UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS

ANISOTROPIC FLOWS AND SHEAR VISCOSITY WITHIN A TRANSPORT APPROACH

S. PLUMARI, V. GRECO

- Ejffect of $\Omega / 5(丁)$ on the generation of v_{2} att RHIC

- Inspact of high po partons on the buildalup of $\mathrm{V}_{2^{\circ}}$
- Scialing propertios of $\mathrm{V}_{2}\left(\rho_{\mathrm{T}}\right) / \varepsilon_{s}$

- Conclusjons

Motivation for a kinetic approach：

$$
\{p^{4} \partial_{u}+[p_{v}{ }^{\mu v}+M \hat{o}^{u} M\left|\partial_{\|}^{p}\right| f(x, p)=\underbrace{C_{22}+C_{23}+\ldots}
$$

$$
\begin{aligned}
& \text { 戸くこき } \\
& \text { કictandifs }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Collisions } \rightarrow \eta \neq 0
\end{aligned}
$$

－li is not al graclient expansion in $\int /$／s．
－Veljicl sut insterssecljette ρ_{T} out of equuljibriums．
－Vealicl at hing＇r s．／s（cross over region）．
－Inclucle haclionjzation by coalescence＋fragmentation．
－Alloys to stucly the jet－bulls tallk．

Parton Cascade model

$$
p^{\mu} \partial_{\mu} f(X, p)=C=C_{22}+C_{23}+\ldots \quad \text { Collisions } \longrightarrow\left\{\begin{array}{c}
\varepsilon-3 p=0, \\
5 \equiv \neq 0
\end{array}\right.
$$

$$
C_{22}=\left.\frac{1}{2 E_{1}} \int \frac{d^{3} p_{2}}{(2 \pi)^{3} 2 E_{2}} \frac{1}{v} \int \frac{d^{3} p_{1}^{\prime}}{(2 \pi)^{3} 2 E_{1}^{\prime}} \frac{d^{3} p_{2}^{\prime}}{(2 \pi)^{3} 2 E_{2}^{\prime}} f_{1}^{\prime} f_{1}^{\prime}\right|_{2}\left|\boldsymbol{M}_{1^{\prime} 2^{\prime} \rightarrow 12}\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(p_{1}^{\prime}+p_{2}^{\prime}-p_{1}-p_{2}\right)
$$

For the numerical implementation of the collision integral we use the stochastic algorithm. (Z. Xu and C. Greiner, PRC 71064901 (2005))

$$
P_{22}=\frac{\Delta N_{\text {coll }}^{2 \rightarrow 2}}{\Delta N_{1} \Delta N_{2}}=v_{\text {rel }} \sigma_{22} \frac{\Delta t}{\Delta^{3} x}
$$

right
solution

Passed several numerical test on the box.

$$
\eta(\vec{x}, t)=\frac{4}{15} \lambda(\vec{x}, t) n_{t o t}(\vec{x}, t)\langle p\rangle \Longleftrightarrow \sigma_{t r}^{\eta / s}=\frac{4}{15} \frac{\langle p\rangle}{n} \frac{1}{\eta / s}=K \sigma_{t r}^{p Q C D}
$$

o js eveluated in sucis yely to keep the f/s=cost. during the dynamics. (sinsilar to D. Molrar, arkiz:0005.002E[nucl-thi] but our approach is local.)

With this approach we have large cross-section

$$
\sigma_{T o t}=K \sigma_{p Q C D} \gg \sigma_{p Q C D}
$$

V.Greco,et al. PLB 670 (2009), PPNP 62 (2009) 562.
Take into account the non-perturbative effects BUT NEVER REACH THE DOCD LIMIT WHHATEVER IS THE PT OF THE COLLIDING PARTICLE - EQUIVALENT TO HYDRO

At low p_{T} equivalent to Hydro dynamics

D. MoInar et al., JPG 35, (2008). QM08

Initial condition of our simulation

* In coorclinsite space we use al Glableer model
- In monosnenturn space:
- For $\rho_{\mathrm{T}}=\rho_{0}$ GeV inserssalan distriontions.

- For $\rho_{\mathrm{i}}>\rho_{0}$ GeV spectis! of sulujuets.

$$
\frac{d N_{i}}{d^{2} p_{T}} \approx \frac{A_{i}}{\left(1+p_{T} / B_{i}\right)^{n}}
$$

kinetic freeze-out scheme

- rןs ifsereases in inse cross-over regjofs, with s! srrooth transition betyyens the gegr ancl the hendronic phase, the collisions are syyitched ofif.

For the $\mathbf{v}_{\mathbf{2}}$ similar to cut-off at $\varepsilon_{0}=0.7 \mathrm{GeVlfm}^{3}$

Effect of kinetic freeze-out

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

RHIC:

- Like viscous hydro the data are close to $\eta / s=1 /(4 \pi)+$ f.o.
- Sensitive reduction of the $\mathbf{v}_{\mathbf{2}}$ when the f.o. is included the effect is about of 20%.
- $\mathrm{P}_{\mathrm{T}}>\mathbf{2} \mathbf{G e V} \mathrm{v}_{2}$ decrease not explained (similar to hydro).

Effect of kinetic freeze-out

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

LHC:

- $p_{T}<2 \mathrm{GeV}$ like hydro data described with $\eta / s=1 /(4 \pi)+$ f.o.
- Smaller effect on the reduction of the $\mathbf{v}_{\mathbf{2}}$ when the f.o. is included an effect of about 10%.
- Without the kinetic freezout the effect of a constant $\eta / s=2(4 \pi)^{-1}$ is to reduce the v_{2} of $\mathbf{2 0 \%}$.

Effect of kinetic freeze-out

Suppression of v_{2} respect to the icleal case $\eta / s=(4 \pi)^{-1}$

At LHC the contamination of mixed and hadronic phase becomes negligible
Longer life time of QGP $\rightarrow \mathbf{v}_{\mathbf{2}}$ completely developed in the QGP phase (at least up to 3 GeV)

Temperature dependent $\boldsymbol{n} / \mathrm{s}(\mathrm{T})$

Phase transition physic suggest a T dependence of \cap / s also in the QGP phase

- In the ?

- 饣utaji-particle noodels seenn to

S.Plumari, W.M.Alberico, V.Greco, C.Ratti, arxiv:1103.5611[hep-ph].

Temperature dependent $\eta / s(T)$

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

Temperature dependent $\eta / 5(\mathrm{~T})$

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

Temperature dependent $\eta / s(T)$

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

S.Plumari, W.M.Alberico, V.Greco, C.Ratti, arxiv:1103.5611[hep-ph].

RHIC:

- The v_{2} is insensitive to the value of η / s in the QGP phase
- $\eta / s-T^{2}$ cannot account for the v_{2} decrease fot $p_{T}<2 \mathbf{G e V}$.

Temperature dependent $\eta / s(T)$

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

S.Plumari, W.M.Alberico, V.Greco, C.Ratti, arxiv:1103.5611[hep-ph].

LHC:

- The v_{2} more sensitive to the QGP phase but still a strong temperature dependence in η / s has a small effect in the $v_{2}\left(P_{T}\right)$.

What happens in a widler pt range?
Transport approach allows for such an extension naturally

$$
\sigma_{T o t}(s)=K \sigma_{p Q C D}(s)
$$

and high p_{T} particle should collide with $\sigma_{p q C D}$

Some non perturbative effect also for high p_{T} particles

$$
K=K\left(s / \Lambda^{2}\right)
$$

$$
\sigma_{T o t}(s)=K\left(s / \Lambda^{2}\right) \sigma_{p Q C D}(s)
$$

$K(s)$ is such that $\sqrt{s} \gg \wedge(-3-4 \mathrm{GeV}) K(s) \rightarrow 1$

Equivalent to viscous hydro

At high p_{T} "correct" $p Q C D$ limit to be defined but certainly far from $\boldsymbol{\eta} / \mathrm{s} \boldsymbol{\sim} \mathbf{0 . 1}$
K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

RHIC:

- For $\Lambda>3 \mathrm{GeV}$ the $\mathbf{v}_{\mathbf{2}}$ is not very sensitive to the scale parameter $\boldsymbol{\Lambda}$.
- $K(s / \Lambda)$ does not affect v_{2} for $p_{T}<2.5 \mathrm{GeV}$ and high p_{T} does not affect the bulk.
- A reduction of v_{2} only for $p_{T}<3 \mathrm{GeV}$.
K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

LHC:

- The effect of $K(s / \Lambda)$ even at p_{T} ~1-3 GeV
(much more high partons that affect also the bulk).
v_{2} remains sensitive to the $\eta / s(T)$ in the QGP phase.

Going to high p_{T}

- We get a sizeable v_{2} from collisional energy loss $\left(v_{2} \sim 7 \%\right)$ (and a behaviour similar to the one observed experimental).
- Above 10 GeV sets in flat behavior typical of path lengh.
- This is not hydro+jet model, because we have only collisional energy loss and we treat on the same footing the high and low energy particles.

Going to high p_{T}

- We get a sizeable v_{2} from collisional energy loss $\left(v_{2} \sim 7 \%\right)$ (and a behaviour similar to the one observed experimental).
- Above 10 GeV sets in flat behavior typical of path lengh.
- This is not hydro+jet model, because we have only collisional energy loss and we treat on the same footing the high and low energy particles.

Going to high p_{T}

K. Aamodt et al. [ALICE Collaboration], Phys. Rev.Lett. 105, 252302 (2010).

- Shift of v_{2} to low p_{T} expected for fragmentation.
- The saturation persist also for more central collisions.
- Good agreement with the experimental data for the $\left\langle v_{2}\right\rangle$ as function of the centrality. The effect of $K(s)$ is to reduce the $\left\langle v_{2}\right\rangle$.

Effect on the breaking of the v_{2} / ε scaling

RHIC

Similar breaking wlo $\mathbb{K}(s)$: the amplitude is of about 30% (from fio.).

The effect of $\mathbb{K}(s)$ is in general to reduce the value of v_{2} / ε_{0}

LHC

For $K=$ const the system is more efficent and the breaking is of about 17%.

The effect of $\mathbb{K}(s)$ is in general to increase the value of the breaking of about 25%.

Effect of $\eta / s(T)$ and $K(s)$ on the ratio $v_{4} /\left(v_{2}\right)^{2}$

- V_{2} clevelops earlier at higher g / s.
- V_{4} clevelops later ait Jower n/s.
S. Plumari et al., J.Phys.: Conf. Ser. 270 (2011) 012061

Effect of $\eta / s(T)$ and $K(s)$ on the ratio $v_{4} /\left(v_{2}\right)^{2}$

- This gives an higher value of the ratio $\mathrm{V}_{4} l\left(\mathrm{~V}_{2}\right)^{2}$.
S. Plumari et al., J.Phys.: Conf. Ser. 270 (2011) 012061

At LHC the $v_{4} l\left(v_{2}\right)^{2}$ is more sensitive to the QGP phase then at RHIC energies

Effect of $\eta / s(T)$ and $K(s)$ on the ratio $v_{4} I\left(v_{2}\right)^{2}$

S. Plumari et al., J.Phys.: Conf. Ser. 270 (2011) 012061

BEFORE A QUANTITATIVE ESTIMATE

- Inclucle Jattice QCD-EoS P(ε) \rightarrow c|ulsi particle model (Near FUTURE)
- Inclucle firagmentation (of high ρ_{T}) + coalescence
- At high ρ_{t} gluon radiation

Conclusions and Outlook

- We have investigate within a parton cascade model the effect of a $\mathrm{\eta} / \mathrm{s}(\mathrm{T})$ at RHIC and LHC energies.
- At RHIC v_{2} still 20% of v_{2} depend on the cross-over region.
- At LHC nearly all the V_{2} from the QGP phase.
- Agreement with Viscous Hydrodynamics η / s ~ 0.1 but not large sensitivity to T dependence ($\eta / s \sim T^{2}$ could be excluded)
- At LHC the large ammount of particle with $p_{T}>4 \mathrm{GeV}$ interacting nearly perturbatively cannot be neglected.
- Affect the η / s estimates $\left(v_{2}\right.$ at $\left.p_{T}<3 \mathrm{GeV}\right)$.
- Could explain the rise and fall of $V_{2}\left(p_{T}\right)$ in $0<p_{T}<8 \mathrm{GeV}$.
- Breaking of $\mathrm{v}_{2} / \varepsilon$ similar to RHIC .
- Signature of $\eta / s(T)$ and $K(s)$: large $v_{4}\left(v_{2}\right)^{2}$ and increasing function of P_{T} at higher P_{T}.

Does the $\mathbb{N} J L$ chiral phase transition affect the elliptic flow of a fluid at fixed η / s ?

S. Plumari et al., PLB689(2010)

- Thne $N J L$ rsean field reduce the V_{2} : aittractive field (the effect is about 15%).
- if s 」s is fixed the effect of NJL mean field is compensed by the increase of o.
- $V_{2} \div f, 15$ not nodified by the NJL mean field dynamics.

$$
\eta(\vec{x}, t)=\frac{4}{15} \lambda(\vec{x}, t) n_{t o t}(\vec{x}, t)\langle p\rangle \Longleftrightarrow \sigma_{t r}^{\eta / s}=\frac{4}{15} \frac{\langle p\rangle}{n} \frac{1}{\eta / s}=K \sigma_{t r}^{p Q C D}
$$

$$
\sigma_{T o t}=K \sigma_{p Q C D} \gg \sigma_{p Q C D}
$$

$$
\frac{d \sigma_{g g}}{d t}=\frac{9 \pi \alpha_{s}^{2}}{2} \frac{1}{\left(t+m_{D}^{2}\right)^{2}}\left(1+\frac{m_{D}^{2}}{s}\right)
$$

At LHC the maximum of the v_{2} is at $P_{T} \sim 5.5 \mathrm{GeV}$ strong efficency in converting the initial asymmetry also at large p_{T}.

