

<□▶ <⊡▶

200

Calculation of shear viscosity within transport models

Christian Wesp with: F. Reining, A. El, M. Lutterbeck, Z. Xu, C. Greiner ITP Uni Frankfurt

TORIC, September 2011, Crete

Motivation

Models BAMPS UrQMD

Methods and Results

Green Kubo Relativistic Gradient

Summary

Motivation

- RHIC data show QGP signatures
- hot and collective medium
- nearly perfect liquid
- elliptic flow v₂ in central collisions
- employment of hydro- and transport-models

Motivation

for the early phase of heavy ion collisions:

- transport model based evolution / quasi-particle description
- pQCD cross sections for: $T > T_c$
- resonances, fragmentation, ...

used models:

- BAMPS
 - partonic transport model
 - isotropic / constant cross sections
 - pQCD-based cross sections
- UrQMD
 - hybrid transport cascade / hydro model
 - isotropic / constant cross sections
 - Breit–Wigner resonance

BAMPS Parton Cascade

transport algorithm: solve Boltzmann-equation with MC techniques

$$p^{\mu}\partial_{\mu}f(x,p)=C_{22}+C_{23}+\ldots$$

- on-shell partons
- stochastic interpretation of collision rates

$$P_{2i} = v_{
m rel} rac{\sigma_{(2i)}}{N_{
m test}} rac{\Delta t}{\Delta^3 x}$$

- cross sections are modeled via pQCD or isotropic cross sections
- elastic 2 \rightarrow 2 and inelastic 2 \rightarrow 3 / 3 \rightarrow 2 processes included

elastic pQCD-gluon cross sections:

$$\frac{d\sigma^{(gg \to gg)}}{dt} \approx \frac{d\sigma^{(gg \to gg)}}{dq_{\perp}^2} \approx \frac{9\pi\alpha_s^2}{2(q_{\perp}^2 + m_D^2)^2}$$

inelastic three-gluon pQCD-based cross section:

$$\left|\mathcal{M}_{(gg \to ggg)}\right|^{2} = \frac{72\pi^{2}\alpha_{s}^{2}s^{2}}{\left(\mathbf{q}_{\perp}^{2} + m_{D}^{2}\right)^{2}} \frac{48\pi\alpha_{s}\mathbf{q}_{\perp}^{2}\Theta\left(\Lambda_{g} - \tau\right)}{\mathbf{k}_{\perp}^{2}\left[\left(\mathbf{k}_{\perp} - \mathbf{q}_{\perp}\right)^{2} + m_{D}^{2}\right]}$$

constant and isotropic cross sections

UrQMD

<u>Ultrarelativistic</u> Quantum <u>Molecular</u> <u>Dynamics</u>

- Non-equilibrium transport model with parameterized cross sections
- hadrons, resonances, string excitation and fragmentation
- via AQM or calculated by detailed balance
- pQCD hard scattering at high energies

In this work UrQMD is confined to a box with periodic boundary conditions.

used methods to extract $\boldsymbol{\eta}$ from transport models:

- Green Kubo Relation
 - simulation of equilibrated medium
 - viscosity proportional to thermal fluctuations
- static gradient method
 - simulation of static velocity gradient
 - viscosity is proportional to non-linear slope
- both methods are model and medium independent.

Green-Kubo relation for shear viscosity:

$$\eta = \frac{1}{10 T} \int_{V} \mathrm{d}^{3} r \int_{\infty} \mathrm{d} t \left\langle \pi^{ij}(0,0) ; \pi^{ij}(\vec{r},t) \right\rangle$$

•
$$\pi^{ij}(\vec{r},t)$$
 fluctuates in thermal equilibrium

► for a Boltzmann-gas:

$$\langle \pi^{ij}(t) ; \pi^{ij}(0)
angle = \langle \pi^{ij}(0)^2
angle \cdot \exp^{-t/ au}$$

$$\langle \pi^{ij}(0)^2
angle = rac{4}{15} rac{eT}{V}$$

Green-Kubo Relation

set up thermal medium \rightarrow simulation $\rightarrow \pi(t) \rightarrow \tau \rightarrow \eta$

only relevant timescale: t/τ !

$$S_{xx}(f) = \left[\tau(\tau^2 + f^2)\right]^{-1}$$

- method by Felix Reining (arXiv:1106.4210v1)
- simulation of static gradient
- extraction of shear stress from the slope of the gradient

$$F = -\eta \frac{\partial v_z}{\partial x}$$

Stationary Shear-Gradient

- ▶ shape of gradient: $v(x) = tanh(\theta x)$ | $\theta = 2v_{wall}/L$
- using Navier-Stokes: $\pi^{xy} = -\eta \ \partial_x v_z(x)$

$$\eta = -\pi^{xy} \frac{\gamma L}{2y_{\text{wall}}}$$

set up geometry \rightarrow simulation \rightarrow evolve gradient $\rightarrow \frac{\gamma L}{2y_{wall}} \rightarrow \eta$

gradient relaxation time can be estimated:

cross-check with an analytical relation (de Groot):

Model: BAMPS, massless gluon gas, T = 400 MeV

Cross Checks

Results

 η/s for BAMPS with pQCD-based cross sections (elastic and inelastic):

Results

 η/s for BAMPS with pQCD-based cross sections (elastic and inelastic):

Results

 η/s for UrQMD with constant cross sections and massive pions m = 138 MeV, $\sigma_{22} = 5 mbarn$ [preliminary]

Green-Kubo relation

- \blacktriangleright allows a precise extraction of η
- numerical error can be estimated
- equilibrium can be used for η/s

Static -Gradient method

- numerical convergency easily controllable
- fast runtime

both methods in agreement,

both methods are model independdent,

numerical and physical independent methods for robust cross-check

Thanks your attention!