Charmonium dynamics in the UrQMD transport model

Thomas Lang

September 6, 2011

TORIC Workshop Heraklio

Thanks to Marcus Bleicher, Elena Bratkovskaya, Olena Linnyk

Thomas Lang September 6, 2011 TORIC Workshop Heraklio

atter Studies 《 윤 · · · 홈 · · · · · 홈 Charmonium dynamics in the UrQMD transport model

- 2 Charmonium in UrQMD
- 3 Results of a purely hadronic approach
- 4 Results of a prehadronic approach

5 Summary/Outlook

4 E

Debye screening in QGP

In 1986 T. Matsui and H. Satz proposed that charmonium will be suppressed in QGP.

- charmonium is produced in the initial phase of a heavy ion collision in hard processes
- interaction of c and \bar{c} is weakened by color Debye screening
- charmonium gets dissociated and recombines after QGP phase transition to hadron gas
- \Rightarrow suppression of chamonium and enhancement of open charm mesons

Charmonium suppression

Charmonium in UrQMD Results of a purely hadronic approach Results of a prehadronic approach Summary/Outlook

Normal suppression

- "Anomalous" suppression in central collisions?
- Can hadronic scatterings explain suppression?

Thomas Lang September 6, 2011 TORIC Workshop Heraklio

Comover scenario

- S. Gavin and R. Vogt Nucl. Phys. B345 (1990) 104.
 - charmonium can be dissociated by inelastic scatterings with comoving mesons
 - cross sections are in the order of some mb
 - gets important in a dense medium, that means central collisions and high collision energies
 - improves description of data

Charmonium suppression

Charmonium in UrQMD Results of a purely hadronic approach Results of a prehadronic approach Summary/Outlook

Regeneration

- R.L.Thews predicts recombination of heavy quarks and antiquarks which originate from different space-time regions
- formation rate proportional to the square of the number of unbound charm quarks
- \Rightarrow possible J/Ψ enhancement at LHC

P.Braun-Munzinger, arXiv:0901.2500

Charmonium melting

- spectral function of charmonium can be calculated using lattice QCD, it broadens in QGP
- dissociation is more likely
- width of the spectral function can possibly be interpreted as life time
- complete breakup only at very high temperatures

- 3 Results of a purely hadronic approach
- 4 Results of a prehadronic approach

5 Summary/Outlook

/□ ▶ < 글 ▶ < 글

UrQMD

Ultra-Relativistic Quantum Molecular Dynamics Model

- non-equilibrium transport model
- classical trajectories in phase-space (relativistic kinematics): evolution of phase space distribution via Boltzmann equation
- includes all particle resonances and decays up to 2.1 GeV
- cross sections from measurements, additive quark model and detailed balance
- applicable to a huge range of collision energies
- can be coupled with different other models, for example hydro

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Implementation to UrQMD

- charm production points determined using Glauber model
 ⇒ UrQMD prerun to write down nucleon collision points
- momenta and yields of $J/\Psi s$ and D-Mesons are fitted to experimental data
- purely hadronic interactions with baryons and mesons
- elastic cross sections from effective Lagrangian calculations Ziwei Lin, C M Ko, J.Phys. G:Nucl.Part.Phys. 27 (2001) 617-623
- inelastic cross sections taken from SPS-fits and two-body transition model fitted to data from Pb+Pb at SPS

E. L. Bratkovskaya, W. Cassing, and H. Stoecker, Phys. Rev. C67, 054905 (2003)

Dissociation cross sections

E. L. Bratkovskaya, W. Cassing, and H. Stoecker, Phys. Rev. C67, 054905 (2003)

Regeneration cross sections

• $D\bar{D} \rightarrow J/\Psi$

- increased cross section for excited D-Mesons
- suppression for strange mesons

E. L. Bratkovskaya, W. Cassing, and H. Stoecker, Phys. Rev. C67, 054905 (2003)

-

- 2 Charmonium in UrQMD
- 3 Results of a purely hadronic approach
 - 4 Results of a prehadronic approach

5 Summary/Outlook

/□ ▶ < 글 ▶ < 글

SPS

Implementation reproduces schematic calculation of C. Spieles et. al.

M.C. Abreu et al. (NA50 Collab.), Phys. Lett. B410 (1997) 327, 337

SPS - time evolution

RHIC - Time evolution

э

э

RHIC - centrality dependence

Thomas Lang September 6, 2011 TORIC Workshop Heraklio

- 2 Charmonium in UrQMD
- 3 Results of a purely hadronic approach
- 4 Results of a prehadronic approach

5 Summary/Outlook

/□ ▶ < 글 ▶ < 글

Is a prehadronic phase the solution?

- implementation of a prehadroic phase to UrQMD
- below transition temperature normal hadronic model
- no recombination of D-Mesons above phase transition temperature
- no formation times \Rightarrow prehadronic cross sections
- at very high densities breakup of charmonium particles

SPS

 $Pb - Pb, p_{lab} = 158 \; GeV$

B.Alessandro et al. (NA50 Collab.), Eur.Phys.J. C39 (2005) 335-345

- variables of new model are fitted to SPS data
- detailed balance model used
- shape fits well

RHIC

- same variables used as at SPS energies
- stronger recombination at midrapidity ⇒ less suppression at midrapidity

PHENIX, A. Adare et al., Phys. Rev. Lett. 98, 232301 (2007)

Different cross sections

P.Braun-Munzinger, K.Redlich, Eur.Phys.J. C16 (2000) 519-525

- a lot of cross sections on the market
- possibility to test cross sections
- non-perturbative quark-exchange model (K.Martins et al.)
- constant cross section of 3 mb (R. Vogt et al.)
- meson exchange model (S.G. Matinian et al.)
- perturbative QCD (D. Kharzeev et al.)

Charmonium dynamics in the UrQMD transport model

J/Ψ suppression at LHC

ATLAS, Georges Aad et al., Phys.Lett. B697 (2011) 294-312

J/Ψ suppression at LHC

- first measurements show that charmonium is suppressed at LHC
- RAA still missing
- higher D-Meson number has no effect due to energy density and phase space reasons

J/Ψ suppression in pp at LHC

- J/Ψ yield in pp used as reference value for heavy ion collisions
- high energy density
- possible suppression can be tested using different multiplicity bins
- this calculation is not comparable to experiments directly!

- 2 Charmonium in UrQMD
- 3 Results of a purely hadronic approach
- 4 Results of a prehadronic approach

- **→** → **→**

Summary/Outlook

- charmonium suppression
- realization of charmonium dynamics in UrQMD
- comparison to data for SPS and RHIC energies
- prehadronic phase needed for proper description
- suppression in pp collisions also
- have a look at more observables
- need for improvement of the prehadronic phase

QCD phase diagram

Thomas Lang September 6, 2011 TORIC Workshop Heraklio

Charmonium dynamics in the UrQMD transport model

Time evolution in HIC

- Charm quark mass $\approx 1.5 \ GeV$
- charm production at early stage of collision in hard processes
- hadronization when the system cools down
- ideal probe for the whole collision

QGP phase transition

Thomas Lang September 6, 2011 TORIC Workshop Heraklio

Charmonium dynamics in the UrQMD transport model

Regeneration

- R.L.Thews (R. L. Thews, J. Rafelski, Nucl.Phys. A698 (2002) 575-578) predicts recombination of heavy quarks and antiquarks which originate from different space-time regions
- formation rate proportional to the square of the number of unbound charm quarks
- \Rightarrow J/ Ψ -enhancement at RHIC and LHC

Regeneration

- P. Braun-Munzinger (arXiv:0901.2500v1) uses thermal model
- J/Ψ -production at phase boundary, proportional to the square of charm quarks

 \Rightarrow possible J/Ψ enhancement at LHC

Charmonium yield

charmonium yield → about 0.1 in a central collision
 D-Meson yield → approximately 30 in a central collision
 R.Vogt. arXiv:0709.2531v1 (2007)

• fraction of charmonium states

E 705: L. Antonizzi et al., PRL 70 (1993) 383

Thomas Lang September 6, 2011 TORIC Workshop Heraklio

Initial conditions

x_f -distribution

E672/E706, V. Abramov et al., FERMILAB-Pub-91/62-E, IFVE-91-9, Mar. 1991

p_T -distribution

STAR, A. Tai et al., J. Phys. G30, S809 (2004)

→ Ξ → < Ξ</p>

< 17 ▶

Transport models

• HSD: Hadron String Dynamics

 $\Rightarrow~$ coupled set of relativistic transport equations for particles with in-medium selfenergies

W. Cassing and E.L. Bratkovskaya, Phys. Reports 308 (1999) 65-233

AMPT: A multiphase transport model
 ⇒ uses different approaches for partonic and hadronic interactions

B. Zhang, C. M. Ko, B. A. Li, and Z. W. Lin, Phys. Rev. C 61, 067901 (2000)

• EPOS: Energy conserving, Partons, Off-shell remnants, Splitting of parton ladders

 $\Rightarrow~$ multiple scattering approach based on partons and Pomerons

K. Werner Nucl. Phys. B (Proc. Suppl.) 175-176 (2008) 81-87

BAMPS: Boltzmann Approach of Multi-Parton Scatterings
 describes parton interactions in HIC on pOCD basis

Thomas Lang September 6, 2011 TORIC Workshop Heraklio

Charmonium dynamics in the UrQMD transport model

Glauber model

- participant-spectator model
- elementary baryon-baryon cross section
- thickness function gives propability for baryon-baryon collision

$$T(b)\sigma_{NN} = \int \rho_A^z(b_A) db_A \rho_B^z(b_B) db_B t(b - b_A + b_B)\sigma_{NN}$$

Nuclear modification factor

$$R_{AA} = rac{dN_{J/\Psi}^{AA}/dy}{\langle N_{coll}
angle \cdot dN_{J/\Psi}^{pp}/dy}$$

• J/Ψ suppression in AA collisons compared to J/Ψ yield in pp scaled by binary collisons

Assumption J/Ψ particles are not suppressed in pp collisions

□→ < □→</p>

Principle of detailed balance

Relation between reaction rates

$$a(p_a, m_a) + b(p_b, m_b) \rightarrow c(p_c, m_c) + d(p_d, m_d)$$

 \Rightarrow after parity and time transformation the reaction is

$$c(p_c, -m_c) + d(p_d, -m_d) \Rightarrow a(p_a, -m_a) + b(p_b, -m_b)$$

- if one averages over all spin projections, the reaction rates are the same
- valid for strong and electromagnetic reactions
- confirmed experimentally

Energy density in heavy ion collisions

Thomas Lang September 6, 2011 TORIC Workshop Heraklio

Charmonium dynamics in the UrQMD transport model

Results of a purely hadronic approach Summary/Outlook

Charmonium in HSD

O. Linnyk, E.L. Bratkovskaya, W. Cassing, Int.J.Mod.Phys. E17 (2008) 1367-1439

э

э

Thomas Lang September 6, 2011 TORIC Workshop Heraklio

< 一型 Charmonium dynamics in the UrQMD transport model

Transverse momentum at RHIC

PHENIX, A. Adare et al., Phys. Rev. Lett. 98, 232301 (2007)

- we have to wait for better data
- at very high p_T increasing R_{AA}

Charmonium yield at LHC energies

Q

Rapidity at LHC energies

Thomas Lang September 6, 2011 TORIC Workshop Heraklio

Transverse momentum at LHC energies

CMS, V.Khachatryan et al., Eur.Phys.J. C71 (2011) 1575

Thomas Lang September 6, 2011 TORIC Workshop Heraklio

Charmonium dynamics in the UrQMD transport model