Jets and their role in modification v4/(v2)² ratio

<u>G. Eyyubova</u>, E. Zabrodin, L. Bravina, L. Malinina University of Oslo Moscow State University

TORIC workshop, Heraklion, Crete, Greece 2011

Outline

I. $v4/(v2)^2$ ratio

II. HYDJET++ model

III. Results

I. $v4/(v2)^2$ ratio

Anisotropic flow $\frac{dN}{d\varphi} = \frac{1}{2\pi} \left(1 + \sum_{n=1}^{\infty} 2v_n (p_t) \cos[n(\varphi - \psi_r)] \right)$ Reaction plane is the second sec

Predictions

N. Borghini, J.-Y. Ollitrault, PLB 642 (2006) 227

 Within the approximation that the particle momentum p and the fluid velocity v are parallel (valid for large momentum p_t and low freeze-out temperature T)

 $dN/d\phi = exp(2\epsilon p_{t} cos(2\phi)/T)$

Expanding to order ε, the cos(2φ) term is

v₂=ε p_t/T

Expanding to order ε², the cos(4φ) term is

 $v_4 = \frac{1}{2} (v_2)^2$

Hydrodynamics has a universal prediction for v₄/(v₂)² ! Should be independent of equation of state, initial conditions, centrality, rapidity, particle type

Experiment

$v_4 / v_2^2(p_T)$ at mid-rapidity $|\eta| < 0.8$

Significantly higher than RHIC: experimental method dependent

5

M. Luzum, C. Gombeaud, J.-Y. Ollitrault, PRC 81 (2010) 054910 Effects of initial profile and viscosity

Matthew Luzum, Clement Gombeaud, Jean-Yves Ollitrault,

Phys.Rev.C81:054910,2010.

Eccentricity fluctuations

Depending on where the participant nucleons are located within the nucleus at the time of the collision, the actual shape of the overlap area may vary: the orientation and eccentricity of the ellipse defined by participants fluctuates.

Assuming that v_2 scales like the eccentricity, eccentricity fluctuations translate into v_2 fluctuations

Eccenttricity fluctuation can be computed in MC Glauber model or derived from experiment by comparing different methods for flow calculation.

Why ε fluctuations change v_4/v_2^2

Experimentally, no direct measure of v2 and v4

v2 and v4 are measured via azimuthal correlations

$$v_2$$
 from $\langle cos(2\phi_1 - 2\phi_2) \rangle = \langle (v_2)^2 \rangle$

$$\mathsf{v}_4$$
 from $\langle \cos(4\phi_1 - 2\phi_2 - 2\phi_3) \rangle = \langle v_4(v_2)^2 \rangle$

Similar results obtained using Event Plane method

Effects of flow fluctuations and partial thermalization

Stars: with fluctuations inferred from the difference between v2{2} and v2{LYZ}. Dotted line: eccentricity fluctuations from a Monte-Carlo Glauber

M. Luzum, C.Gombeaud, J.Y Ollitrault, Phys.Rev.C81:054910,2010.

II. HYDJET++ model

The Ratio was proposed to be investigated within HYDJET++ by K. Redlich at last TORIC workshop (Sardinia, 2010)

HYDJET++ Monte-Carlo model for relativistic heavy ion collisions

HYDJET++ (HYDrodynamics + JETs) merges two components :

- soft hydro-type component
- hard multi-parton component

N.S.Amelin, R.Lednisky, T.A.Pocheptsov, I.P.Lokhtin, L.V.Malinina, A.M.Snigirev, Yu.A.Karpenko, Yu.M.Sinyukov, Phys. Rev. C 74 (2006) 064901

N.S.Amelin, R.Lednisky, I.P.Lokhtin, L.V.Malinina, A.M.Snigirev, Yu.A.Karpenko, Yu.M.Sinyukov, I.C.Arsene, L.Bravina, Phys. Rev. C 77 (2008) 014903

I.P.Lokhtin, A.M.Snigirev, Eur. Phys. J. 45 (2006) 211

K.Tywoniuk, I.Arsene, L.Bravina, A.Kaidalov and E.Zabrodin, Phys. Lett. B 657 (2007) 170

HYDJET++(hard): PYQUEN (PYthia QUENched)

PYQUEN event generator is used for simulation of rescattering, radiative and collisional energy loss of hard partons in expanding quark-gluon plasma

HYDJET++ includes nuclear shadowing correction for parton distributions Impact-parameter dependent parameterization of *nuclear shadowing*

HYDJET++(soft): FASTMC generator

Not really hydro evolution But fast MC procedure

A hydrodynamic expansion of the fireball is supposed ends by a sudden system breakup at given T and chemical potentials. Momentum distribution of produced hadrons keeps the thermal character of the equilibrium distribution.

•multiplicities are determined assuming thermal equilibrium

- hadrons are produced on the hypersurface represented by a parameterization of relativistic hydrodynamics with given freeze-out conditions
- chemical and kinetic freeze-outs are separated
- decays of hadronic resonances are taken into account (360 particles)

HYDJET++ (hard): input parameters

initial QGP temperature T_0 ,at LHC: T0=1 GeV, at RHIC(200 AGeV) T0=0.300 GeVQGP formation time τ_0 ,at LHC: tau0=0.1 fm/c, at RHIC(200 AGeV) tau0=0.4 fm/cnumber of active quark flavors in QGP N_f (+ minimal p_T of hard process Ptmin)

HYDJET++ (soft): input parameters

1-5. Thermodynamic parameters at chemical freeze-out: T^{ch} , { μ_B , μ_S , μ_C , μ_Q } (option to calculate T^{ch} , μ_B and μ_s using phenomenological parameterization $\mu_B(\sqrt{s})$, $T^{ch}(\mu_B)$ is foreseen).

6-7. Strangeness suppression factor $\gamma_{\rm S} \leq 1$ and charm enchancement factor $\gamma_{\rm c} \geq 1$ (options to use phenomenological parameterization $\gamma_{\rm S}$ (T^{ch}, $\mu_{\rm B}$) and to calculate $\gamma_{\rm c}$ are foreseen).

8-9. Thermodynamical parameters at thermal freeze-out: T^{th} , and μ_{π} - effective chemical potential of positively charged pions.

10-12. Volume parameters at thermal freeze-out: proper time τ_f , its standard deviation (emission duration) $\Delta \tau_f$, maximal transverse radius R_f .

13. Maximal transverse flow rapidity at thermal freeze-out ρ_n^{max} .

14. Maximal longitudinal flow rapidity at thermal freeze-out η^{max} .

15. Flow anisotropy parameter: $\delta(\mathbf{b}) \rightarrow u^{\mu} = u^{\mu} (\delta(b), \varphi)$

16. Coordinate anisotropy: $\varepsilon(\mathbf{b}) \to R_f(b) = R_f(0) [V_{eff}(\varepsilon(0), \delta(0))/V_{eff}(\varepsilon(b), \delta(b))]^{1/2} [N_{part}(b)/N_{part}(0)]^{1/3}$

RHIC data vs. HYDJET++ model

III. Results

Interplay between hydro and jet part in the model

Experimental results

Centrality and pt dependence

ATLAS, CMS and ALICE have measured v2

Rapid rise up to 3-4 GeV/c

Decrease up to 8-9 GeV/c

Weak pt dependence up to 20 GeV/c

Number of constituent quark scaling at RHIC

<u>G. Eyyubova</u>, <u>L. Bravina</u>, <u>V.L. Korotkih</u>, <u>I.P. Lokhtin</u>, <u>L.V. Malinina</u>, <u>S.V. Petrushanko</u>, <u>A.M. Snigirev</u>, <u>E. Zabrodin</u>, **Phys.Rev.C80:064907,2009**.

One of the explanations of KE_T/n_q scaling is partonic origin of the elliptic flow. However, final state effects (such as resonance decays and jets) may also lead to appearance of the scaling

NCQ scaling at LHC

LHC: NCQ scaling will be only approximate

19

HYDJET++ RESULTS

Effects to be studied: resonance decay hard part influence

HYDJET++ RESULTS for LHC

Flow coefficients

Still, the ratio is below 1_{21}

Decays of resonances play minor role

Contribution from jet part increases the ratio

Larger contribution of jets at LHC

Conclusions

The HYDJET++ model allows to investigate hydro and jet parts separately, for example, to look at reconstruction of pure hydro flow and its modification due to jet part.

> Jets result to increase by 25% - 30% of the ratio v4/(v2*v2)

Eccentricity fluctuations can increase the ratio by factor 1.5

> Jets + eccentricity fluctuations are enough to explain RHIC data

≻For LHC we can explain 75% of the signal. Other effects are needed.

Backup slides

HYDJET++: rapidity spectra vs. event centrality at RHIC

Width of the spectra allows one to fix $\eta^{max} = 3.3$, Centrality dependence of multiplicity allows one to fix ptmin=3.4 GeV/c and $\mu_{\pi} = 0.06$

HYDJET++: transverse momentum spectra at RHIC

PYQUEN energy loss model parameters: $T_0(QGP)=300$ MeV, $\tau_0(QGP)=0.4$ fm/c, $N_f=2$

HYDJET++ (soft): hadron multiplicities

- 1. The hadronic matter created in heavy-ion collisions is considered as a hydrodynamically expanding fireball with EOS of an ideal hadron gas.
- 2. "Concept of effective volume" T=const and µ=const: the total yield of particle species is $N_i = \rho_i(T, \mu_i)V_{eff}$.
- 3. Chemical freeze-out : T, $\mu_i = \mu_B B_i + \mu_S S_i + \mu_c C_i + \mu_Q Q_i$; T, $\mu_B can be fixed by particle ratios, or by phenomenological formulas$

$$T(\mu_B) = a - b\mu_B - c\mu_B^4; \mu_B(\sqrt{s_{NN}}) = \frac{d}{1 + e\sqrt{s_{NN}}}$$

4. Chemical freeze-out: all macroscopic characteristics of particle system are determined via a set of equilibrium distribution functions in the fluid element rest frame:

$$\rho_i^{eq}(T,\mu_i) = \int_0^\infty d^3 \vec{p}^* f_i^{eq}(p^{0*};T(x^*),\mu(x^*)_i) = 4\pi \int_0^\infty dp^* p^{*2} f_i^{eq}(p^{0*};T,\mu_i)$$

HYDJET++ (soft): main physics assumptions

A hydrodynamic expansion of the fireball is supposed ends by a sudden system breakup at given T and chemical potentials. Momentum distribution of produced hadrons keeps the thermal character of the equilibrium distribution.

Cooper-Frye formula:
$$p^0 \frac{d^3 N_i}{d^3 p} = \int_{\sigma(x)} d^3 \sigma_\mu(x) p^\mu f_i^{eq}(p^\nu u_\mu(x);T,\mu_i)$$

- HYDJET++ avoids straightforward 6-dimensional integration by using the special simulation procedure (like HYDJET): momentum generation in the rest frame of fluid element, then Lorentz transformation in the global frame \rightarrow uniform weights \rightarrow effective von-Neumann rejection-acception procedure.

Freeze-out surface parameterizations

1. The Bjorken model with hypersurface $\tau = (t^2 - z^2)^{1/2} = const$ 2. Linear transverse flow rapidity profile $\rho_u = \frac{r}{R} \rho_u^{max}$ 3. The total effective volume for particle production at $R^{-1/2}$

$$V_{eff} = \int_{\sigma(x)} d^3 \sigma_{\mu}(x) u^{\mu}(x) = \tau \int_{0}^{\kappa} \gamma_r r dr \int_{0}^{2\pi} d\phi \int_{\eta_{\min}}^{\eta_{\max}} d\eta = 2\pi \tau \Delta \eta \left(\frac{R}{\rho_u^{\max}}\right) \left(\rho_u^{\max} \sinh \rho_u^{\max} - \cosh \rho_u^{\max} + 1\right)$$
²⁹

v2 for identified particles

