Iterative Hydrodynamics

Solving relativistic hydrodynamics with a Taylor series technique

F．Wunderlich \＆B．Kämpfer
Helmholtz－Zentrum Dresden－Rossendorf
Technical University Dresden，Inst．of Theoretical Physics

07．09．2011

Motivation

The idea from AdS/CFT

- metric for asymptotic AdS space in Feffermann-Graham coordinates:

$$
G_{A B}=\frac{1}{z^{2}}\left(\begin{array}{cc}
g_{\mu \nu} & 0 \\
0 & 1
\end{array}\right)
$$

- 5D Einstein-eqs. as eqs for $g_{\mu \nu}$ [cf. de Haro, Skenderis, Solodukhin, 2000]
- expansion of $g_{\mu \nu}$ w.r.t. z^{2}
- boundary conditions
- construction of $g_{\mu \nu}$ order by order (holographic reconstruction)

Application to diagonal metric

- diagonal metric with Bjorken symmetry:

$$
d s^{2}=\frac{1}{z^{2}}\left(-e^{a(z, \tau)} d \tau^{2}+e^{b(z, \tau)} \tau^{2} d \eta^{2}+e^{c(z, \tau)} d x_{\perp}^{2}+d z^{2}\right)
$$

- boundary metric $=$ Minkowski: $\left.a\right|_{z=0}=\left.b\right|_{z=0}=\left.c\right|_{z=0}=0$
- boundary energy-momentum tensor $\Longrightarrow a_{(4)}=\epsilon(\tau)$

Result

$a(z, \tau)=z^{4} a^{(4)}+z^{6} a^{(6)}+z^{8} a^{(8)}+\ldots$ with:

$$
\begin{aligned}
a^{(4)}= & -\epsilon(\tau) \\
a^{(6)}= & -\frac{\dot{\epsilon}(\tau)}{4 \tau}+\frac{\ddot{\epsilon}(\tau)}{12} \\
a^{(8)}= & \frac{\epsilon(\tau)^{2}}{6}+\frac{\tau \dot{\epsilon}(\tau)^{2}}{6}+\frac{\tau^{2} \ddot{\epsilon}(\tau)^{2}}{16} \\
& +\frac{\dot{\epsilon}(\tau)}{128 \tau^{3}}-\frac{\ddot{\epsilon}(\tau)}{128}-\frac{\dot{\bar{\epsilon}}(\tau)}{64 \tau}-\frac{\ddot{\epsilon}(\tau)}{384}
\end{aligned}
$$

$b(z, \tau), c(z, \tau)$ similar

what worked well here...

...could work elsewere, too

Goal

solving the equations for energy-momentum conservation
a) without approximations
b) without numerical errors (but there are other uncertainties)

Why?

- in general interesting
- application to many physical problems, e.g. rHICs
- study systematic how deviations from initial conditions effect known solutions
- getting analytical expressions for elliptic flow

Toy problem: solving $\mathrm{df} / \mathrm{dx}=\mathrm{f}$ iteratively:

- write f and f^{\prime} in Taylor expansion:

$$
\frac{d f}{d x}=\sum_{k=0}^{\infty} \frac{1}{k!} f_{(k+1)} x^{k}=\sum_{k=0}^{\infty} \frac{1}{k!} f_{(k)} x^{k}=f
$$

Toy problem: solving $\mathrm{df} / \mathrm{dx}=\mathrm{f}$ iteratively:

- write f and f^{\prime} in Taylor expansion:

$$
\frac{d f}{d x}=\sum_{k=0}^{\infty} \frac{1}{k!} f_{(k+1)} x^{k}=\sum_{k=0}^{\infty} \frac{1}{k!} f_{(k)} x^{k}=f
$$

- this in valid in any order of x, therefore:

$$
f_{(k+1)}=f_{(k)} \quad \forall k \in \mathbb{N}_{0}
$$

Toy problem: solving $\mathrm{df} / \mathrm{dx}=\mathrm{f}$ iteratively:

- write f and f^{\prime} in Taylor expansion:

$$
\frac{d f}{d x}=\sum_{k=0}^{\infty} \frac{1}{k!} f_{(k+1)} x^{k}=\sum_{k=0}^{\infty} \frac{1}{k!} f_{(k)} x^{k}=f
$$

- this in valid in any order of x, therefore:

$$
f_{(k+1)}=f_{(k)} \quad \forall k \in \mathbb{N}_{0}
$$

- initial conditions: $f_{(0)}=a$

$$
\Longrightarrow f_{(1)}=a \quad \Longrightarrow \quad f_{(2)}=a \quad \Longrightarrow \quad \ldots
$$

Toy problem: solving $\mathrm{df} / \mathrm{dx}=\mathrm{f}$ iteratively:

- write f and f^{\prime} in Taylor expansion:

$$
\frac{d f}{d x}=\sum_{k=0}^{\infty} \frac{1}{k!} f_{(k+1)} x^{k}=\sum_{k=0}^{\infty} \frac{1}{k!} f_{(k)} x^{k}=f
$$

- this in valid in any order of x, therefore:

$$
f_{(k+1)}=f_{(k)} \quad \forall k \in \mathbb{N}_{0}
$$

- initial conditions: $f_{(0)}=a$

$$
\Longrightarrow f_{(1)}=a \quad \Longrightarrow \quad f_{(2)}=a \quad \Longrightarrow \quad \ldots
$$

- solution as Taylor expansion:

$$
f(x)=a \sum_{k=0}^{\infty} \frac{1}{k!} x^{k}=a e^{x} \quad, \text { as expected }
$$

motivation from AdS/CFT

Outlining the method

- $T^{\mu \nu}: 10$ different components

Outlining the method

- $T^{\mu \nu}: 10$ different components
- energy-momentum conservation: 4 equations

Outlining the method

- $T^{\mu \nu}: 10$ different components
- energy-momentum conservation: 4 equations
$\Rightarrow 6$ additional equations must be given, e.g. the constitutive eqs, EoS

Outlining the method

- $T^{\mu \nu}: 10$ different components
- energy-momentum conservation: 4 equations
$\Rightarrow 6$ additional equations must be given, e.g. the constitutive eqs, EoS
- choose $T^{\alpha 0}$ as the 4 independent variables

Outlining the method

- $T^{\mu \nu}: 10$ different components
- energy-momentum conservation: 4 equations
$\Rightarrow 6$ additional equations must be given, e.g. the constitutive eqs, EoS
- choose $T^{\alpha 0}$ as the 4 independent variables
- write $T^{\mu \nu}=f^{\mu \nu}\left(T^{\alpha 0}\right)$

Outlining the method

- $T^{\mu \nu}: 10$ different components
- energy-momentum conservation: 4 equations
$\Rightarrow 6$ additional equations must be given, e.g. the constitutive eqs, EoS
- choose $T^{\alpha 0}$ as the 4 independent variables
- write $T^{\mu \nu}=f^{\mu \nu}\left(T^{\alpha 0}\right)$
- write down energy momentum conservation and put the time derivative at LHS

Outlining the method

- $T^{\mu \nu}: 10$ different components
- energy-momentum conservation: 4 equations
$\Rightarrow 6$ additional equations must be given, e.g. the constitutive eqs, EoS
- choose $T^{\alpha 0}$ as the 4 independent variables
- write $T^{\mu \nu}=f^{\mu \nu}\left(T^{\alpha 0}\right)$
- write down energy momentum conservation and put the time derivative at LHS
- expand $T^{\alpha 0}$ in Taylor series w.r.t. time
energy-momentum conservation:

$$
0=\nabla_{\nu} T^{\mu \nu}=\partial_{\nu} T^{\mu \nu}+\Gamma_{\nu \rho}^{\mu} T^{\rho \nu}+\Gamma_{\nu \sigma}^{\nu} T^{\mu \sigma}
$$

solve for the time derivative

energy-momentum conservation

$$
\frac{\partial}{\partial t} \sum_{m=0}^{\infty} \frac{1}{m!} T_{(m)}^{\mu 0} t^{m}=-\frac{\partial}{\partial x^{a}} \sum_{m=0}^{\infty} \frac{1}{m!} f_{(m)}^{\mu a} t^{m}-\Gamma_{\nu \rho}^{\mu} f^{\rho \nu}-\Gamma_{\nu \sigma}^{\nu} f^{\mu \sigma}
$$

This must be valid in any order of t

In $k^{\text {th }}$ order

$$
T_{(k+1)}^{\mu 0}=-\frac{\partial}{\partial x^{a}} f_{(k)}^{\mu a}-\sum_{l=0}^{k}\binom{k}{l}\left(\Gamma_{(k-l) \nu \rho}^{\mu} f_{(I)}^{\rho \nu}+\Gamma_{(k-l) \nu \sigma}^{\nu} f_{(I)}^{\mu \sigma}\right)
$$

In $k^{\text {th }}$ order

$$
T_{(k+1)}^{\mu 0}=-\frac{\partial}{\partial x^{a}} f_{(k)}^{\mu a}-\sum_{l=0}^{k}\binom{k}{l}\left(\Gamma_{(k-l) \nu \rho}^{\mu} f_{(I)}^{\rho \nu}+\Gamma_{(k-l) \nu \sigma}^{\nu} f_{(I)}^{\mu \sigma}\right)
$$

- RHS: only derivatives of $T^{\mu 0}$ up to $k^{t h}$ order appear.

In $k^{\text {th }}$ order

$$
T_{(k+1)}^{\mu 0}=-\frac{\partial}{\partial x^{a}} f_{(k)}^{\mu a}-\sum_{l=0}^{k}\binom{k}{l}\left(\Gamma_{(k-l) \nu \rho}^{\mu} f_{(I)}^{\rho \nu}+\Gamma_{(k-l) \nu \sigma}^{\nu} f_{(I)}^{\mu \sigma}\right)
$$

- RHS: only derivatives of $T^{\mu 0}$ up to $k^{t h}$ order appear. $\Rightarrow(k+1)^{s t}$ order is determined by lower orders

In $k^{\text {th }}$ order

$$
T_{(k+1)}^{\mu 0}=-\frac{\partial}{\partial x^{a}} f_{(k)}^{\mu a}-\sum_{l=0}^{k}\binom{k}{l}\left(\Gamma_{(k-l) \nu \rho}^{\mu} f_{(I)}^{\rho \nu}+\Gamma_{(k-l) \nu \sigma}^{\nu} f_{(I)}^{\mu \sigma}\right)
$$

- RHS: only derivatives of $T^{\mu 0}$ up to $k^{t h}$ order appear.
$\Rightarrow(k+1)^{s t}$ order is determined by lower orders
- initial conditions $\left(\equiv T_{(0)}^{\mu 0}(\vec{x})\right) \Rightarrow T_{(1)}^{\mu 0}(\vec{x}) \Rightarrow T_{(2)}^{\mu 0}(\vec{x}) \Rightarrow \ldots$

In $k^{\text {th }}$ order

$$
T_{(k+1)}^{\mu 0}=-\frac{\partial}{\partial x^{a}} f_{(k)}^{\mu a}-\sum_{l=0}^{k}\binom{k}{l}\left(\Gamma_{(k-l) \nu \rho}^{\mu} f_{(I)}^{\rho \nu}+\Gamma_{(k-l) \nu \sigma}^{\nu} f_{(I)}^{\mu \sigma}\right)
$$

- RHS: only derivatives of $T^{\mu 0}$ up to $k^{t h}$ order appear.
$\Rightarrow(k+1)^{s t}$ order is determined by lower orders
- initial conditions $\left(\equiv T_{(0)}^{\mu 0}(\vec{x})\right) \Rightarrow T_{(1)}^{\mu 0}(\vec{x}) \Rightarrow T_{(2)}^{\mu 0}(\vec{x}) \Rightarrow \ldots$

result

$$
T^{\mu 0}=T_{(0)}^{\mu 0} t^{0}+T_{(1)}^{\mu 0} t^{1}+T_{(2)}^{\mu 0} t^{2}+\ldots
$$

- rearrange to get physical degrees of freedom, e.g. e, u^{μ}
motivation from AdS/CFT

goal

toy problem
outlining the method
remarks

Remarks

motivation from AdS/CFT goal
toy problem
outlining the method
remarks

Remarks

- at this point general
motivation from AdS/CFT goal
toy problem
outlining the method remarks

Remarks

- at this point general
- $f^{\mu \nu}$ depends on the system

Remarks

- at this point general
- $f^{\mu \nu}$ depends on the system
- in practice: use MAPLE

Remarks

- at this point general
- $f^{\mu \nu}$ depends on the system
- in practice: use MAPLE
- functional form of initial conditions as simple as possible

Problems

Solution

- sometimes $f^{a b}$ cannot be given exactly e.g. if the constitutive eqs. contain derivatives

Problems

- sometimes $f^{a b}$ cannot be given exactly e.g. if the constitutive eqs. contain derivatives

Solution

- f can be expanded up to the needed order

Problems

- sometimes $f^{a b}$ cannot be given exactly e.g. if the constitutive eqs. contain derivatives
- radius of convergence can be to small

Solution

- f can be expanded up to the needed order

Problems

- sometimes $f^{a b}$ cannot be given exactly e.g. if the constitutive eqs. contain derivatives
- radius of convergence can be to small

Solution

- f can be expanded up to the needed order
- ask a mathematican for which conditions convergence is good

Problems

- sometimes $f^{a b}$ cannot be given exactly e.g. if the constitutive eqs. contain derivatives
- radius of convergence can be to small
- you cannot know up to which time the trunkated series is close to the real solution

Solution

- f can be expanded up to the needed order
- ask a mathematican for which conditions convergence is good

Problems

- sometimes $f^{a b}$ cannot be given exactly e.g. if the constitutive eqs. contain derivatives
- radius of convergence can be to small
- you cannot know up to which time the trunkated series is close to the real solution

Solution

- f can be expanded up to the needed order
- ask a mathematican for which conditions convergence is good
- for 1st guess: look where the highest order term gets dominant

Problems

- sometimes $f^{a b}$ cannot be given exactly e.g. if the constitutive eqs. contain derivatives
- radius of convergence can be to small
- you cannot know up to which time the trunkated series is close to the real solution
- initial conditions must be differentiable up to very high order

Solution

- f can be expanded up to the needed order
- ask a mathematican for which conditions convergence is good
- for 1st guess: look where the highest order term gets dominant

Problems

- sometimes $f^{a b}$ cannot be given exactly e.g. if the constitutive eqs. contain derivatives
- radius of convergence can be to small
- you cannot know up to which time the trunkated series is close to the real solution
- initial conditions must be differentiable up to very high order

Solution

- f can be expanded up to the needed order
- ask a mathematican for which conditions convergence is good
- for 1st guess: look where the highest order term gets dominant
- good approximations are possible

recipe for ideal hydro

- energy-momentum tensor for ideal Hydro: $T^{\mu \nu}=(e+p) u^{\mu} u^{\nu}-p g^{\mu \nu}$

recipe for ideal hydro

- energy-momentum tensor for ideal Hydro:
$T^{\mu \nu}=(e+p) u^{\mu} u^{\nu}-p g^{\mu \nu}$
- solve the $(\mu, 0)$ components for e, u^{a}, use normalisation $u^{\mu} u_{\mu}=1$, EoS

recipe for ideal hydro

- energy-momentum tensor for ideal Hydro:
$T^{\mu \nu}=(e+p) u^{\mu} u^{\nu}-p g^{\mu \nu}$
- solve the $(\mu, 0)$ components for e, u^{a}, use normalisation $u^{\mu} u_{\mu}=1$, EoS
- put the result back into the constitutive eqs.
$\Rightarrow T^{\mu \nu}=f^{\mu \nu}\left(T^{\alpha 0}\right)$

recipe for ideal hydro

- energy-momentum tensor for ideal Hydro:
$T^{\mu \nu}=(e+p) u^{\mu} u^{\nu}-p g^{\mu \nu}$
- solve the $(\mu, 0)$ components for e, u^{a}, use normalisation $u^{\mu} u_{\mu}=1$, EoS
- put the result back into the constitutive eqs.
$\Rightarrow T^{\mu \nu}=f^{\mu \nu}\left(T^{\alpha 0}\right)$
- solve the problem up to sufficiently high order

Bjorken solution - no gradients in initial energy density

energy density with Bjorken initial conditions

fluid rapidity with Bjorken initial conditions

logitudinal gradients in initial energy density, initial flow: Bjorken

profiles of the energy density for Gaussian initial conditions up to $\ln \left(\tau / \tau_{0}\right)=2.4$

profiles for the rapidity for Gaussian initial conditions up to $\ln \left(\tau / \tau_{0}\right)=1.6$

transversal gradients in initial energy density, initial flow: Bjorken

energy density profiles at different times

initial energy density with gradients in 3 dimensions, inital flow: Bjorken

energy density in the transversal plane at mid-rapidity: evolution of the initial asymetry

energy densities at the center at mid-rapidity: compairson between finite and infinite distribution of the energy density at $\tau=\tau_{0}$

energy densities at the center at mid-rapidity: Freeze out energy density ($T \approx 200 \mathrm{MeV}$) for a system with $\epsilon_{0}=967 \mathrm{GeV} / \mathrm{fm}^{3}[c f$. Eskola, Kajantie (1996)]

summary

- possible to calculate high derivatives
\Rightarrow possible to get Taylor-expansion
- reaches limits of a normal computer (Pentium i7, 4 GB RAM, Maple 9.5)
- some work left until freeze out reached
- not faster than numerical hydro codes, but analytical

outlook

- extend to viscous hydro (1st and 2nd order)
- extend to nontrivial EoS
- saving resources (time and memory) and go to higher orders
- triaxial expansion: study elliptic flow
- getting reference for checking numerical codes

Thank you for your attention!

speeding up, direct iteration

energy density at mid-rapidity: initial conditions with longitudinal gaussian shape. Freeze out energy density ($T \approx 200 \mathrm{MeV}$) for a system with $\epsilon_{0}=967 \mathrm{GeV} / \mathrm{fm}^{3}$ [cf. Eskola, Kajantie (1996)]

Literature

- R. A. Janik, "The dynamics of quark-gluon plasma and AdS/CFT," Lect. Notes Phys. 828 (2011) 147 [arXiv:1003.3291 [hep-th]].
- K. J. Eskola, K. Kajantie and P. V. Ruuskanen, "Hydrodynamics of nuclear collisions with initial conditions from perturbative QCD," Eur. Phys. J. C 1 (1998) 627 [arXiv:nucl-th/9705015].
- K. J. Eskola and K. Kajantie, "Baryon-to-entropy ratio in very high energy nuclear collisions," Z. Phys. C 75 (1997) 515 [arXiv:nucl-th/9610015].
- S. de Haro, S. N. Solodukhin and K. Skenderis, "Holographic reconstruction of spacetime and renormalization in the AdS/CFT correspondence," Commun. Math. Phys. 217, 595 (2001) [arXiv:hep-th/0002230].

