline

- (P)HSD relativistic microscopic transport approach
- Comparison with the observables
- Chiral Magnetic Effect (CME)
- Model results
- Summary / Conclusions
- Coffee break

Basic Concept of HSD Transport Approaches

HSD – Hadron-String-Dynamics transport approach

Ehehalt, Cassing, Nucl.Phys. A602 (1996) 449; Cassing, Bratkovskaya, Phys. Rep.308 (1999) 65.

• the phase-space density f_i follows the transport equations

 $\left(\frac{\partial}{\partial t} + \left(\nabla_{\vec{p}} H\right)\nabla_{\vec{r}} - \left(\nabla_{\vec{r}} H\right)\nabla_{\vec{p}}\right)f_{i}(\vec{r}, \vec{p}, t) = I_{coll}(f_{1}, f_{2}, \dots, f_{M})$

with collision terms I_{coll} describing:

elastic and inelastic hadronic reactions:

baryon-baryon, meson-baryon, meson-meson

- formation and decay of baryonic and mesonic resonances
- string formation and decay

(for inclusive particle production: BB -> X, mB -> X, X =many particles)

- implementation of detailed balance on the level of 1<->2 and 2<->2 reactions (+ 2<->n multi-particle reactions in HSD !)
- no explicit phase transition from hadronic to partonic degrees of freedom

Transport description of the partonic and hadronic phase

Parton-Hadron-String-Dynamics PHSD

W. Cassing, E. Bratkovskaya, PRC 78 (2008) 034919; NPA831 (2009) 215; EPJ ST 168 (2009) 3.

- Initial A+A collisions HSD: string formation and decay to pre-hadrons
- Fragmentation of pre-hadrons into quarks: using the quark spectral functions from the Dynamical QuasiParticle Model (DQPM) approximation to QCD

DQPM: Peshier, Cassing, PRL 94 (2005) 172301; Cassing, NPA 791 (2007) 365; NPA 793 (2007).

- Partonic phase: quarks and gluons (= 'dynamical quasiparticles') with off-shell spectral functions (width, mass) defined by the DQPM
- Elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM
 - ✓ q + q (flavor neutral) <=> gluon (colored)
 - gluon + gluon <=> gluon (possible due to large spectral width)
 - ✓ $q + \overline{q}$ (color neutral) <=> hadron resonances
- Hadronization: based on DQPM massive, off-shell quarks and gluons with broad spectral functions hadronize to off-shell mesons and baryons:
 gluons => q + q
 - ✓ q + q => meson (or string)
 - q + q + q => baryon (or string)
- Hadronic phase: hadron-string interactions off-shell HSD

Transverse mass spectra at SPS energies

- PHSD gives harder spectra and works better than HSD at SPS (and top FAIR) energies
- At low SPS (and low FAIR) energies the effect of the partonic phase is less pronounced in rapidity distributions and m_T spectra

Transverse mass spectra at RHIC energies

PHSD improves significantly with respect to HSD (and the data) !

Rapidity distributions at RHIC energies

Elliptic flow vs. centrality

PHSD improves relative to HSD (in line with the data from PHOBOS)

Elliptic flow vs. collision energy

Increase of parton fraction with energy leads to increasing v2

Parity violation in strong interactions

In QCD, chiral symmetry breaks due to a non-trivial topological effect; among the best evidence of this physics would be event-by-event strong parity violation.

The volume of the box is 2.4 by 2.4 by 3.6 fm. The topological charge density of 4D gluon field configurations. (Lattice-based animation by *Derek Leinweber*)

Energy of gluonic field is periodic in N_{cs} direction (~ a generalized coordinate)

Instantons and sphalerons are localized (in space and time) solutions describing transitions between different vacua via tunneling or crossing the barrier Dynamics is a random walk between states with different topological charges.

Charge separation: CP violation signal

Dynamics is a random walk between states with different topological charges. In this states a balance between left-handed and right-handed quarks is destroyed, $N_R-N_L=Q_T \rightarrow violation$ of P-, CP- symmetry.

Average total topological charge vanishes $< n_w >= 0$ but its variance is equal to the total number of transitions $< n_w^2 >= N_t$

Fluctuation of topological charges in the presence of magnetic field induces electric current which will separate different charges

Lattice gauge theory

 $q B = 0.7 \, \mathrm{GeV}^2$

The excess of electric charge density due to the applied magnetic field. Red — positive charges, blue — negative charges.

P.V. Buividovich et al., PRD80 (2009) 054503

Charge separation in HIC

Non-zero angular momentum (or equivalently magnetic field) in heavy-ion collisions make it possible for P- and CP-odd domains to induce charge separation D.Kharzeev, PLB 633 (2006) 260.

Electric dipole moment of QCD matter !

 $<\cos(\phi_{a}+\phi_{b}-2\psi_{RP})>$

Measuring the charge separation with respect to the reaction plane was proposed by S.Voloshin, Phys. Rev. C 70 (2004) 057901.

Charge separation in RHIC experiments

STAR Collaboration, PRL 103 (2009) 251601

 $<\cos(\phi_{a}+\phi_{b}-2\psi_{RP})>$

Combination of intense B and deconfinement is needed for a spontaneous parity violation signal

Hadron-String-Dynamics HSD

Retarded electromagnetic field

Magnetic field for a single moving charge

Magnetic field evolution

AuAu, $\sqrt{S_{NN}} = 200 \text{ GeV}$, b=10 fm, t=0.2 fm/c

AuAu, $\sqrt{S_{NN}} = 200 \text{ GeV}$, b=10 fm, t=0.5 fm/c

V.Voronyuk, et al., Phys.Rev. C83 (2011) 054911

Magnetic field and energy density correlation

Time dependence of eB_v

 Until t~1 fm/c the induced magnetic field is defined by spectators only.
 Maximal magnetic field is reached during nuclear overlapping time Δt~0.2 fm/c, then the field goes down exponentially.

Electric field evolution

AuAu, $\sqrt{S_{NN}} = 200 \text{ GeV}$, b=10 fm, t=0.01 fm/c

Electric field of a single moving charge has a "hedgehog" (or see urchin) shape

AuAu, $\sqrt{S_{NN}} = 200 \text{ GeV}$, b=10 fm, t=0.05 fm/c

V.Voronyuk, et al., Phys.Rev. C83 (2011) 054911

Observables

21

V.Voronyuk, et al., Phys.Rev. C83 (2011) 054911

Average momentum increment

AuAu 200GeV, b=10fm 4 c Δp_x [GeV/c] 0.003 3 Total 0.002 2 Electric 0.001 1E 0 -1[-0.001 Magnetic -2 -0.002 -3 -0.003 -4 50 100 150 200 250 t [fm/c] AuAu 200GeV, b=10fm 0.01 0.015 Δp_z [GeV/c] 0.01 Magnetic 0.005 0.005 0 0 -0.005 -0.005 -0.01 Total -0.015 0.01 Electric -0.02 50 100 150 200 250 t [fm/c]

Transverse momentum increments Δp due to electric and magnetic fields compensate each other ! (worrying & hope)

Summary

- Some exp. data are not well reproduced in terms of the hadron-string picture => evidence for nonhadronic degrees of freedom => PHSD wich provides a consistent description of off-shell parton dynamics in line with a lattice QCD equation of state
- PHSD provides a reasonable description of the rapidity spectra and m_T-slopes for A+A collisions at the SPS and RHIC energies
- The collective properties as expressed in terms of the elliptic flow v₂ are reasonably described contrary to HSD calculations
- The HSD transport model with retarded electromagnetic fields has been developed. Actual calculations show no noticeable influence of the created electromagnetic fields on observables. It is due to a compensating effect between electric and magnetic fields
- Direct inclusion of quarks and gluons in evolution is needed (PHSD model)
- Experiments on the CME planned at RHIC by the low-energy scan program are of great interest since they hopefully will allow to infer the critical magnetic field eB_{crit} governing the spontaneous local CP violation

Thanks to

Elena Bratkovskaya Wolfgang Cassing Vyacheslav Toneev Vadim Voronyk **Sergey Voloshin Olena Linnyk** Vitalii Ozvenchuk

backup

Transport model with electromagnetic field

The Boltzmann equation is the basis of QMD like models:

$$\{\frac{\partial}{\partial t} + \dot{\vec{r}} \cdot \vec{\nabla}_r + \dot{\vec{p}} \cdot \vec{\nabla}_p\} \ f(\vec{r}, \vec{p}, t) = I_{coll}(f, f_1, \dots f_N)$$

Generalized on-shell transport equations in the presence of electromagnetic fields can be obtained formally by the substitution:

$$\begin{split} \dot{\vec{r}} &\to \frac{\vec{p}}{p_0} + \vec{\nabla}_p U \ , \\ \dot{\vec{p}} &\to -\vec{\nabla}_r U + e\vec{E} + e\vec{v} \times \vec{B} \end{split}$$

$$\frac{\partial}{\partial t} + \left(\frac{\vec{p}}{p_0} + \vec{\nabla}_{\vec{p}} U\right) \vec{\nabla}_{\vec{r}} - \left(\vec{\nabla}_{\vec{r}} U - e\vec{E} - e\vec{v} \times \vec{B}\right) \vec{\nabla}_{\vec{p}} \} f(\vec{r}, \vec{p}, t) \qquad U \sim Re(\Sigma^{ret})/2p_0$$

$$= I_{coll}(f, f_1, \dots f_N)$$

A general solution of the wave equations

is as follows

$$\vec{A} \text{ general solution of the wave equations} \begin{cases} \vec{B} = \nabla \times \vec{A} \\ \vec{E} = -\vec{\nabla} \Phi - \frac{\partial \vec{A}}{\partial t} \end{cases}$$
$$\vec{A}(\vec{r},t) = \frac{1}{4\pi} \int \frac{\vec{j}(\vec{r'},t') \ \delta(t-t'-|\vec{r}-\vec{r'}|/c)}{|\vec{r}-\vec{r'}|} \ d^3r' dt' \end{cases}$$
$$\vec{A}(\vec{r},t) = \frac{1}{4\pi} \int \frac{\rho(\vec{r'},t') \ \delta(t-t'-|\vec{r}-\vec{r'}|/c)}{|\vec{r}-\vec{r'}|} \ d^3r' dt'$$

For point-like particles $\rho(\vec{r},t) = e \,\delta(\vec{r}-\vec{r}(t)); \quad \vec{j}(\vec{r},t) = e \,\vec{v}(t) \,\delta(\vec{r}-\vec{r}(t)) \qquad \vec{\nabla} \times \vec{A} \to LWeq.$