Radiative energy loss and damping effects

Joerg Aichelin, and Marcus Bluhm, and Pol Gossiaux, and Thierry Gousset (SubaTech)

Sept 7, 2011

1

Energy loss

Introduction	
Energy loss	
QCD case	
(Q)ED case	quark and gluon energy loss is a central topic in
Summary	ultra-relativistic heavy ion collisions

collisional and radiative

Bethe-Heitler regime, LPM effect...

... and damping

radiation and energy loss

Introduction

QCD case ΔE in electrodynamics
coherenceLPM effect
radiation spectrum
formation time
competing effects
without damping
discussion(Q)ED case

Summary

in electrodynamics

IntroductionQCD case ΔE in electrodynamicscoherenceLPM effectradiation spectrumformation timecompeting effectswithout dampingwith dampingdiscussion(Q)ED caseSummary

relativistic electron

Bethe-Heitler spectrum

 $\rightarrow\,$ radiation loss in matter

 $X_0 =$ radiation length

length scale on which e^- looses its energy (on average)

coherence

formation time < radiation length

 $(v \approx c = 1)$

breaks down at small ω and large E

including multiple scattering: LPM effect

 e^- multiple scattering speeds up decoherence

 \Rightarrow emission process cannot occur at full rate

radiation spectrum

 $v_{\parallel} t_{\rm form}$

formation time

Introduction

$$\begin{array}{ll} \frac{\text{QCD case}}{\Delta E} & \Delta \varphi(t,R) = \omega(t-t_{\mathrm{form}}) - \vec{k} \cdot \overrightarrow{FR} - \omega(t-0) + \vec{k} \cdot \overrightarrow{OR} \\ \text{in electrodynamics} \\ \text{coherence} \\ \text{LPM effect} \\ \text{radiation spectrum} & \Delta \varphi = -\omega \, t_{\mathrm{form}} + \underbrace{\vec{k} \cdot \overrightarrow{OF}}_{k_{||} \, v_{||} \, t_{\mathrm{form}}} \\ \text{formation time} \\ \text{competing effects} \\ \text{without damping} \\ \text{with damping} \\ \text{discussion} & k_{||} = n \frac{\omega}{c} \cos \theta, \quad v_{||} = v \cos \theta_s \\ \hline (\underline{Q}) \overrightarrow{\text{ED case}} \\ \text{Summary} & |\Delta \varphi| \equiv 1 \rightarrow t_{\mathrm{form}} \\ \hline t_{\mathrm{form}} = \frac{1}{\omega \, [1 - nv \cos \theta_s \cos \theta]} \end{array}$$

large formation time for ultrarelativistic particles, and small angles, and n close to 1

Introduction

 $\begin{array}{c} \mbox{QCD case} \\ \Delta E \\ \mbox{in electrodynamics} \\ \mbox{coherence} \\ \mbox{LPM effect} \end{array}$

radiation spectrum

formation time

competing effects

without damping

with damping discussion

(Q)ED case

Summary

1. wave propagation in medium (no damping)

$$n(\omega) = \sqrt{1 - \frac{m_g^2}{\omega^2}}$$

Introduction

 $\frac{\text{QCD case}}{\Delta E}$

in electrodynamics

coherence

LPM effect

radiation spectrum

formation time

competing effects

without damping

with damping

(Q)ED case

discussion

Summary

1. wave propagation in medium (no damping) : *n*-driven regime $(v \cos \theta_s \rightarrow 1, \theta \rightarrow 0)$

$$t_1 = \frac{1}{\omega(n-1)} \sim \frac{2\omega}{m_g^2}$$

Introduction

 $\frac{\text{QCD case}}{\Delta E}$ in electrodynamics

coherence

LPM effect

radiation spectrum

formation time

competing effects

without damping

with damping

discussion

(Q)ED case

Summary

1. wave propagation in medium (no damping) : *n*-driven regime $(v \cos \theta_s \rightarrow 1, \theta \rightarrow 0)$

$$t_1 = \frac{1}{\omega(n-1)} \sim \frac{2\omega}{m_g^2}$$

2. (gluon) multiple scattering

$$k_{||}(t) = n\omega(1 - \hat{q} t/\omega^2)$$

Introduction

 $\begin{array}{c} \underline{\mathsf{QCD}\ \mathsf{case}} \\ \underline{\Delta E} \\ \text{in electrodynamics} \\ \text{coherence} \\ \underline{\mathsf{LPM}\ \mathsf{effect}} \\ \text{radiation spectrum} \end{array}$

formation time

competing effects

without damping

with damping discussion

(Q)ED case

Summary

1. wave propagation in medium (no damping) : *n*-driven regime $(v \cos \theta_s \rightarrow 1, \theta \rightarrow 0)$

$$t_1 = \frac{1}{\omega(n-1)} \sim \frac{2\omega}{m_g^2}$$

2. (gluon) multiple scattering : multiple-scattering-driven regime $(n \rightarrow 1, v \cos \theta_s \rightarrow 1)$

$$t_2 = \frac{1}{\omega(\hat{q} t_2/\omega^2)} = \sqrt{\frac{\omega}{\hat{q}}}$$

Introduction

 $\frac{\text{QCD case}}{\Delta E}$ in electrodynamics
coherence
LPM effect
radiation spectrum

formation time

competing effects

without damping

with damping discussion

(Q)ED case

Summary

1. wave propagation in medium (no damping) : *n*-driven regime $(v \cos \theta_s \rightarrow 1, \theta \rightarrow 0)$

$$t_1 = \frac{1}{\omega(n-1)} \sim \frac{2\omega}{m_g^2}$$

2. (gluon) multiple scattering : multiple-scattering-driven regime $(n \rightarrow 1, v \cos \theta_s \rightarrow 1)$

$$t_2 = \frac{1}{\omega(\hat{q}\,t_2/\omega^2)} = \sqrt{\frac{\omega}{\hat{q}}}$$

3. damping

1 and 2

Introduction

1 and 2

Introduction

$$t_1 = t_2 \quad \Rightarrow \quad \omega_{\text{LPM}} = \frac{m_g^4}{\hat{q}} \text{ at which } t_1 = m_g^2/\hat{q} = \lambda$$

+ damping

 $\sim e^{-\Gamma t} \Rightarrow$ damping regime when $t_{\rm form} \gg 1/\Gamma$

IntroductionQCD case ΔE in electrodynamicscoherenceLPM effectradiation spectrumformation timecompeting effectswithout dampingwith dampingdiscussion(Q)ED caseSummary

+ damping

+ damping

discussion

Introduction

QCD case	
ΔE	
in electrodynamics	
coherence	
LPM effect	
radiation spectrum	
formation time	
competing effects	
without damping	
with damping	
discussion	
(Q)ED case	

Summary

■
$$\lambda = O\left(1/(g^2T)\right)$$
 and $\Gamma = O\left(g^2T\right)$

■ is data (jet quenching) compatible with $\Gamma \sim \frac{1}{\lambda}$?

 $\frac{1}{\Gamma} \sim \lambda$

quantitatively?

• microscopic origin of Γ ?

goals

Introduction

QCD case

(Q)ED case

goals

arXiv:1106.2856v1 without damping with damping

Summary

confronting the above reasoning with a true calculation
 trace back formation time and damping factor
 compare computed spectrum with the formation-time scaling law

$$\frac{dW}{d\omega} = \frac{t_{\rm form}}{t_{\rm BH}} \times \frac{dW_{\rm BH}}{d\omega}$$

(with ED-type formation times)

from arXiv:1106.2856v1

Introduction

QCD case

(Q)ED case

goals

arXiv:1106.2856v1

without damping with damping

Summary

energy loss in an absorptive dielectric medium

$$n^2(\omega) = 1 - \frac{m^2}{\omega^2} + 2i\frac{\Gamma}{\omega}$$

using linear response theory \rightarrow mechanical work on charge

$$W = 2 \operatorname{Re}\left(\int d^3 \vec{r'} \int d\omega \, \vec{E}(\vec{r'},\omega) \cdot \vec{j}(\vec{r'},\omega)^*\right)$$

$$\frac{d^2 W}{dz d\omega} \simeq -\operatorname{Re}\left(\frac{2i\alpha}{3\pi}\frac{\hat{q}}{E^2}\int_0^\infty d\bar{t}\frac{\omega n^2}{\epsilon}\exp\left[-\omega|n_i|\beta\bar{t}\left(1-\frac{\hat{q}}{6E^2}\bar{t}\right)\right]\right)$$
$$\times \cos(\omega\bar{t}) \exp\left[i\omega n_r\beta\bar{t}\left(1-\frac{\hat{q}}{6E^2}\bar{t}\right)\right]\right)$$

from arXiv:1106.2856v1

Introduction

energy loss in an absorptive dielectric medium

$$n^2(\omega) = 1 - \frac{m^2}{\omega^2} + 2i\frac{1}{\omega}$$

QCD case

(Q)ED case

goals

arXiv:1106.2856v1

without damping with damping

Summary

using linear response theory \rightarrow mechanical work on charge

$$W = 2 \operatorname{Re}\left(\int d^3 \vec{r'} \int d\omega \, \vec{E}(\vec{r'},\omega) \cdot \vec{j}(\vec{r'},\omega)^*\right)$$

$$\frac{d^2 W}{dz d\omega} \simeq -\operatorname{Re}\left(\frac{2i\alpha}{3\pi}\frac{\hat{q}}{E^2}\int_0^\infty d\bar{t}\frac{\omega n^2}{\epsilon}\right)$$
$$\times \cos(\omega \bar{t}) \exp\left[i\omega n_r \beta \bar{t}\left(1-\frac{\hat{q}}{6E^2}\bar{t}\right)\right]$$

from arXiv:1106.2856v1

Introduction

QCD case

(Q)ED case

goals

arXiv:1106.2856v1

without damping with damping

Summary

energy loss in an absorptive dielectric medium

$$n^2(\omega) = 1 - \frac{m^2}{\omega^2} + 2i\frac{\Gamma}{\omega}$$

using linear response theory \rightarrow mechanical work on charge

$$W = 2 \operatorname{Re}\left(\int d^3 \vec{r'} \int d\omega \, \vec{E}(\vec{r'},\omega) \cdot \vec{j}(\vec{r'},\omega)^*\right)$$

$$\frac{d^2 W}{dz d\omega} \simeq -\operatorname{Re}\left(\frac{2i\alpha}{3\pi}\frac{\hat{q}}{E^2}\int_0^\infty d\bar{t}\frac{\omega n^2}{\epsilon}\exp\left[-\omega|n_i|\beta\bar{t}\left(1-\frac{\hat{q}}{6E^2}\bar{t}\right)\right]\right)$$
$$\times \cos(\omega\bar{t}) \exp\left[i\omega n_r\beta\bar{t}\left(1-\frac{\hat{q}}{6E^2}\bar{t}\right)\right]\right)$$

without damping

 $\Gamma = 0, \quad m = 0, 0.3, 0.6, 0.9 \text{ GeV}$

 $\hat{q}=2.5~{
m GeV^2/fm},\,E=20~{
m GeV},\,M=1~{
m GeV}$

without damping

 $\Gamma = 0, \quad m = 0, 0.3, 0.6, 0.9 \text{ GeV}$

 $\hat{q} = 2.5 \text{ GeV}^2/\text{fm}, E = 20 \text{ GeV}, M = 1 \text{ GeV}$

with damping

 $m=0.6~{
m GeV},~~\Gamma=0,5,10,50~{
m MeV}$

 $\hat{q} = 2.5 \text{ GeV}^2/\text{fm}, E = 20 \text{ GeV}, M = 1 \text{ GeV}$

Summary

Introduction

- QCD case
- (Q)ED case
- Summary

- Effect of damping on radiative energy loss
- Energy loss spectrum from formation time
 - light parton
 - comparison with complete calculation in ED
- Questions:
 - strength of damping in a QCD plasma?
 - visible effects in quenching?