Model

Summary & Outlook

Impact Parameter Dependent nPDFs Based on EKS98 and EPS09 Parametrizations TORIC

Ilkka Helenius

In collaboration with Kari J. Eskola, Heli Honkanen

> University of Jyväskylä Department of Physics

8.9.2011

Introduction and Motivation	Model 00000	Application 0000	Summary & Outlook
Outline			

Nuclear Geometry in A+A collisions

- Assumptions
- Fitting Procedure
- Outcome
- - Central-to-Peripheral Ratio

Introduction and Motivation	Model 00000	Application 0000	Summary & Outlook
Outline			

Nuclear Geometry in A+A collisions

Model 2

- Assumptions
- Fitting Procedure
- Outcome

Central-to-Peripheral Ratio

Introduction and Motivation	Model 00000	Application 0000	Summary & Outlook
Outline			

Nuclear Geometry in A+A collisions

Model 2

- Assumptions
- Fitting Procedure
- Outcome

3 Application

- Central-to-Peripheral Ratio

Introduction and Motivation	Model 00000	Application 0000	Summary & Outlook
Outline			

Nuclear Geometry in A+A collisions

Model 2

- Assumptions
- Fitting Procedure
- Outcome

3 Application

- Central-to-Peripheral Ratio
- 4 Summary & Outlook

Introduction and Motivation	Model	Application	Summary & Outlook
•00	ooooo	0000	
Nuclear Thickness Fur	nction		

Amount of nuclear matter in beam direction

Thickness function
Woods-Saxon density profile:

$$T_A(\mathbf{s}) = \int_{-\infty}^{\infty} dz \frac{n_0}{1 + \exp[\frac{\sqrt{\mathbf{s}^2 + z^2} - R_A}{d}]}$$

$$d = 0.54 \text{ fm}$$

$$R_A = 1.12A^{1/3} - 0.86A^{-1/3} \text{ fm}$$

$$n_0 = \frac{3}{4} \frac{A}{\pi R_A^3} \frac{1}{(1 + (\frac{\pi d}{R_A})^2)}$$

$$A = \int d^2 \mathbf{s} T_A(\mathbf{s})$$

Nuclear Thickness Function

Amount of nuclear matter in beam direction

Thickness function
Woods-Saxon density profile:

$$T_A(\mathbf{s}) = \int_{-\infty}^{\infty} dz \frac{n_0}{1 + \exp[\frac{\sqrt{\mathbf{s}^2 + z^2 - R_A}}{d}]}$$

$$d = 0.54 \text{ fm}$$

$$R_A = 1.12A^{1/3} - 0.86A^{-1/3} \text{ fm}$$

$$n_0 = \frac{3}{4} \frac{A}{\pi R_A^3} \frac{1}{(1 + (\frac{\pi d}{R_A})^2)}$$

$$A = \int d^2 \mathbf{s} T_A(\mathbf{s})$$

Introduction and Motivation	Model	Application	Summary & Outlook
000	00000	0000	
A+A collision			

From $T_A(\mathbf{s})$ we can construct the nuclear overlap function

$$T_{AB}(\mathbf{b}) = \int \mathrm{d}^2 \mathbf{s} T_A(\mathbf{s}) T_B(\mathbf{s} + \mathbf{b}),$$

Amount of the interacting matter at impact parameter b.

In the absence of nuclear effects the hard cross section for given centrality class in ${\cal A}+{\cal A}$ collisions

$$\mathrm{d}\sigma^{AB\to k+X} = \int_{b_1}^{b_2} \mathrm{d}^2 \mathbf{b} \, T_{AB}(\mathbf{b}) \mathrm{d}\sigma^{NN},\tag{1}$$

where

$$\mathrm{d}\sigma^{NN} = \sum_{i,j} f_{i/N} \otimes f_{j/N} \otimes \mathrm{d}\hat{\sigma}^{ij \to k+X}$$

Introduction and Motivation	Model	Application	Summary & Outlook
000	00000	0000	
A+A collision			

From $T_A(\mathbf{s})$ we can construct the nuclear overlap function

$$T_{AB}(\mathbf{b}) = \int \mathrm{d}^2 \mathbf{s} \, T_A(\mathbf{s}) T_B(\mathbf{s} + \mathbf{b}),$$

Amount of the interacting matter at impact parameter b.

In the absence of nuclear effects the hard cross section for given centrality class in ${\cal A}+{\cal A}$ collisions

$$\mathrm{d}\sigma^{AB\to k+X} = \int_{b_1}^{b_2} \mathrm{d}^2 \mathbf{b} \, T_{AB}(\mathbf{b}) \mathrm{d}\sigma^{NN},\tag{1}$$

where

$$\mathrm{d}\sigma^{NN} = \sum_{i,j} f_{i/N} \otimes f_{j/N} \otimes \mathrm{d}\hat{\sigma}^{ij \to k+X}$$

Introduction and Motivation	Model 00000	Application 0000	Summary & Outlook
A+A collision			

Nucleons in nucleus \neq free nucleons

\Rightarrow Modification to PDFs

$$f_{i/N}(x,Q^2) \to f_{i/A}(x,Q^2) = R_{i/A}(x,Q^2) \cdot f_{i/N}(x,Q^2)$$

Integrating the cross section formula (1) over the whole ${\bf b}$ –space, we have

$$d\sigma^{AB \to k+X} = \sum_{i,j} \int d^2 \mathbf{b} \int d^2 \mathbf{s_1} T_A(\mathbf{s_1}) R_{i/A}(x_1, Q^2) f_{i/N}(x_1, Q^2) \otimes$$
$$\int d^2 \mathbf{s_2} T_B(\mathbf{s_2}) R_{j/B}(x_2, Q^2) f_{j/N}(x_2, Q^2) \otimes \delta(\mathbf{s_2} - \mathbf{s_1} - \mathbf{b}) d\hat{\sigma}^{ij \to k+X}$$

Now we want to replace

$$\int d^2 \mathbf{s_1} T_A(\mathbf{s_1}) R_{i/A}(x_1, Q^2) \to \int d^2 \mathbf{s_1} T_A(\mathbf{s_1}) r_{i/A}(x_1, Q^2, \mathbf{s_1})$$

Introduction and Motivation	Model ooooo	Application 0000	Summary & Outlook
A+A collision			

Nucleons in nucleus \neq free nucleons

\Rightarrow Modification to PDFs

$$f_{i/N}(x,Q^2) \to f_{i/A}(x,Q^2) = R_{i/A}(x,Q^2) \cdot f_{i/N}(x,Q^2)$$

Integrating the cross section formula (1) over the whole ${\bf b}$ –space, we have

$$d\sigma^{AB \to k+X} = \sum_{i,j} \int d^2 \mathbf{b} \int d^2 \mathbf{s_1} T_A(\mathbf{s_1}) R_{i/A}(x_1, Q^2) f_{i/N}(x_1, Q^2) \otimes$$
$$\int d^2 \mathbf{s_2} T_B(\mathbf{s_2}) R_{j/B}(x_2, Q^2) f_{j/N}(x_2, Q^2) \otimes \delta(\mathbf{s_2} - \mathbf{s_1} - \mathbf{b}) d\hat{\sigma}^{ij \to k+X}$$

Now we want to replace

$$\int d^2 \mathbf{s_1} T_A(\mathbf{s_1}) R_{i/A}(x_1, Q^2) \to \int d^2 \mathbf{s_1} T_A(\mathbf{s_1}) r_{i/A}(x_1, Q^2, \mathbf{s_1})$$

Introduction and Motivation	Model ooooo	Application 0000	Summary & Outlook
A+A collision			

Nucleons in nucleus \neq free nucleons

\Rightarrow Modification to PDFs

$$f_{i/N}(x,Q^2) \to f_{i/A}(x,Q^2) = R_{i/A}(x,Q^2) \cdot f_{i/N}(x,Q^2)$$

Integrating the cross section formula (1) over the whole ${\bf b}$ –space, we have

$$d\sigma^{AB \to k+X} = \sum_{i,j} \int d^2 \mathbf{b} \int d^2 \mathbf{s_1} T_A(\mathbf{s_1}) R_{i/A}(x_1, Q^2) f_{i/N}(x_1, Q^2) \otimes$$
$$\int d^2 \mathbf{s_2} T_B(\mathbf{s_2}) R_{j/B}(x_2, Q^2) f_{j/N}(x_2, Q^2) \otimes \delta(\mathbf{s_2} - \mathbf{s_1} - \mathbf{b}) d\hat{\sigma}^{ij \to k+X}$$

Now we want to replace

$$\int \mathrm{d}^2 \mathbf{s_1} \, T_A(\mathbf{s_1}) R_{i/A}(x_1, Q^2) \to \int \mathrm{d}^2 \mathbf{s_1} \, T_A(\mathbf{s_1}) r_{i/A}(x_1, Q^2, \mathbf{s_1})$$

Introduction and Motivation	Model ●○○○○	Application 0000	Summary & Outlook
Assumptions			

For $r_A(x, Q^2, \mathbf{s})$ we now assume • Normalization: $R_A(x, Q^2) = \frac{1}{A} \int d^2 \mathbf{s} T_A(\mathbf{s}) r_A(x, Q^2, \mathbf{s}),$ where $R_A(x, Q^2)$ from • EKS98 [Eur.Phys.J., C9:61-68, 1999] • EPS09 [JHEP, 04:005, 2009] • Spatial dependence trough $T_A(\mathbf{s})$

Introduction and Motivation	Model ●○○○○	Application 0000	Summary & Outlook
Assumptions			

For $r_A(x, Q^2, \mathbf{s})$ we now assume • Normalization: $R_A(x, Q^2) = \frac{1}{A} \int d^2 \mathbf{s} T_A(\mathbf{s}) r_A(x, Q^2, \mathbf{s}),$ where $R_A(x, Q^2)$ from • EKS98 [*Eur.Phys.J.*, C9:61-68, 1999] • EPS09 [*JHEP*, 04:065, 2009] • Spatial dependence trough $T_A(\mathbf{s})$

Introduction and Motivation	Model ●○○○○	Application 0000	Summary & Outlook
Assumptions			

For $r_A(x, Q^2, \mathbf{s})$ we now assume • Normalization: $R_A(x, Q^2) = \frac{1}{A} \int d^2 \mathbf{s} T_A(\mathbf{s}) r_A(x, Q^2, \mathbf{s}),$ where $R_A(x, Q^2)$ from • EKS98 [*Eur.Phys.J.*, C9:61-68, 1999] • EPS09 [*JHEP*, 04:065, 2009] • Spatial dependence trough $T_A(\mathbf{s})$

Introduction and Motivation	Model ●୦୦୦୦	Application 0000	Summary & Outlook
Assumptions			

For $r_A(x, Q^2, \mathbf{s})$ we now assume • Normalization: $R_A(x, Q^2) = \frac{1}{A} \int d^2 \mathbf{s} T_A(\mathbf{s}) r_A(x, Q^2, \mathbf{s}),$ where $R_A(x, Q^2)$ from • EKS98 [*Eur.Phys.J.*, C9:61-68, 1999] • EPS09 [*JHEP*, 04:065, 2009] • Spatial dependence trough $T_A(\mathbf{s})$

Introduction and Motivation	Model	Application	Summary & Outlook
000	○●○○○	0000	
Fitting Procedure			

Functional form used for EKS98

$$r_A(x, Q^2, s) = 1 + c_1(x, Q^2)[T_A(s)] + c_2(x, Q^2)[T_A(s)]^2 + c_3(x, Q^2)[T_A(s)]^3 + c_4(x, Q^2)[T_A(s)]^4$$

Important: no A dependence in fit parameters $c_i(x, Q^2)$!

Parameters $c_i(x,Q^2)$ obtained by minimizing the χ^2

$$\chi^{2}(x,Q^{2}) = \sum_{A} \left[\frac{R_{A}(x,Q^{2}) - \frac{1}{A} \int d^{2}s T_{A}(s) r_{A}(x,Q^{2},s)}{R_{A}(x,Q^{2}) - 1} \right]^{2},$$

where $A = 16, 20, 24, \dots, 300$.

Introduction and Motivation	Model	Application	Summary & Outlook
000	○●○○○	0000	
Fitting Procedure			

Functional form used for EKS98

 $r_A(x,Q^2,s) = 1 + c_1(x,Q^2)[T_A(s)] + c_2(x,Q^2)[T_A(s)]^2$ $+ c_3(x,Q^2)[T_A(s)]^3 + c_4(x,Q^2)[T_A(s)]^4$

Important: no A dependence in fit parameters $c_i(x, Q^2)$!

Parameters $c_i(x,Q^2)$ obtained by minimizing the χ^2

$$\chi^{2}(x,Q^{2}) = \sum_{A} \left[\frac{R_{A}(x,Q^{2}) - \frac{1}{A} \int d^{2}s T_{A}(s) r_{A}(x,Q^{2},s)}{R_{A}(x,Q^{2}) - 1} \right]^{2},$$

where $A = 16, 20, 24, \dots, 300$.

Introduction and Motivation	Model ○○●○○	Application 0000	Summary & Outlook
Fit Outcome			

Example fit: gluon modification

Model

00000

 $R^{fit}(x,Q^2) = \frac{1}{A} \int d^2 \mathbf{s} T_A(s) \left| 1 + \sum_{i=1}^4 c_i(x,Q^2) [T_A(s)]^i \right|$

Fitted $R(x,Q^2)$ vs. old $R(x,Q^2)$

1.6

Summary & Outlook

TORIC 8.9.2011

9/16

Ilkka Helenius (JYFL)

Model

Summary & Outlook

Spatial Dependence of Nuclear Modification for Au

Observations

- The shape in x is similar to EKS98
- Effects are slightly stronger in small s compared to EKS98
- Nuclear effects die out when $s > R_A$

• The 1-jet distribution for a centrality class with $b \in [b_1, b_2]$ can be calculated from

$$\left\langle \frac{\mathrm{d}^2 N_{AA}^{1-jet}}{\mathrm{d} p_T \mathrm{d} y} \right\rangle_{b_1, b_2} = \frac{\int_{b_1}^{b_2} \mathrm{d}^2 b \frac{\mathrm{d}^2 N_{AA}^{1-jet}(b)}{\mathrm{d} p_T \mathrm{d} y}}{\int_{b_1}^{b_2} \mathrm{d}^2 b \, p_{AA}^{inel}(b)}$$

- $p_{AA}^{inel}(b) = 1 e^{-T_{AA}(\mathbf{b})\sigma_{inel}^{NN}}$ (optical Glauber model)
- Comparision with proton-proton (pp) collision gives the R_{AA}^{1-jet} for each centrality class

$$R_{AA}^{1-jet} = \frac{\left\langle \frac{\mathrm{d}^2 N_{AA}^{1-jet}}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \right\rangle_{b_1, b_2}}{\frac{\langle N_{bin} \rangle_{b_1, b_2}}{\sigma_{inel}^{NN}} \frac{\mathrm{d}^2 \sigma_{pp}^{1-jet}}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y}}$$

• The 1-jet distribution for a centrality class with $b \in [b_1, b_2]$ can be calculated from

$$\left\langle \frac{\mathrm{d}^2 N_{AA}^{1-jet}}{\mathrm{d} p_T \mathrm{d} y} \right\rangle_{b_1, b_2} = \frac{\int_{b_1}^{b_2} \mathrm{d}^2 b \frac{\mathrm{d}^2 N_{AA}^{1-jet}(b)}{\mathrm{d} p_T \mathrm{d} y}}{\int_{b_1}^{b_2} \mathrm{d}^2 b \, p_{AA}^{inel}(b)}$$

• $p_{AA}^{inel}(b) = 1 - e^{-T_{AA}(\mathbf{b})\sigma_{inel}^{NN}}$ (optical Glauber model)

• Comparision with proton-proton (pp) collision gives the R_{AA}^{1-jet} for each centrality class

$$R_{AA}^{1-jet} = \frac{\left\langle \frac{\mathrm{d}^2 N_{AA}^{1-jet}}{\mathrm{d}p_T \mathrm{d}y} \right\rangle_{b_1, b_2}}{\frac{\langle N_{bin} \rangle_{b_1, b_2}}{\sigma_{inel}^{NN}} \frac{\mathrm{d}^2 \sigma_{pp}^{1-jet}}{\mathrm{d}p_T \mathrm{d}y}}$$

Introduction and Motivation	Model 00000	Application 0000	Summary & Outlook
Central-to-Peripheral F	Ratio R_{CP}^{1-jet}		

The 1-jet central-to-peripheral ratio

$$R_{CP}^{1-jet} = \frac{\left\langle \frac{\mathrm{d}^2 N_{AA}^{1-jet}}{\mathrm{d}p_T \mathrm{d}y} \right\rangle \frac{1}{\langle N_{bin} \rangle} (central)}{\left\langle \frac{\mathrm{d}^2 N_{AA}^{1-jet}}{\mathrm{d}p_T \mathrm{d}y} \right\rangle \frac{1}{\langle N_{bin} \rangle} (peripheral)}$$

Parameters from Optical Glauber Model

	central = 0 - 5%		peripheral = 60 - 80%		-80%	
			$\langle N_{bin} \rangle$			$\langle N_{bin} \rangle$
RHIC		3.41	1079	11.82	13.65	12.06
LHC		3.47	1717	12.03	13.89	18.81

• RHIC: $\sigma_{inel}^{NN} = 42 \text{ mb}$ • LHC: $\sigma_{inel}^{NN} = 62 \text{ mb}$

Introduction and Motivation	Model 00000	Application 0000	Summary & Outlook
Central-to-Peripheral F	Ratio R_{CP}^{1-jet}		

The 1-jet central-to-peripheral ratio

$$R_{CP}^{1-jet} = \frac{\left\langle \frac{\mathrm{d}^2 N_{AA}^{1-jet}}{\mathrm{d}p_T \mathrm{d}y} \right\rangle \frac{1}{\langle N_{bin} \rangle} (central)}{\left\langle \frac{\mathrm{d}^2 N_{AA}^{1-jet}}{\mathrm{d}p_T \mathrm{d}y} \right\rangle \frac{1}{\langle N_{bin} \rangle} (peripheral)}$$

Parameters from Optical Glauber Model

	central = 0 - 5%		peripheral = 60 - 80%		-80%	
	b_1 [fm]	$b_2 [\mathrm{fm}]$	$\langle N_{bin} \rangle$	b_1 [fm]	b_2 [fm]	$\langle N_{bin} \rangle$
RHIC	0.0	3.41	1079	11.82	13.65	12.06
LHC	0.0	3.47	1717	12.03	13.89	18.81

• RHIC:
$$\sigma_{inel}^{NN} = 42 \text{ mb}$$

• LHC: $\sigma_{inel}^{NN} = 62 \text{ mb}$

 Introduction and Motivation
 Model occord
 Application occord
 Summary & Outlook oc

 Central-to-Peripheral Ratio for RHIC

 Introduction and Motivation
 Model occord
 Application occord
 Summary & Outlook oc

 Central-to-Peripheral Ratio for RHIC

 Introduction and Motivation
 Model occord
 Application occord
 Summary & Outlook oc

 Central-to-Peripheral Ratio for RHIC

 Introduction and Motivation
 Model occool
 Application occool
 Summary & Outlook oc

 Central-to-Peripheral Ratio for LHC

Introduction and Motivation	Model	Application	Summary & Outlook
	00000	0000	●○
Summary			

We have

- Developed a model for spatial dependence of nuclear modification based on
 - the A dependence of the EKS98/EPS09 parametrizations (= data!)
 - the nuclear thickness function $T_A(s)$
- Program to calculate $r_A(x,Q^2,\mathbf{s})$
- Calculated R_{AA}^{1-jet} and R_{CP}^{1-jet} in LO
 - $R_{AA}(central) \approx \langle R_{AA} \rangle$
 - $R_{AA}(peripheral) \neq 1$
 - $R_{CP} \neq \langle R_{AA} \rangle$

Introduction and Motivation	Model	Application	Summary & Outlook
	ooooo	0000	●0
Summary			

We have

- Developed a model for spatial dependence of nuclear modification based on
 - the A dependence of the EKS98/EPS09 parametrizations (= data!)
 - the nuclear thickness function $T_A(s)$
- Program to calculate $r_A(x,Q^2,\mathbf{s})$
- Calculated R_{AA}^{1-jet} and R_{CP}^{1-jet} in LO
 - $R_{AA}(central) \approx \langle R_{AA} \rangle$
 - $R_{AA}(peripheral) \neq 1$
 - $R_{CP} \neq \langle R_{AA} \rangle$

Introduction and Motivation	Model	Application	Summary & Outlook
	ooooo	0000	●0
Summary			

We have

- Developed a model for spatial dependence of nuclear modification based on
 - the A dependence of the EKS98/EPS09 parametrizations (= data!)
 - the nuclear thickness function $T_A(s)$
- Program to calculate $r_A(x,Q^2,\mathbf{s})$
- \bullet Calculated R_{AA}^{1-jet} and R_{CP}^{1-jet} in LO
 - $R_{AA}(central) \approx \langle R_{AA} \rangle$
 - $R_{AA}(peripheral) \neq 1$
 - $R_{CP} \neq \langle R_{AA} \rangle$

Introduction and Motivation	Model	Application	Summary & Outlook
	00000	0000	○●
Outlook			

We will

• Fit the parameter values also for EPS09

• make the codes for $r_A(x, Q^2, \mathbf{s})$ calculation public (EKS98s and EPS09s)

⇒ Nuclear modifications of any hard process in different centrality classes can be computed!

Introduction and Motivation	Model	Application	Summary & Outlook
	00000	0000	○●
Outlook			

We will

- Fit the parameter values also for EPS09
- make the codes for $r_A(x, Q^2, \mathbf{s})$ calculation public (EKS98s and EPS09s)
- \Rightarrow Nuclear modifcations of any hard process in different centrality classes can be computed!

Backup

Centrality Classes for RHIC

