

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS

ANISOTROPIC FLOWS AND SHEAR VISCOSITY WITHIN A TRANSPORT APPROACH

S. PLUMARI, V. GRECO

- Transport approach at fixed η/s.
- Effect of $\eta/s(T)$ on the generation of v_2 at RHIC and LHC.
- Impact of high p_T partons on the build-up of v_2 .
 - Scaling properties of v₂(p_T)/ε.
 - $\eta/s(T)$: large $v_4/(v_2)^2$.
- Conclusions

Motivation for a kinetic approach:

$$\{p^{\mu}\partial_{\mu} + [p_{\nu}F^{\mu\nu} + M\partial^{\mu}M]\partial_{\mu}^{p}\}f(x,p) = C_{22} + C_{23} + \dots$$

streaming

- It is not a gradient expansion in η /s.
- Valid at intermediate p_{T} out of equilibrium.
- Valid at high η/s (cross over region).
- Include hadronization by coalescence + fragmentation.
- Allows to study the jet-bulk talk.

Parton Cascade model

$$p^{\mu}\partial_{\mu}f(X,p)=C=C_{22}+C_{23}+...$$
 Collisions \longrightarrow
 $\eta \neq 0$

$$C_{22} = \frac{1}{2E_1} \int \frac{d^3 p_2}{(2\pi)^3 2E_2} \frac{1}{\nu} \int \frac{d^3 p'_1}{(2\pi)^3 2E'_1} \frac{d^3 p'_2}{(2\pi)^3 2E'_1} f'_1 f'_2 |M_{1'2' \to 12}|^2 (2\pi)^4 \delta^{(4)} (p'_1 + p'_2 - p_1 - p_2)$$

For the numerical implementation of the collision integral we use the stochastic algorithm. (Z. Xu and C. Greiner, PRC 71 064901 (2005))

$$P_{22} = \frac{\Delta N_{coll}^{2 \to 2}}{\Delta N_1 \Delta N_2} = v_{rel} \sigma_{22} \frac{\Delta t}{\Delta^3 x}$$
 $\Delta^3 x \rightarrow 0$ $\Delta^3 x \rightarrow 0$ right solution

Passed several numerical test on the box.

Simulating a constant η/s

 σ is evaluated in such way to keep the η /s=cost. during the dynamics. (similar to D. Molnar, arXiv:0806.0026[nucl-th] but our approach is local.)

Initial condition of our simulation

- In coordinate space we use a Glauber model
- In momentum space:
 - For p_r<p₀ GeV thermal distribution.
 2 T_c at RHIC for Au+Au @ 200 GeV
 3.5 T_c at LHC for Pb+Pb @ 2.76 TeV
 - For $p_1 > p_0$ GeV spectra of minijets.

$$\frac{dN_i}{d^2 p_T} \approx \frac{A_i}{\left(1 + p_T / B_i\right)^n}$$

kinetic freeze-out scheme

 ŋ/s increases in the cross-over region, with a smooth transition between the QGP and the hadronic phase, the collisions are switched off.

For the v_2 similar to cut-off at $\epsilon_0=0.7$ GeV/fm³

Effect of kinetic freeze-out

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

RHIC:

- Like viscous hydro the data are close to $\eta/s=1/(4\pi)$ + f.o.
- Sensitive reduction of the v₂ when the f.o. is included the effect is about of 20%.
- $p_T > 2 \text{ GeV } v_2$ decrease not explained (similar to hydro).

Effect of kinetic freeze-out

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

LHC:

- $p_T < 2$ GeV like hydro data described with $\eta/s=1/(4\pi) + f.o.$
- Smaller effect on the reduction of the v₂ when the f.o. is included an effect of about 10%.
- Without the kinetic freezout the effect of a constant $\eta/s=2(4\pi)^{-1}$ is to reduce the v₂ of 20%.

Effect of kinetic freeze-out

At LHC the contamination of mixed and hadronic phase becomes negligible Longer life time of QGP $\rightarrow v_2$ completely developed in the QGP phase (at least up to 3 GeV)

Temperature dependent η/s(T)

Phase transition physic suggest a T dependence of η/s also in the QGP phase

- In the QGP phase η/s is expected to have a minimum value T_c.
- Quasi-particle models seem to suggest a $\eta/s \sim T^{\alpha} \alpha \sim 1 1.5$.

S.Plumari, W.M.Alberico, V.Greco, C.Ratti, arxiv:1103.5611[hep-ph].

C.Ratti, arxiv:1103.5611[hep-ph].

RHIC:

- The v_2 is insensitive to the value of η /s in the QGP phase
- $\eta/s \sim T^2$ cannot account for the v₂ decrease fot $p_T < 2$ GeV.

LHC:

• The v_2 more sensitive to the QGP phase but still a strong temperature dependence in η/s has a small effect in the $v_2(p_1)$.

What happens in a wider pt range? Transport approach allows for such an extension naturally

Of course there is a minimal consideration to do ...

$$\sigma_{Tot}(s) = K \sigma_{pQCD}(s)$$

Some non perturbative effect also for high p_{T} particles

and high p_T particle should collide with σ_{POCD}

$$K = K(s/\Lambda^2)$$

$$\sigma_{Tot}(s) = K(s/\Lambda^2)\sigma_{pQCD}(s)$$

K(s) is such that $\sqrt{s} \gg \Lambda$ (~ 3 – 4 GeV) K(s) \rightarrow 1

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

RHIC:

- For $\Lambda > 3$ GeV the v₂ is not very sensitive to the scale parameter Λ .
- K(s/ Λ) does not affect v₂ for p_T < 2.5 GeV and high p_T does not affect the bulk.
- A reduction of v_2 only for $p_T < 3$ GeV.

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

LHC:

• The effect of K(s/ Λ) even at $p_T \sim 1 - 3 \text{ GeV}$

(much more high partons that affect also the bulk).

• v_2 remains sensitive to the $\eta/s(T)$ in the QGP phase.

Going to high p_{T}

- We get a sizeable v₂ from collisional energy loss (v₂~7%) (and a behaviour similar to the one observed experimental).
- Above 10 GeV sets in flat behavior typical of path lengh.
- This is not hydro+jet model, because we have only collisional energy loss and we treat on the same footing the high and low energy particles.

Going to high p_{T}

- We get a sizeable v₂ from collisional energy loss (v₂~7%) (and a behaviour similar to the one observed experimental).
- Above 10 GeV sets in flat behavior typical of path lengh.
- This is not hydro+jet model, because we have only collisional energy loss and we treat on the same footing the high and low energy particles.

Going to high p_T

- Shift of v_2 to low p_T expected for fragmentation.
- The saturation persist also for more central collisions.
- Good agreement with the experimental data for the <v₂> as function of the centrality. The effect of K(s) is to reduce the <v₂>.

Effect on the breaking of the v_2/ϵ scaling

RHIC

Similar breaking w/o K(s): the amplitude is of about **30 %** (from f.o.).

The effect of K(s) is in general to reduce the value of v_2/ϵ .

LHC

For K=const the system is more efficent and the breaking is of about 17 %.

The effect of K(s) is in general to increase the value of the breaking of about **25 %.**

Effect of $\eta/s(T)$ and K(s) on the ratio $v_1/(v_2)^2$

- V_2 develops earlier at higher η/s .
- V_4 develops later at lower η/s .

S. Plumari et al., J.Phys.: Conf. Ser. 270 (2011) 012061

Effect of $\eta/s(T)$ and K(s) on the ratio $v_1/(v_2)^2$

Effect of $\eta/s(T)$ and K(s) on the ratio $v_1/(v_2)^2$

BEFORE A QUANTITATIVE ESTIMATE

- Include lattice QCD-EoS P(ε)
 → quasi particle model (Near FUTURE)
- Include fragmentation (of high p_T) + coalescence
- At high p_{τ} gluon radiation

Conclusions and Outlook

- We have investigate within a parton cascade model the effect of a η/s(T) at RHIC and LHC energies.
 - At RHIC v_2 still 20% of v_2 depend on the cross-over region.
 - At LHC nearly all the v₂ from the QGP phase.
 - Agreement with Viscous Hydrodynamics η/s ~ 0.1 but not large sensitivity to T dependence (η/s ~ T² could be excluded)
- At LHC the large ammount of particle with $p_T > 4$ GeV interacting nearly perturbatively cannot be neglected.
 - Affect the η /s estimates (v_2 at p_T < 3 GeV).
 - Could explain the rise and fall of $v_2(p_T)$ in $0 < p_T < 8$ GeV.
 - Breaking of v,/ɛ similar to RHIC.
 - Signature of η/s (T) and K(s): large v₄/(v₂)² and increasing function of p₇ at higher p₇.

Does the NJL chiral phase transition affect the elliptic flow of a fluid at fixed η/s ?

S. Plumari et al., PLB689(2010)

- The NJL mean field reduce the v_2 : attractive field (the effect is about 15 %).
- if η /s is fixed the effect of NJL mean field is compensed by the increase of σ .
- $V_2 \Leftrightarrow \eta/s$ not modified by the NJL mean field dynamics.

Simulating a constant η/s

$$\eta(\vec{x},t) = \frac{4}{15} \lambda(\vec{x},t) \ n_{tot}(\vec{x},t) \ \langle p \rangle \implies \sigma_{tr}^{\eta/s} = \frac{4}{15} \frac{\langle p \rangle}{n} \frac{1}{\eta/s} = K \ \sigma_{tr}^{pQCD}$$

$$\sigma_{Tot} = K \sigma_{pQCD} \gg \sigma_{pQCD}$$

$$\left(\frac{d\sigma_{gg}}{dt} = \frac{9\pi\alpha_{s}^{2}}{2}\frac{1}{(t+m_{D}^{2})^{2}}\left(1+\frac{m_{D}^{2}}{s}\right)$$

At LHC the maximum of the v_2 is at $p_T \sim 5.5$ GeV strong efficency in converting the initial asymmetry also at large p_T .