Quarkonia Production in Heavy Ion Collisions

Che-Ming Ko, Texas A&M University

- Introduction
 - Quarknonia in vacuum
 - J/ ψ in QGP
- Quarkonia production mechanisms in HIC
 - Statistical model (regeneration)
 - Two-component model (primordial + regeneration)
- Nuclear modification factor for J/ψ
- Nuclear modification factor for Y(1S)
- J/ψ elliptic flow
- Summary

Based on work with Taesoo Song and Kyongchol Han: arXiv:1103.6197 [nucl-th]; PRC in press; and PRC 83, 014914 (10)

Support by US National Science Foundation and Department of Energy, and The Welch Foundation

Quarkonia in vacuum

State	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$
$m (\text{GeV/c}^2)$	3.10	3.53	3.68
$r~({ m fm})$	0.5	0.72	0.90
Contribution to			
J/ψ @RHIC (%)	60	30	10

State	$\Upsilon(1S)$	$\chi_b(1P)$	$\Upsilon'(2S)$	$\chi_b'(2P)$	$\Upsilon''(3S)$
$m \; ({\rm GeV/c}^2)$	9.46	9.99	10.02	10.26	10.36
$r~({ m fm})$	0.28	0.44	0.56	0.68	0.78
Contribution to					
$\Upsilon(1S)$ @RHIC (%)	51	27	11	10	1

J/ψ properties in QGP

■ Perturbative QCD → screening mass

$$V = -\frac{\alpha_s}{r} \rightarrow V = -\frac{\alpha_s}{r} e^{-r/\lambda_D}$$

$$\lambda_{\rm D} = \left(\frac{N_{\rm c}}{3} + \frac{N_{\rm f}}{6}\right)^{-\frac{1}{2}} (gT)^{-1} \approx \sqrt{\frac{2}{3}} (gT)^{-1}$$

 \rightarrow J/ ψ suppression in HIC (Matsui & Satz, PLB 178, 416 (1986)) Lattice QCD (Asakawa & Hatuda, Karsch et al.)

 $\rightarrow J/\psi$ survives below 1.62~1.70T_c

Dissociation temperature in potential model

Charm and anticharm quark potential in QGP

 Screened Cornell potential between charm and anticharm quarks

$$V(r,T) = \frac{\sigma}{\mu(T)} \left[1 - e^{-\mu(T)r} \right] - \frac{\alpha}{r} e^{-\mu(T)r}$$

with string tension $\sigma = 0.192 \text{ GeV}^2$ and screening mass

$$\mu(T) = \sqrt{\frac{N_c}{3} + \frac{N_f}{6}}gT$$

 Its strength is between the internal energy (U) and free energy (F) of heavy quark and antiquark from LQCD; similar to F at T_c and to U at 4T_c.

Thermal properties of charmonia

Binding energy

$$\varepsilon_0 = 2m_c + \frac{\sigma}{\mu(T)} - E$$

Charm quark mass m_c=1.32 GeV E: eigenvalues of Cornell potential

• Dissociation temperature T_D : corresponding to $\varepsilon_0=0$

For g=1.87, T_D~300 MeV for J/ ψ and ~T_c=175 MeV for ψ ' and χ_c

Thermal properties of bottomonia

Statistical hadronization model for J/y production

Andronic, Braun-Munzinger, Redlich & Stachel, NPA 789, 334 (2007)

• Results are sensitive to the number of produced charm quark pairs.

Two component model for J/y production

- Nuclear absorption: $J/\psi + N \rightarrow D + \Lambda_c$; p+A data $\rightarrow \sigma \sim 6 \text{ mb}$
- Absorption and regeneration in QGP: $J/\psi + g \Leftrightarrow c\overline{c}, J/\psi + g \Leftrightarrow c\overline{c}g$
- Absorption and regeneration in hadronic matter: $J/\Psi + \pi \iff DD$

 Regeneration from coalescence of charm quarks becomes increasing important as the centrality and collision energy increase, as first pointed out by Thews et al.

The two-component model: directly produced J/ψ

Song, Park & Lee, PRC 81, 034914 (10)

Number of initially produced

 $N_{J/\psi}^{AA} = \sigma_{J/\psi}^{NN} A^2 T_{AA}(\vec{b})$

- $\sigma_{J/\psi}^{NN}$: J/ ψ production cross section in NN collision; ~ 0.774 µb at $s^{1/2}$ = 200 GeV
- Overlap function

$$T_{AA}(\vec{b}) = \int d^2 \vec{s} T_A(\vec{s}) T_A(\vec{b} - \vec{s})$$

• Thickness function

$$T_A(\vec{s}) = \int_{-\infty}^{\infty} dz \rho_A(\vec{s}, z)$$

Normalized density distribution

$$\rho(r) = \frac{\rho_0}{1 + e^{(r - r_0)/c}}$$

 $r_0 = 6.38$ fm, c=0.535 fm for Au

- Nuclear absorption
 - Survival probability

$$S_{nucl}(\vec{b},\vec{s}) = \frac{1}{T_{AB}} \int dz dz' \rho_A(\vec{s},z) \rho_B(\vec{b}-\vec{s},z)$$
$$\times \exp\left\{-(A-1)\int_z^\infty dz_A \rho_A(\vec{s},z_A)\sigma_{nuc}\right\}$$
$$\times \exp\left\{-(B-1)\int_z^\infty dz_B \rho_B(\vec{s},z_B)\sigma_{nuc}\right\}$$

Quasiparticle model for QGP

P. Levai and U. Heinz, PRC , 1879 (1998)

 The model reproduces reasonably the QGP equation of state from LQCD

Thermal decay widths of quarkonia

- Dissociation by partons (NLO pQCD) $J/\psi \stackrel{q}{\longrightarrow} \stackrel{p_1 \ C}{\longrightarrow} _{k2} \stackrel{J/\psi}{\longrightarrow} \stackrel{q}{\longrightarrow} \stackrel{p_2 \ C}{\longrightarrow} _{k1} \stackrel{p_1 \ C}{\longrightarrow} _{k2} \stackrel{q}{\longrightarrow} \stackrel{p_1 \ C}{\longrightarrow} _{k2} \stackrel{p_1 \ C}{\longrightarrow} \stackrel{p_$
- Dissociation by hadrons

Song, Park & Lee, PRC 81, 034914 (10)

Thermal dissociation width

J/ψ production from regeneration

Rate equation for J/ψ production

- $\frac{dN_{i}}{d\tau} = -\Gamma_{i} \left(N_{i} N_{i}^{eq} \right), \quad N_{i}^{eq} = \gamma^{2} R n_{i}^{GC} V$
- Charm fugacity is determined by

$$N_{c\bar{c}}^{AA} = \left[\frac{1}{2}\gamma n_o \frac{I_1(\gamma n_0 V)}{I_0(\gamma n_0 V)} + \gamma^2 n_h\right] V = \sigma_{c\bar{c}}^{NN} A^2 T_{AA}(\vec{b})$$

• $\sigma_{c\bar{c}}^{NN}$: charm production cross section in NN collision; ~ 63.7 µb at s^{1/2}= 200 GeV

Charm relaxation factor

$$R = 1 - \exp\left\{-\int_{\tau_0}^{\tau_{QGP}} d\tau \Gamma_c(T(\tau))\right\}$$
$$\Gamma(T) = \sum_i \int \frac{d^3k}{(2\pi)^3} v_{rel}(k) n_i(k,T) \sigma_i^{diss}(k,T)$$

as J/ψ is more likely to be formed if charm quarks are in thermal equilibrium

13

Viscous hydrodynamics Heinz, Song & Chaudhuri, PRC 73, 034904 (06)

Hydrodynamic Equations

 $\partial_{\mu}T^{\mu\nu}(x) = 0 \qquad \text{Energy-momentum conservation} \\ \partial_{\mu}n_{j}u^{\mu}(x) = 0 \qquad \text{Charge conservations (baryon, strangeness,...)} \\ \pi_{\mu\nu} = \eta \left(\partial_{\mu}u_{\nu} + \partial_{\mu}u_{\nu} - \frac{2}{3}\Delta_{\mu\nu}\partial_{\alpha}u^{\alpha} \right) - \tau_{\pi} \left(\frac{4}{3}\pi_{\mu\nu}\partial_{\alpha}u^{\alpha} + \Delta^{\alpha}_{\mu}\Delta^{\beta}_{\nu}u^{\sigma}\partial_{\sigma}\pi_{\alpha\beta} \right) \qquad \text{(Israel-Stewart)} \\ \text{with} \qquad T^{\mu\nu}(x) = \left[e(x) + p(x) \right] u^{\mu}(x)u^{\nu}(x) - p(x)g^{\mu\nu} + \pi_{\mu\nu} \\ \text{e: energy density, p(e): pressure, } \pi_{\mu\nu} \text{: shear stress tensor, } u^{\mu} \text{: four} \end{cases}$

velocity, τ_{π} : relaxation time

Cooper-Frye instantaneous freeze out

$$E\frac{dN_{i}}{d^{3}q} \approx \frac{g_{i}}{(2\pi)^{3}} \int q \cdot d\sigma \frac{1}{\exp(q \cdot u/T) \pm 1} \left[1 + \frac{q_{\mu}q_{\nu}\pi^{\mu\nu}}{2T^{2}(e+p)} \right]$$

14

Schematic viscous hydrodynamics

Assuming thermal quantities (energy density, temperature, entropy density, and pressures) and shear tensor are uniform along the transverse direction

$$\partial_{\tau}(A\tau\langle T^{\tau\tau}\rangle) = -\left(p + \pi^{\eta}_{\eta}\right)A,$$

$$\frac{T}{\tau}\partial_{\tau}(A\tau s\langle \gamma_{r}\rangle) = -A\left(\frac{\gamma_{r}v_{r}}{r}\right)\pi^{\phi}_{\phi} - \frac{A\langle \gamma_{r}\rangle}{\tau}\pi^{\eta}_{\eta} + \left\{\partial_{\tau}(A\langle \gamma_{r}\rangle) - \frac{\gamma_{R}\dot{R}}{R}A\right\}\left(\pi^{\phi}_{\phi} + \pi^{\eta}_{\eta}\right),$$

$$\partial_{\tau}\left(A\langle \gamma_{r}\rangle\pi^{\eta}_{\eta}\right) - \left\{\partial_{\tau}(A\langle \gamma_{r}\rangle) + 2\frac{A\langle \gamma_{r}\rangle}{\tau}\right\}\pi^{\eta}_{\eta} = -\frac{A}{\tau_{\pi}}\left[\pi^{\eta}_{\eta} - 2\eta_{s}\left\{\frac{\langle\theta\rangle}{3} - \frac{\langle\gamma_{r}\rangle}{\tau}\right\}\right],$$

$$\partial_{\tau}\left(A\langle \gamma_{r}\rangle\pi^{\phi}_{\phi}\right) - \left\{\partial_{\tau}(A\langle \gamma_{r}\rangle) + 2A\left(\frac{\gamma_{r}v_{r}}{r}\right)\right\}\pi^{\phi}_{\phi} = -\frac{A}{\tau_{\pi}}\left[\pi^{\phi}_{\phi} - 2\eta_{s}\left\{\frac{\langle\theta\rangle}{3} - \left(\frac{\gamma_{r}v_{r}}{r}\right)\right\}\right],$$

with

$$\left\langle \gamma_r \right\rangle = \frac{2}{3\gamma_R^2 \dot{R}^2} \left(\gamma_R^3 - 1 \right), \quad \left\langle \frac{\gamma_r v_r}{r} \right\rangle = \frac{\gamma_R \dot{R}^2}{R}$$

$$\left\langle \gamma_r^2 \right\rangle = 1 + \frac{\gamma_R^2 \dot{R}^2}{2}, \quad \left\langle \gamma_r^2 v_r^2 \right\rangle = \frac{\gamma_R^2 \dot{R}^2}{2}, \quad \gamma_R = \frac{1}{\sqrt{1 - \dot{R}^2}}$$

$$\theta = \frac{1}{\tau} \partial_\tau (\tau \gamma_r) + \frac{1}{r} \partial_r (r v_r \gamma_r), \quad A = \pi R^2$$

 $\langle \mathbf{n} \mathbf{n} \rangle \langle \mathbf{n} \dot{\mathbf{p}}^2 \rangle$

Taking initial thermalization time τ_0 =1.0, 0.9 and 1.05 for SPS, RHIC and LC; η /s=0.16 for QGP at SPS and RHIC and 0.2 at LHC, and 0.8 for HG; and $\tau_{\pi}=3/T(\eta/s)$.

Nuclear modification factor for J/ψ

	SPS	RHIC	LHC	LHC
				$p_T > 6.5 \text{ GeV}$
production (μb)				
$d\sigma^{pp}_{J/\psi}/dy$	0.05	0.774	4.0	
$d\sigma^{pp}_{car{c}}/dy$	5.7	119	615	
feed-down (%)				
f_{χ_c}	25	32	26.4	23.5
$f_{\psi'(2S)}$	8	9.6	5.6	5
f_b			11	21
nuclear absorp.				
$\sigma_{\rm abs} \ ({\rm mb})$	4.18	2.8	0 or 2.8	

- Most J/ψ are survivors from initially produced.
- The kink in R_{AA} is due to the onset of initial temperature above the J/ψ dissociation temperature in QGP.

Nuclear modification factor for Y(1S)

- Regeneration contribution is negligible.
- Primordial excited bottomonia are largely dissociated.
- Medium effects on bottomonia reduce R_{AA} of Y(1S).

Y(1S) nuclear modification factor at LHC from various models

- Potential: U
- Decay: LO pQCD

- Potential: U or F
- Decay: OPE
- Dynamics: anisotropic hydroDynamics: ideal hydro
- Potential: screened Cornell
- Decay: NLO pQCD
- Dynamics: schematic viscous hydro 18

Comparisons of different two-component models

- Heavy quark potential
 - Rapp: lattice U or F
 - Zhuang: lattice U or F
 - Strickland: U
 - Song: Screened Cornell
- Thermal decay width
 - Rapp: Quasielastic scattering
 - Zhuang: OPE by Peskin
 - Stricland: LO pQCD
 - Song: NLO pQCD
- HIC dynamics
 - Rapp: expanding fireball
 - Zhuang: ideal hydro
 - Strickland: anisotropic hydro
 - Song: Schematic viscous hydro

 Very different thermal decay widths are used in different models.

$$v_{2} = \frac{\int d\varphi \cos(2\varphi) (dN/dyd^{2}p_{T})}{\int d\varphi (dN/dyd^{2}p_{T})}$$
$$= \frac{\int dA_{T} \cos(2\varphi) I_{2}(p_{T} \sinh \rho/T) K_{1}(m_{T} \cosh \rho/T)}{\int dA_{T} I_{0}(p_{T} \sinh \rho/T) K_{1}(m_{T} \cosh \rho/T)}$$

Introduced viscous effect at freeze out T=125 MeV

$$\Delta \mathbf{v} = (\mathbf{v}_{\mathbf{x}} - \mathbf{v}_{\mathbf{y}}) \exp[-\mathbf{C}\mathbf{p}_{\mathrm{T}}/\mathbf{n}]$$

with C=1.14 GeV⁻¹ and n= number of quarks in a hadron

- Initially produced J/ψ have essentially vanishing v_2 .
- Regenerated J/ ψ have large v₂.
- Final J/ ψ v₂ is small as most are initially produced.

Effects of higher-order corrections

 $\begin{aligned} \sigma'(J/\psi + q(g) \rightarrow c + \overline{c} + q(g)) &= A\sigma(J/\psi + q(g) \rightarrow c + \overline{c} + q(g)) \\ \sigma'(c + q(g) \rightarrow c + q(g)) &= B\sigma(c + q(g) \rightarrow c + q(g)) \end{aligned}$

• Higher-order effects are small on J/ψ nuclear modification factor but large on their elliptic flow.

Summary

- J/ ψ survives up to 1.7 T_c and Y(1S) survives up to 4 T_c.
- Most observed J/ψ and Y(1S) are from primordially produced; contribution from regeneration is small at present HIC.
- Various models with different assumptions can describe experimental data.
- Nuclear modification factor R_{AA} of J/ψ is insensitive to the fraction of their production from regeneration \rightarrow both the statistical model and the two-component model can describe data.
- Elliptic flow of regenerated J/ψ is large, while that of directly produced ones is essentially zero. Studying v_2 of J/ψ is useful for distinguishing the mechanism for J/ψ production in HIC.