Investigation of ideal and viscous Mach Cones

Ioannis Bouras

in collaboration with A. El, O. Fochler, H. Niemi, Z. Xu and C. Greiner

I. Bouras et al., Phys. Rev. Lett. 103:032301 (2009) I. Bouras et al., PRC 82, 024910 (2010)

Toric Workshop

Heraklion, Crete, Greece

September, 2011

Bouras et al., in preparation

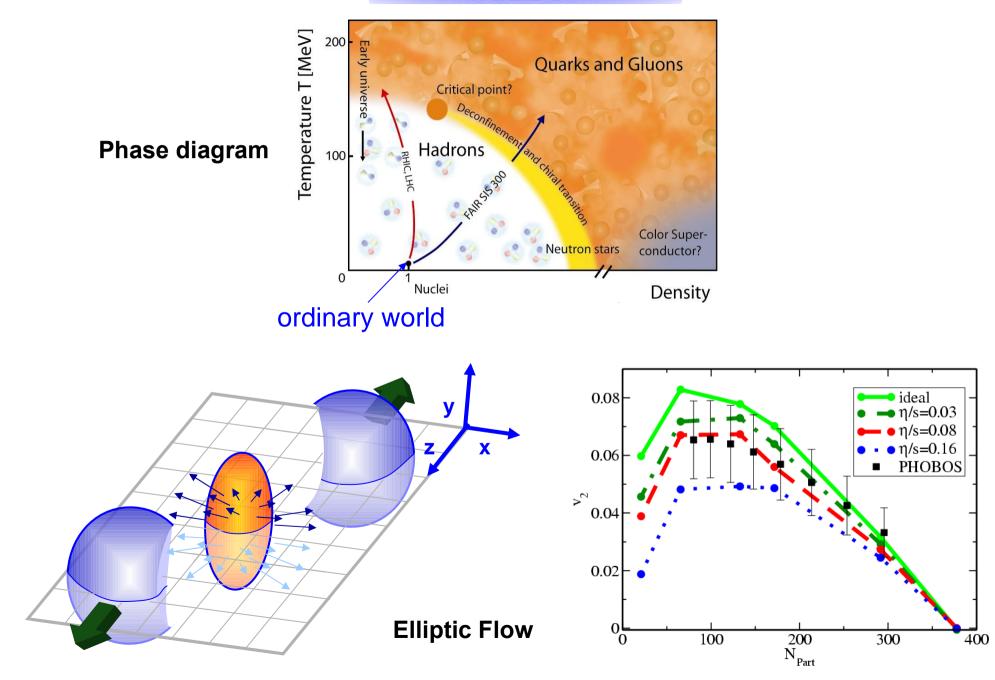
GOETHE

UNIVERSITAT

FRANKFURT AM MAIN

Helmholtz International Center

Motivation



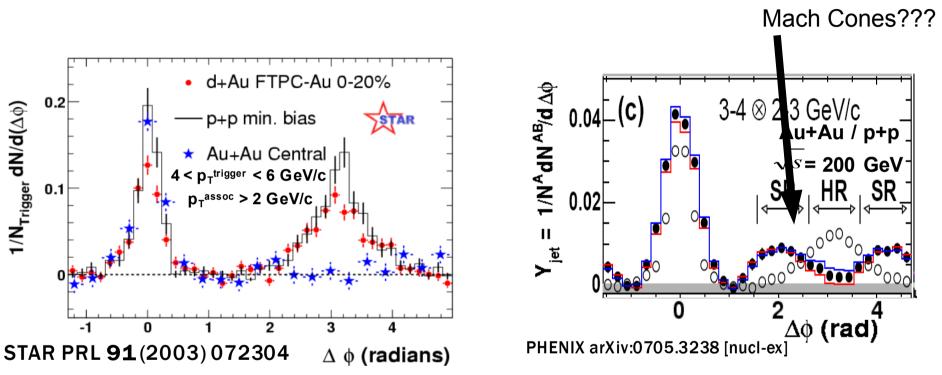
0.2

0.1

0

 $1/N_{Trigger} dN/d(\Delta \phi)$

Two-particle correlations



The Parton Cascade BAMPS

 Transport algorithm solving the Boltzmann equation using Monte Carlo techniques

$$p^{\mu}\partial_{\mu}f(x,p)=C_{22}+C_{23}+...$$

Boltzmann Approach for Multi-Parton Scatterings

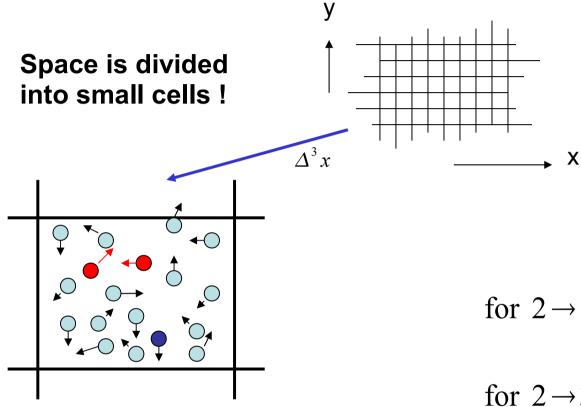
Stochastic interpretation of collision rates

$$P_{2i} = v_{rel} \frac{\sigma_{2i}}{N_{test}} \frac{\Delta t}{\Delta^3 x}$$

Z. Xu & C. Greiner, Phys. Rev. C 71 (2005) 064901

 In general: pQCD interactions, 2 ↔ 3 processes, quarks and gluons

The Parton Cascade BAMPS



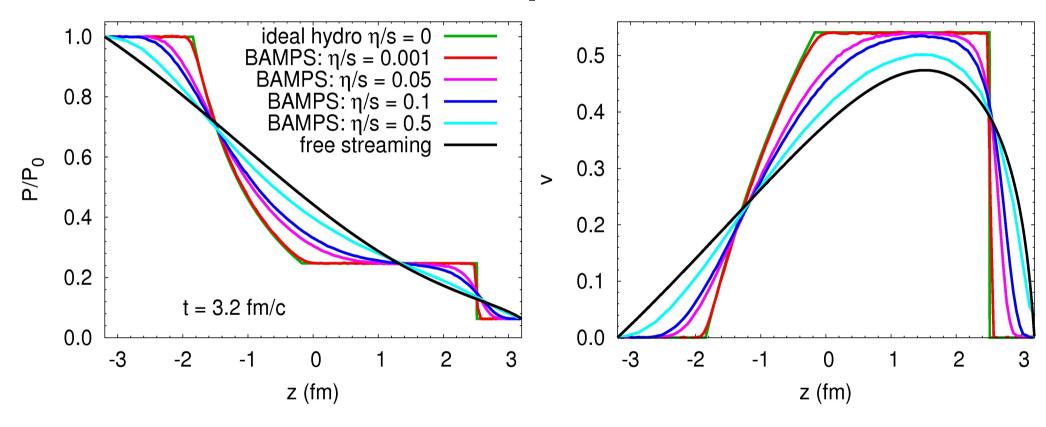
Boltzmann Approach for Multi-Parton Scatterings

for
$$2 \rightarrow 2$$
 $P_{22} = v_{rel} \frac{\sigma_{22}}{N_{test}} \frac{\Delta t}{\Delta^3 x}$
for $2 \rightarrow 3$ $P_{23} = v_{rel} \frac{\sigma_{23}}{N_{test}} \frac{\Delta t}{\Delta^3 x}$
for $3 \rightarrow 2$ $P_{32} = \frac{1}{8E_1E_2E_3} \frac{I_{32}}{N_{test}^2} \frac{\Delta t}{(\Delta^3 x)^2}$

Z. Xu & C. Greiner, Phys. Rev. C 71 (2005) 064901

 $I_{32} = \frac{1}{2} \int \frac{d^{3} p'_{1}}{(2\pi)^{3} 2E'_{1}} \frac{d^{3} p'_{2}}{(2\pi)^{3} 2E'_{2}} |M_{123 \to 1'2'}|^{2} (2\pi)^{4} \delta^{(4)}(p_{1} + p_{2} + p_{3} - p'_{1} - p'_{2})$

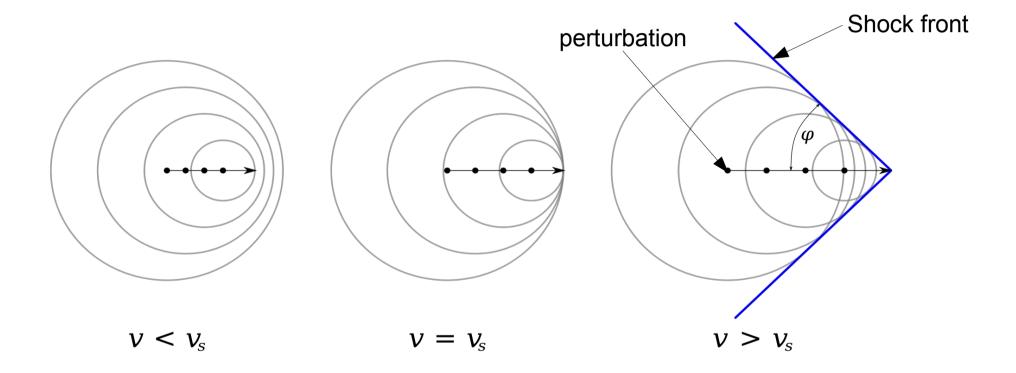
Boltzmann solution of the relativistic Riemann problem



Transition from ideal hydro to free streaming

I. Bouras et al., Phys. Rev. Lett. 103:032301 (2009) I. Bouras et al., PRC 82, 024910 (2010)

• If source (perturbation) is propagating faster than the speed of sound, then a Mach Cone structure is observed

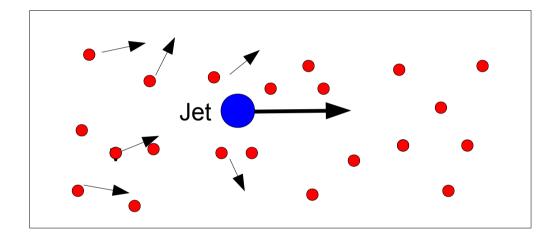


1) Punch Through Scenario

2) Pure energy deposition scenario

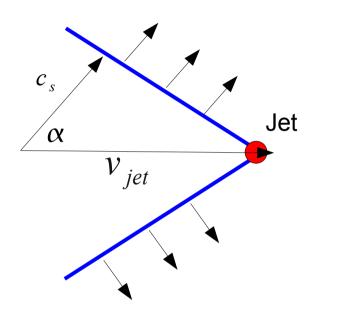
Punch Through Scenario

A scenario usefull to investigate the shape and development of ideal Mach Cones

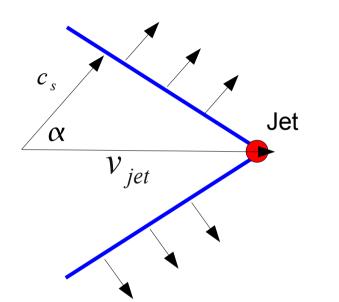


- Jet has finite initial energy and momentum E = pz and is massless; no transverse momentum → px = py = 0
- The Jet deposits energy to the medium due to binary collisions with particles
- After every collision with a thermal particle of the medium the energy of the jet gets recharged to its inital value

Scenario for a very weak perturbation



Scenario for a very weak perturbation



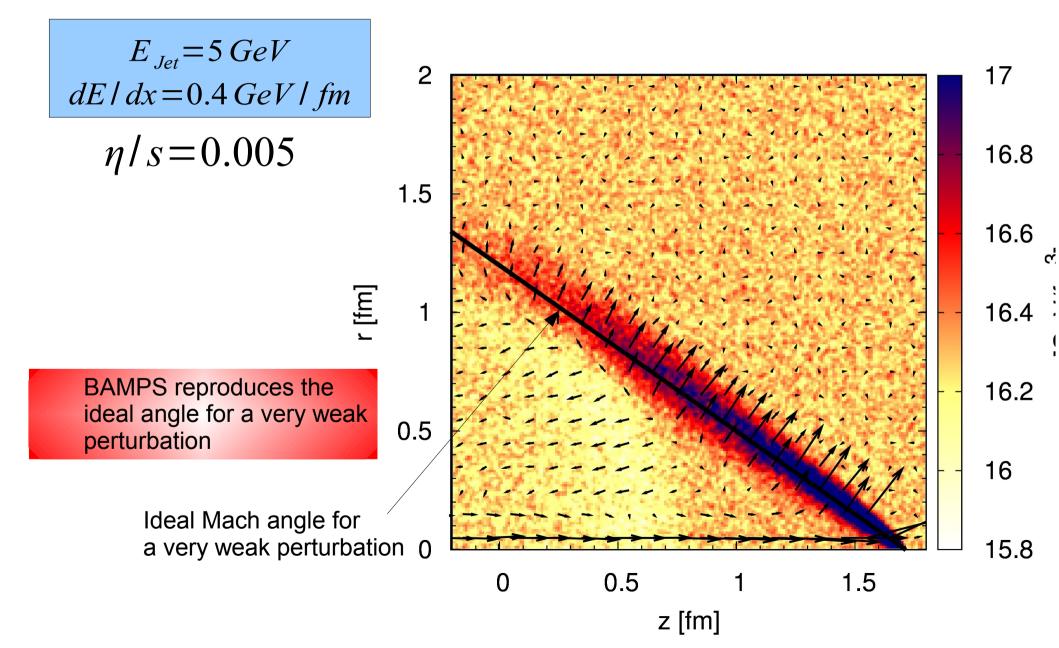
• In the case of a perfect fluid, i.e. $\eta = 0$, the Mach angle is

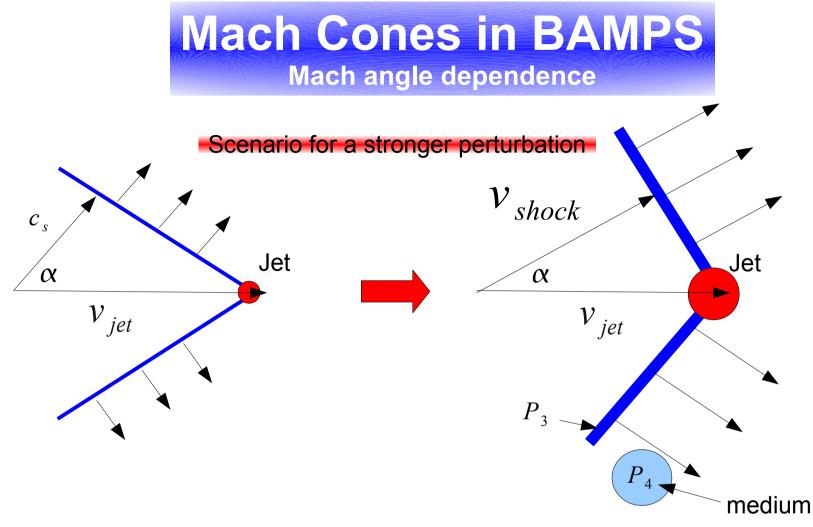
$$\alpha = \arccos \frac{c_s}{v_{jet}} \approx 54.7^{\circ}$$

for a massless Boltzmann gas, i.e. e=3P, with $c_s=1/\sqrt{3}$ and $v_{jet}=1$

• This is only valid for small perturbation, i.e. energy of the jet is infinite small

Punch Through Scenario



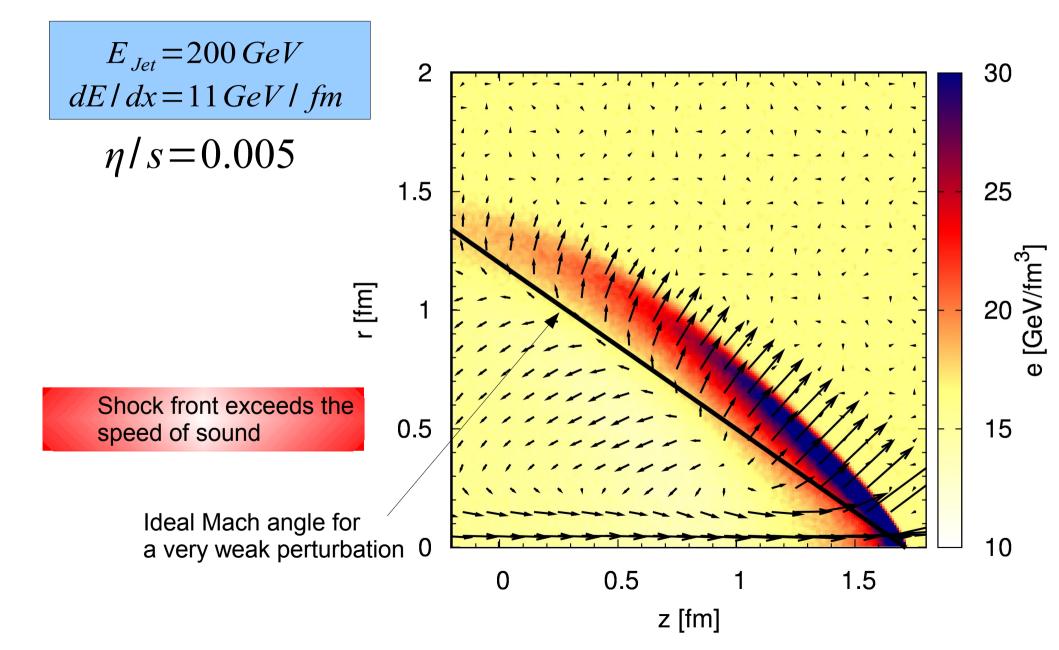


 In the case of a stronger perturbation the energy deposition is larger and therefore shock waves develop which exceed the speed of sound. Therefore the angle is approximately given by

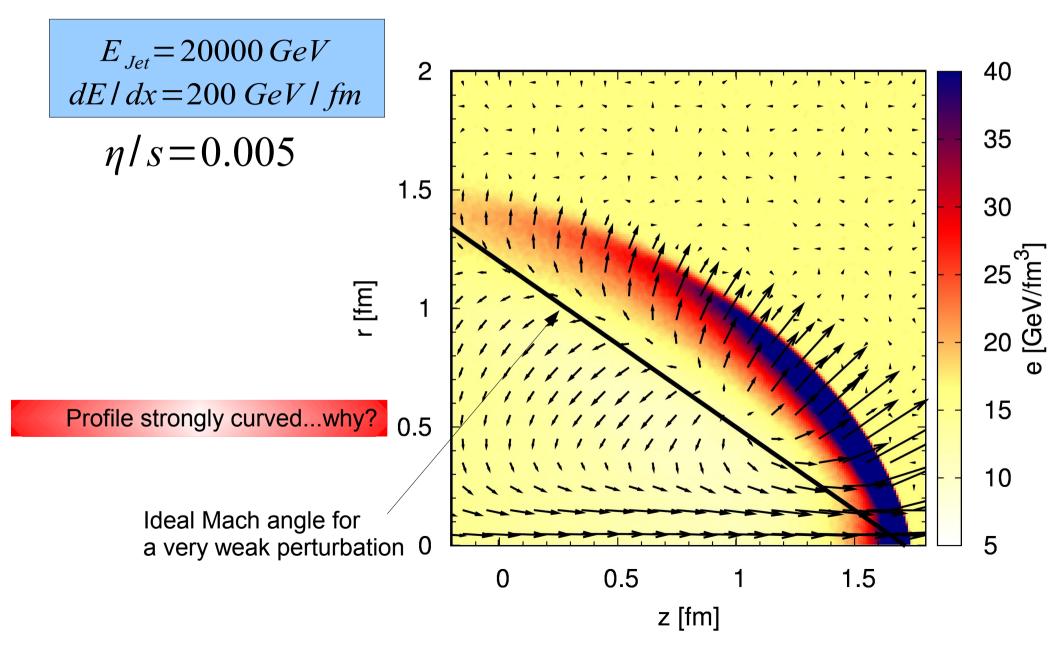
$$\alpha = \arccos \frac{v_{shock}}{v_{jet}} \qquad v_{shock} = \left[\frac{(P_4 - P_3)(e_3 + P_4)}{(e_4 - e_3)(e_4 + P_3)} \right]^{\frac{1}{2}}$$

• The emission angle α changes to smaller values than in the weak perturbation case

Punch Through Scenario

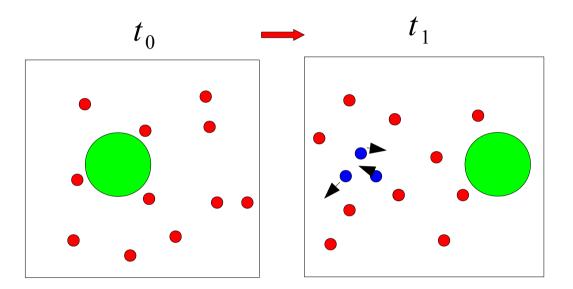


Mach angle dependence Punch Through Scenario

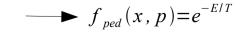


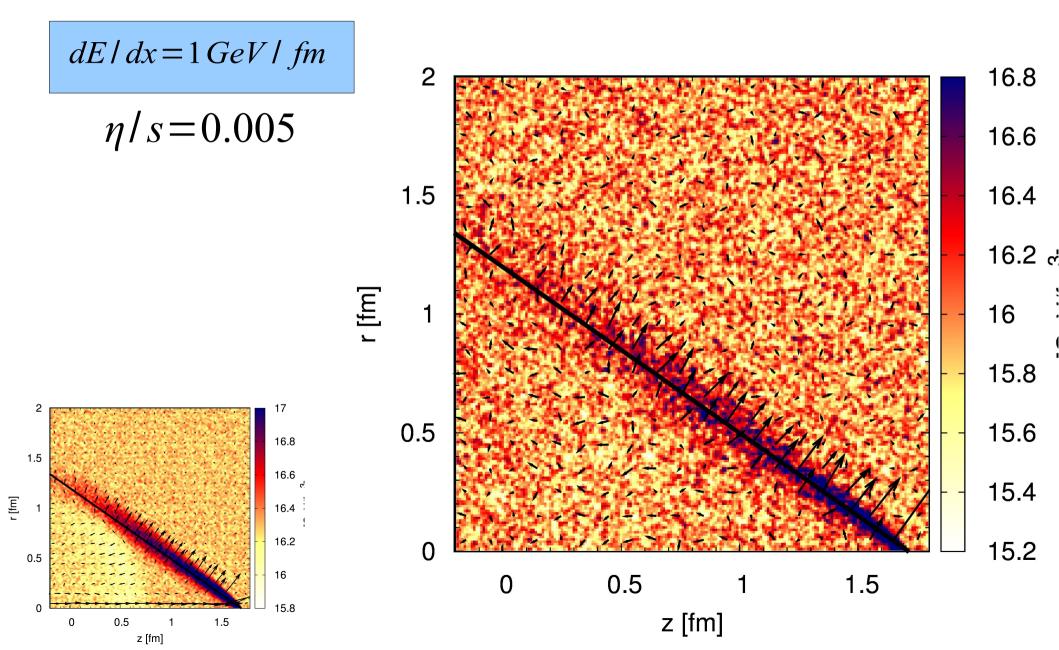
Mach Cones in BAMPS Pure energy deposition scenario

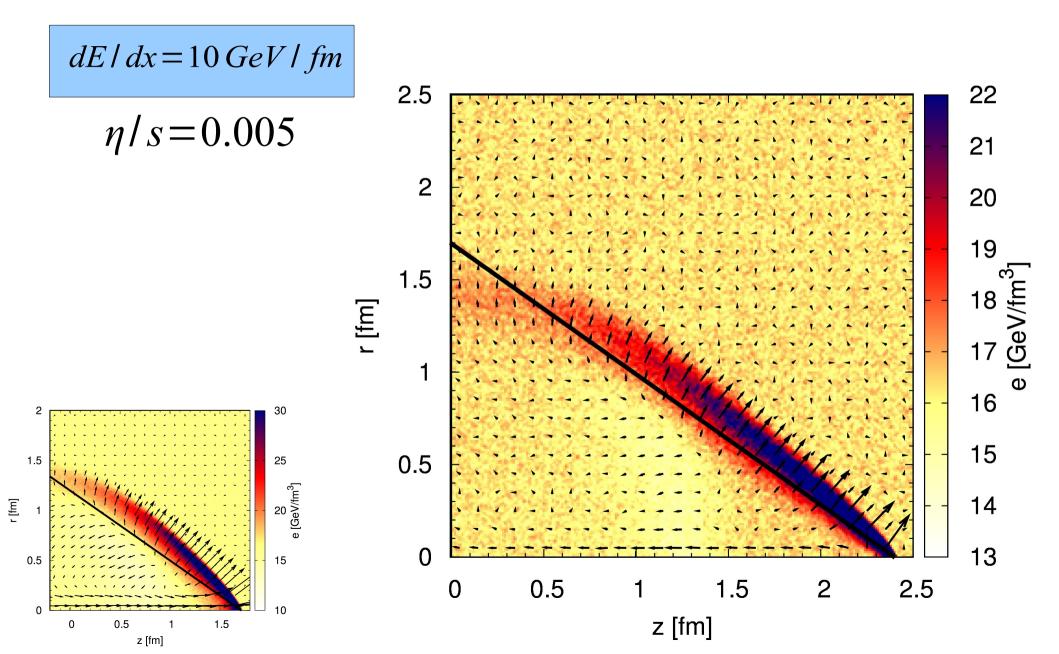
Energy deposition via the creation of thermal distributed particles

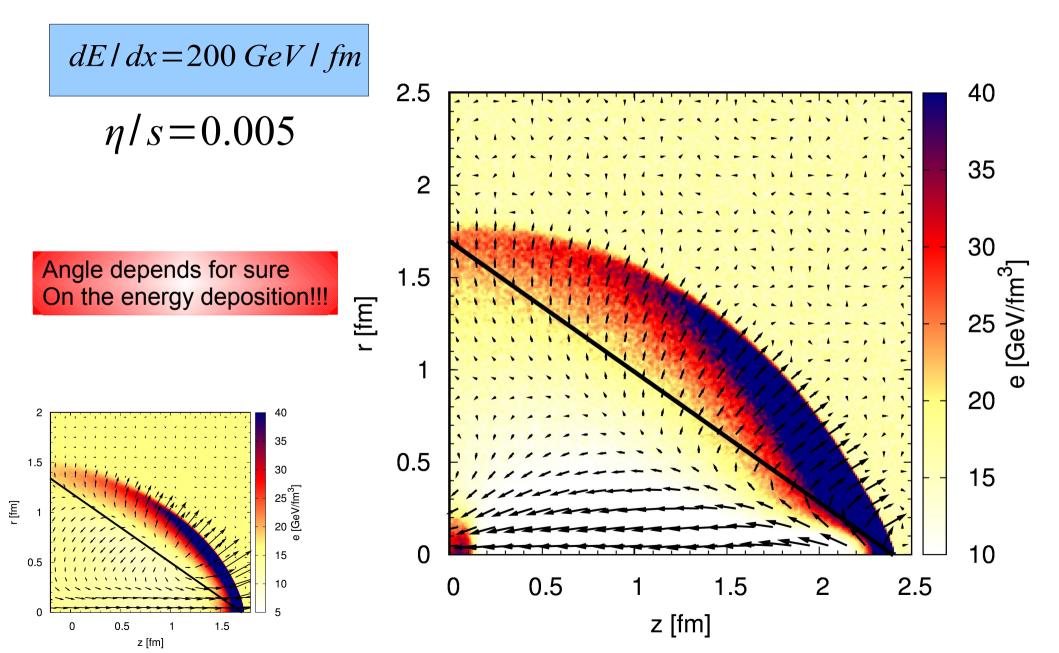


- The source (green) propagates with the speed of light and generates new particles (blue) at different timesteps
- The advantage of that method: a constant energy deposition but no momentum deposition, because new particles are thermal distributed

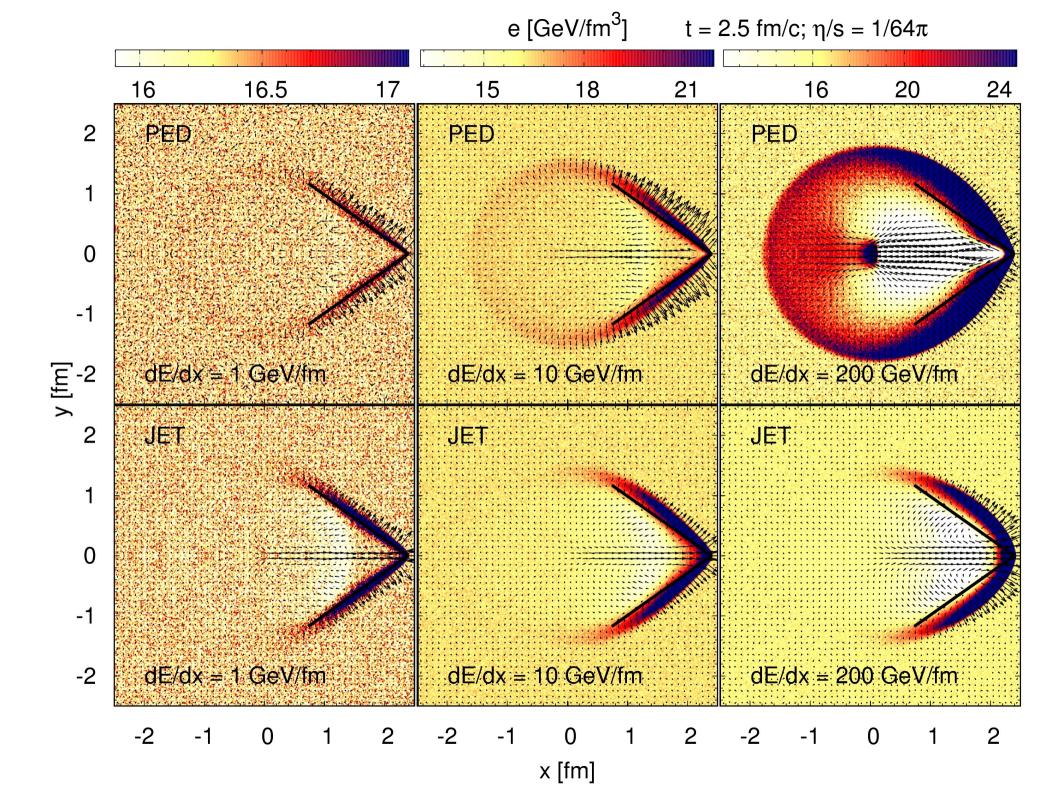


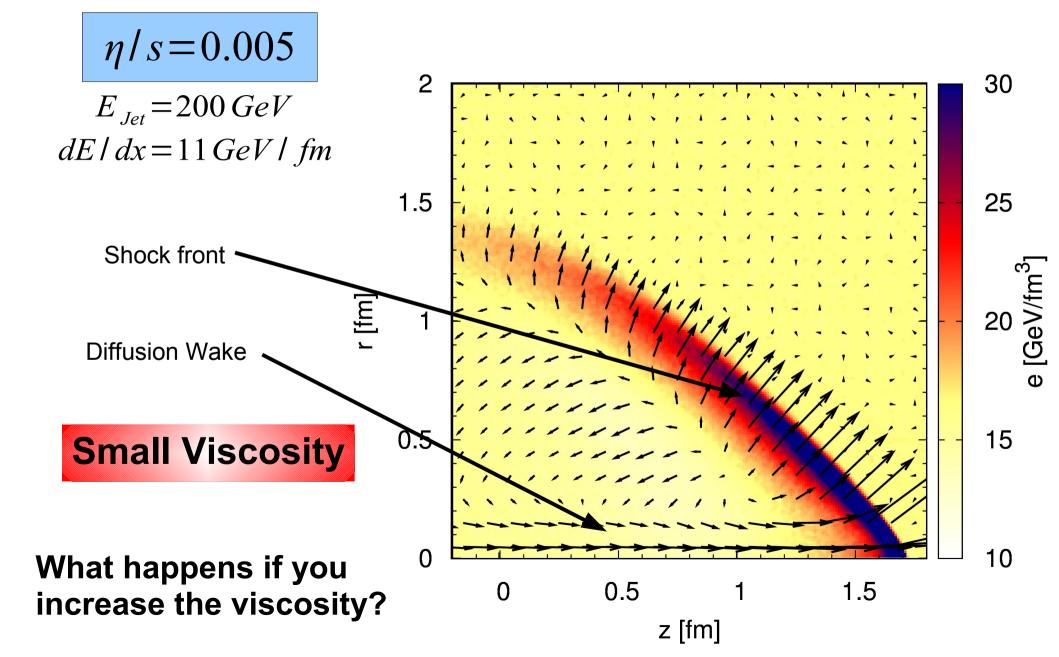






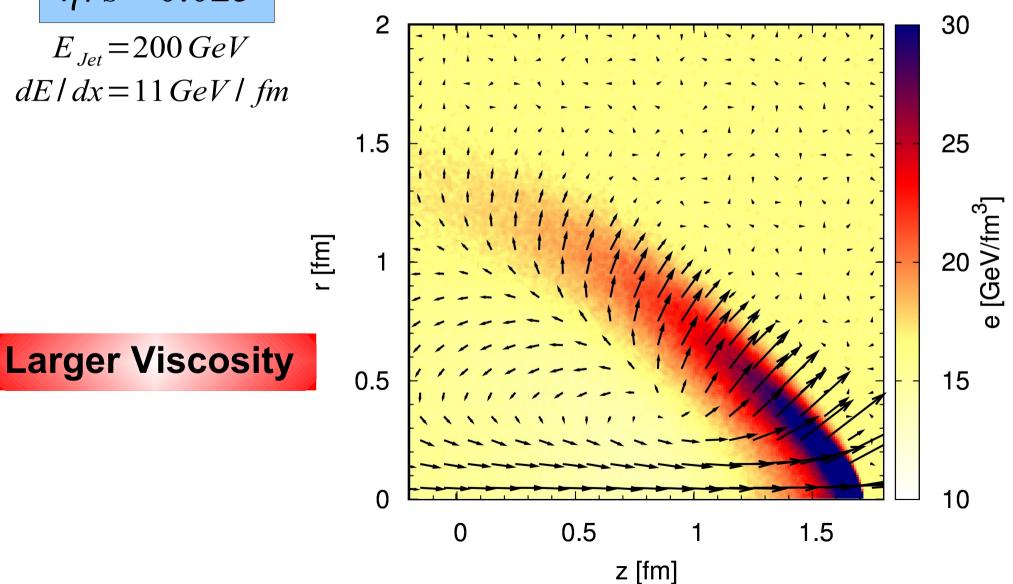
Movie: Evolution of Mach Cones in BAMPS Pure energy deposition scenario





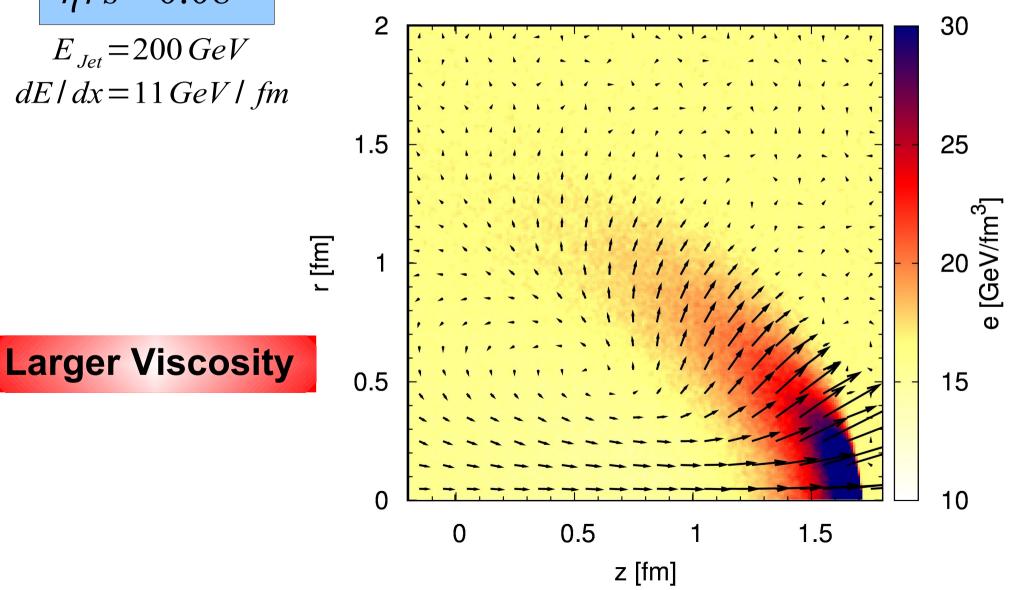
$$\eta/s = 0.025$$

$E_{Jet} = 200 \, GeV$ dE/dx = 11 GeV/fm



$$\eta/s = 0.08$$

$E_{Jet} = 200 \, GeV$ dE/dx = 11 GeV/fm

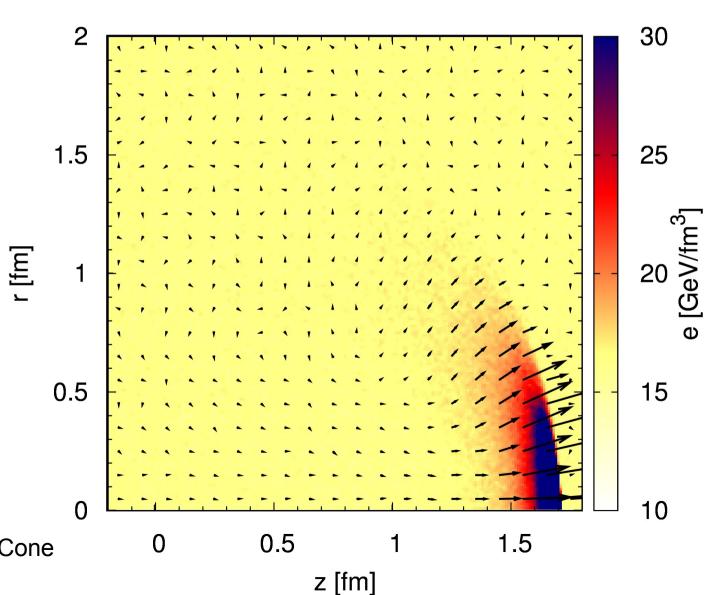


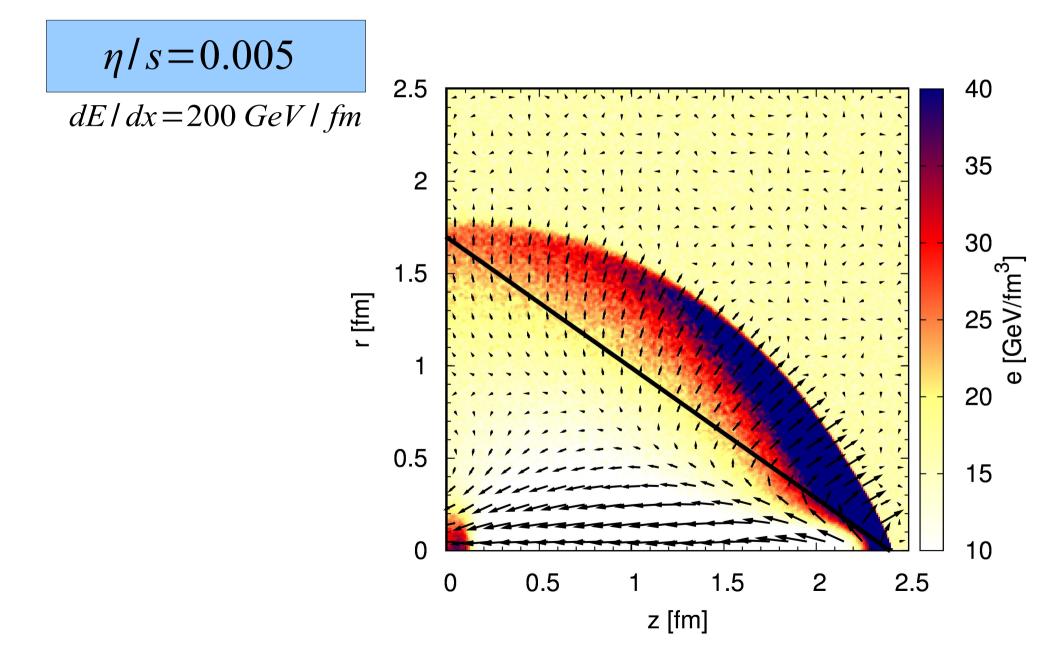
$$\eta/s=0.32$$

$$E_{Jet} = 200 \, GeV$$
$$dE \, | \, dx = 11 \, GeV \, | \, fm$$

High Viscosity

Should the angle of the Mach Cone change with viscosity?





$$\frac{\eta/s = 0.05}{dE/dx = 200 \ GeV/fm} = 2.5$$

$$\frac{1.5}{1}$$

$$\frac{1.5}{0}$$

Mach Angle Dependence Pure energy deposition scenario

$$\frac{\eta/s=0.5}{dE/dx=200 \ GeV/fm} = 2.5$$

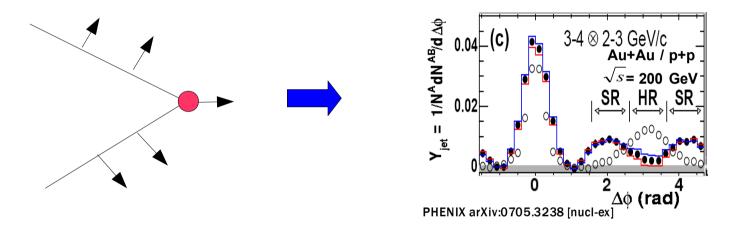
$$\frac{1}{15}$$

$$\frac{1$$

r [fm]

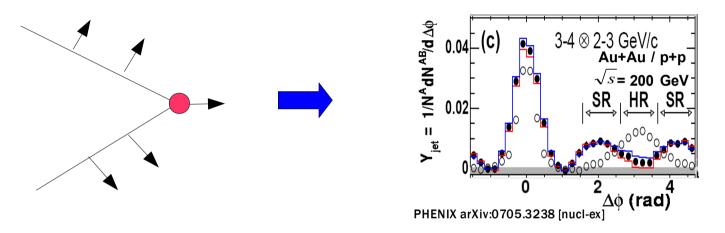
Mach Cones in BAMPS Two Particle Correlations

• First, we (have) expect(ed) that the double peak observed in experimental data is a hint for a conical structure...because of the naive picture



Mach Cones in BAMPS Two Particle Correlations

• First, we (have) expect(ed) that the double peak observed in experimental data is a hint for a conical structure...because of the naive picture



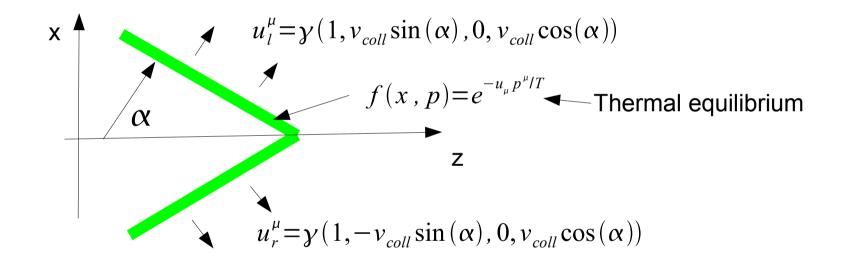
• But....

viscosity is not zero in heavy-ion collisions (HIC)...and as we have already seen, viscosity in order expected in HIC destroys the conical structure to a very weak signal
 The jet in reality has not infinite energy....and the formation-time is finite
 The angle changes of the Mach Cone changes depending on the energy deposition
 The diffusion wake and head shock will have a big contribution...as we will see..

However, one can can find an analytical expression for the two-particle correlations of Mach Cones....

Mach Cones in BAMPS Two Particle Correlations Analytical solution

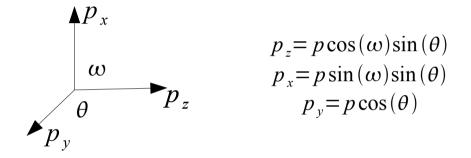
Assume two wings in thermal equilibrium



alpha is a const and corresponds to the Mach angle, where v_coll is the collective velocity of matter velocity in the wings

Mach Cones in BAMPS Two Particle Correlations Analytical solution

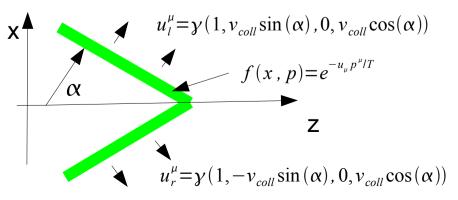
• We are looking for the angle ω , which is the angle in the p_x and p_z plane



One calculate for each wing the particle distribution

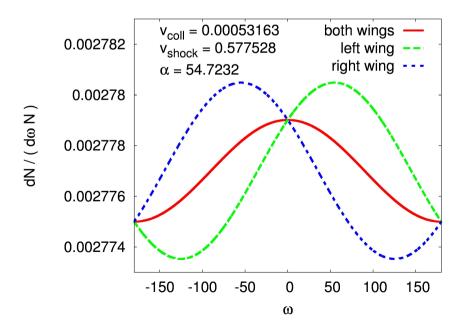
$$\frac{dN}{d\omega} = \frac{V}{(2\pi)^3} \iint p^2 \sin(\theta) e^{-u_{\mu} p^{\mu}/T} dp d\theta$$

In the end one has to add both contributions!



Mach Cones in BAMPS Two Particle Correlations Analytical solution - Results

Taking the very weak perturbation case in account, we do not observe a double peak structure as we expected.



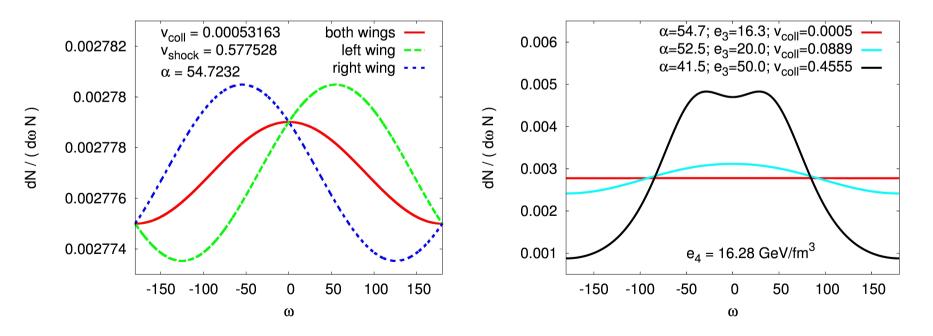
alpha and v_coll depends on the ratio of density in the wing and medium in rest

Mach Cones in BAMPS Two Particle Correlations Analytical solution - Results

Taking the very weak perturbation case in account, we do not observe a double peak structure as we expected.

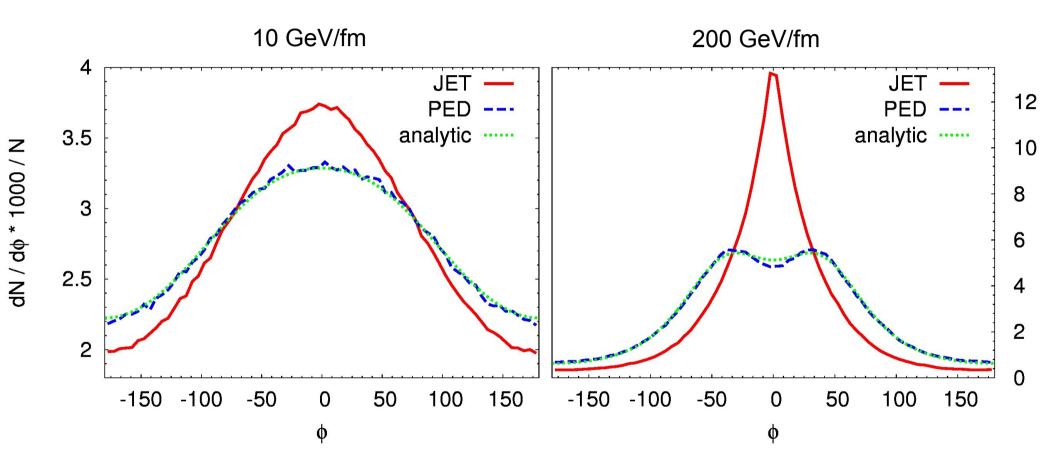
 \rightarrow Only if the shock gets stronger a double peak is observed

 \rightarrow If the shock gets stronger, also v_coll gets larger and therefore the double peak is clearer



alpha and v_coll depends on the ratio of density in the wing and medium in rest

Mach Cones in BAMPS Two Particle Correlations Numerical Results



The source term plays a big role for observation a double peak structure

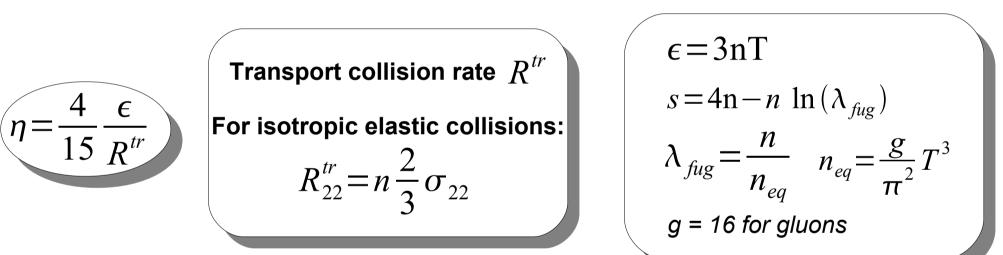
- BAMPS is an excellent benchmark to investigate phenomena like shock waves and Mach Cones in the ideal and viscous region
- Mach Cones might exist in heavy-ion collisions...

...but have **NOT** to be the origin of the famous "double peak structure"....

The Parton Cascade BAMPS

For this setup :

- Boltzmann gas, isotropic cross sections, elastic processes only
- Implementing a constant η/s , we locally get the cross section σ_{22} :



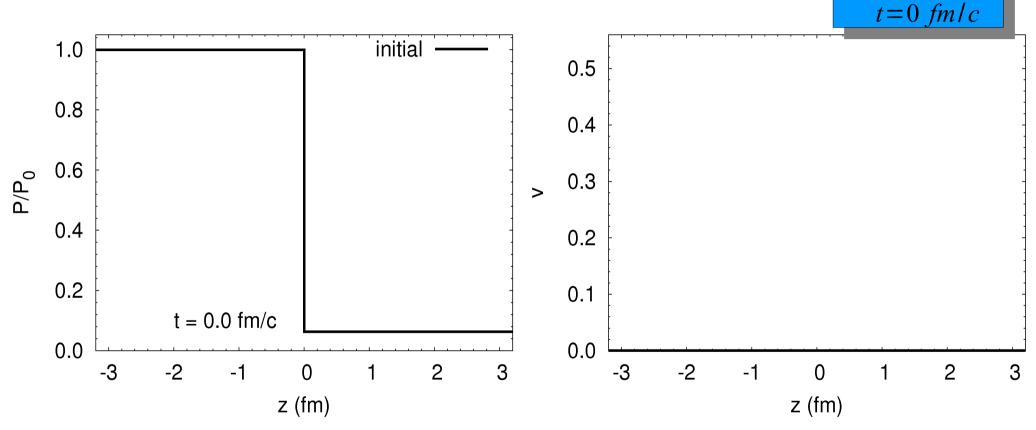
Z. Xu & C. Greiner, Phys.Rev.Lett.100:172301,2008

$$\sigma_{22} = \frac{6}{5} \frac{T}{s} \left(\frac{\eta}{s}\right)^{-1}$$

 $T_L = 400 MeV$

 $T_{R} = 200 MeV$

Initial conditions



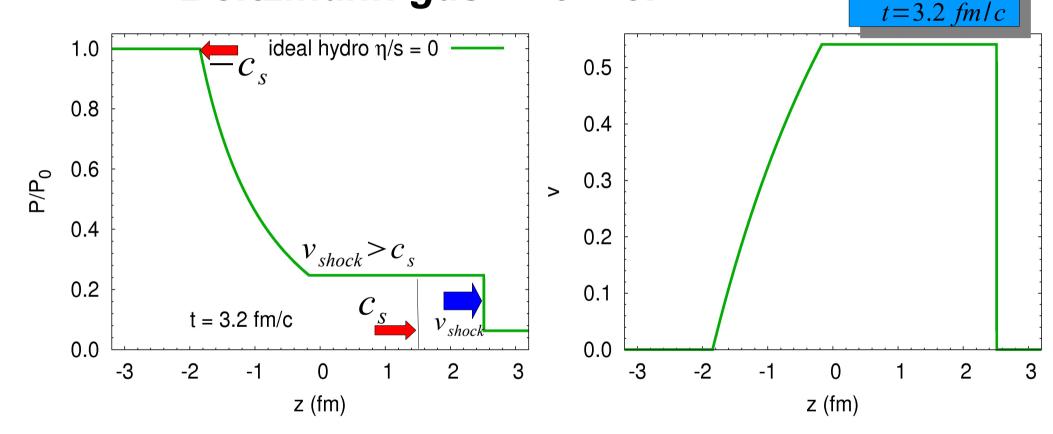
- Two pressure regions seperated by a membran
- The velocities on both sides are zero

\rightarrow What happens if you remove the membran?

 $T_I = 400 MeV$

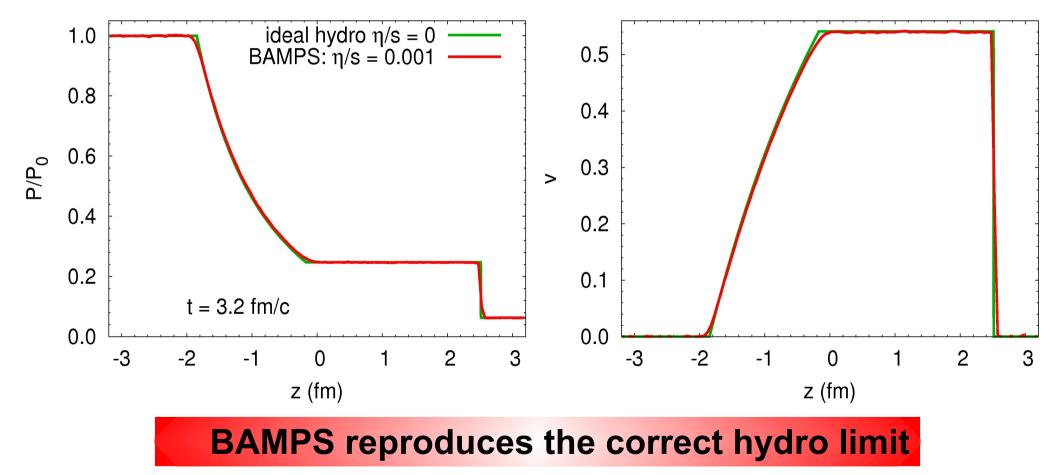
 $T_R = 200 MeV$

Analytical Solution for a massless Boltzmann gas \rightarrow e = 3P



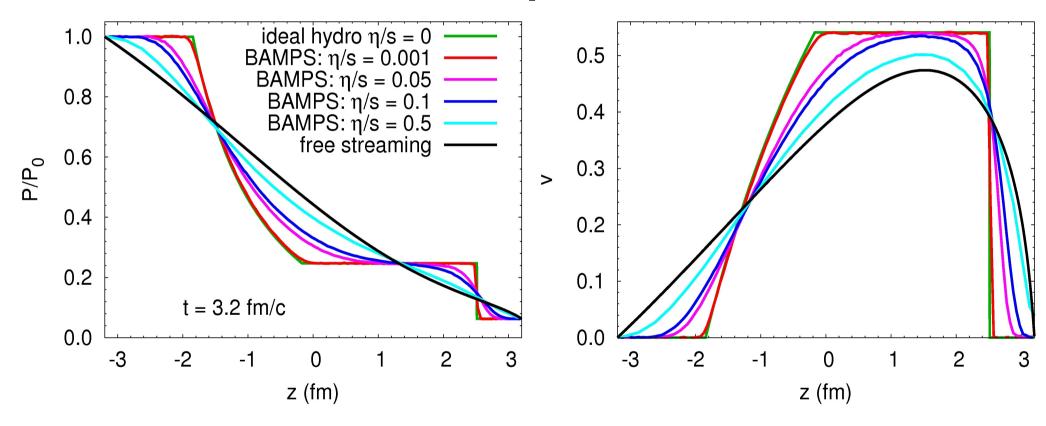
- Analytical Solution for a perfect fluid
 - \rightarrow A shock wave travels to the right with a speed <u>higher</u> than the speed of sound
 - \rightarrow A rarefaction wave travels to the left with the speed of sound

Boltzmann solution of the relativistic Riemann problem



I. Bouras et al., Phys. Rev. Lett. 103:032301 (2009)

Boltzmann solution of the relativistic Riemann problem



Transition from ideal hydro to free streaming

I. Bouras et al., Phys. Rev. Lett. 103:032301 (2009)

Dissipative Hydro for One-Component Systems Comparison of kinetic theory to viscous hydrodynamics

$$u^{\mu}\partial_{\mu}\pi^{\alpha\beta} = -\frac{\pi^{\alpha\beta}}{2\beta_{2}\eta} - \pi^{\alpha\beta}\frac{T}{\beta_{2}}\partial_{\mu}\left(\frac{\beta_{2}}{2T}u^{\mu}\right) + \frac{\nabla^{<\alpha}u^{\beta>}}{\beta_{2}}$$

Israel-Stewart Eq.

Static one-dimensional setup, no spatial gradients

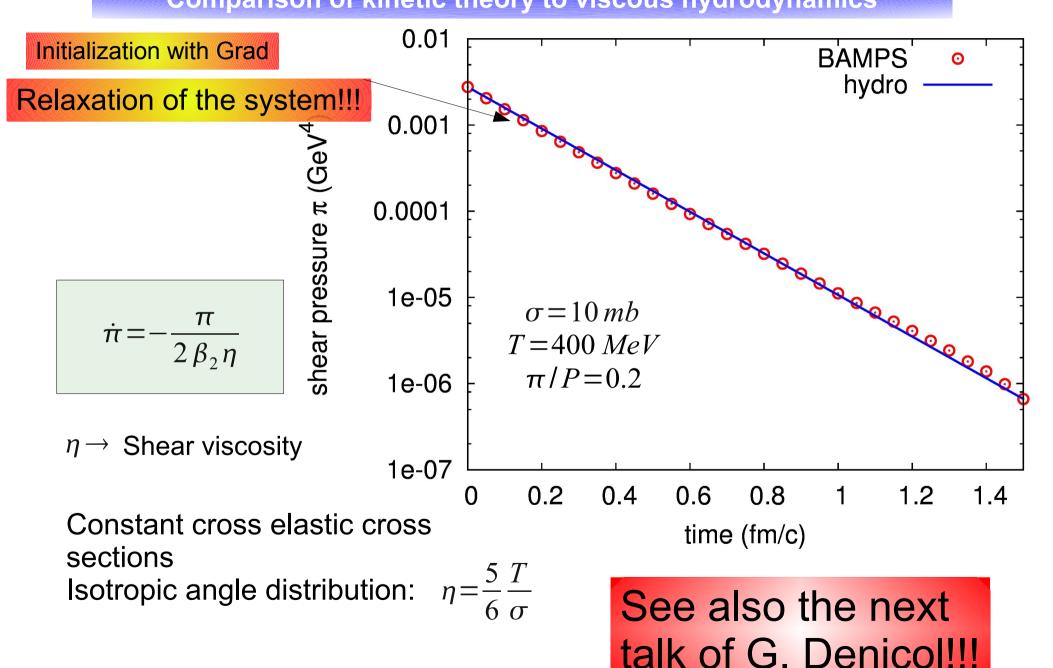
$$\dot{\pi} = -\frac{\pi}{2\beta_2\eta}$$

 $\eta \rightarrow$ Shear viscosity

$$\beta_2 = \frac{9}{4e}$$

See also the next talk of G. Denicol!!!

Dissipative Hydro for One-Component Systems Comparison of kinetic theory to viscous hydrodynamics



Dissipative Hydro for Multi-Component Systems Comparison of kinetic theory to viscous hydrodynamics

Consider a mixture of N components $\rightarrow arXiv:1103.4038v1$ [hep-ph]

$$u^{\mu}\partial_{\mu}\pi_{i}^{\alpha\beta} = -\frac{\pi_{i}^{\alpha\beta}}{2\beta_{2,i}\eta_{i}} - \pi_{i}^{\alpha\beta}\frac{T}{\beta_{2,i}}\partial_{\mu}\left(\frac{\beta_{2,i}}{2\mathrm{T}}u^{\mu}\right) + \frac{\nabla^{<\alpha}u^{\beta>}}{\beta_{2,i}}$$

Static one-dimensional setup, no spatial gradients Isotropic cross sections

$$\dot{\pi}_{i} = -\pi_{i} \cdot \left(\frac{5}{9}\sigma_{ii}n_{i} + \frac{7}{9}\sigma_{ij}n_{j}\right) + \pi_{j} \cdot \left(\frac{2}{9}\sigma_{ij}n_{i}\right)$$

- > all dissipative fields are coupled
- > Viscosities η_i depend on ratios of the shear pressures π_i , π_i
- > Effective viscosity of a mixture can be defined only in a quasi-static limit

 π_i/π_j =const

Dissipative Hydro for Multi-Component Systems Comparison of kinetic theory to viscous hydrodynamics

Consider a mixture of N components $\rightarrow arXiv:1103.4038v1$ [hep-ph]

$$\dot{\pi}_i = -\pi_i \cdot \left(\frac{5}{9}\sigma_{ii} n_i + \frac{7}{9}\sigma_{ij} n_j\right) + \pi_j \cdot \left(\frac{2}{9}\sigma_{ij} n_i\right)$$

