Towards a first principles description of quarkonium in medium

Helmholtz International Center

Owe Philipsen

IntroductionEquilibrium: perturbative and non-perturbative evaluationNon-equilibrium: anisotropic plasmas
Here: field theoretical aspects, not much phenomenology

Preparation of this talk....

....by finding inner equilibrium!

A real time problem: quarkonia in the QCD plasma

$$
\frac{d N_{\mu^{+} \mu^{-}}}{d^{4} x d^{4} Q} \sim \frac{\rho_{V}(\omega)}{\omega^{2}} \mathrm{e}^{-\frac{\omega}{T}}
$$

suppressed in plasma?
Dilepton production proportional to spectral function;

QFT: need to know real time correlation function

$$
\begin{gathered}
\rho(Q)=\frac{1}{2}\left(1-\mathrm{e}^{-\frac{q^{0}}{T}}\right) \tilde{C}_{>}(Q) \\
\tilde{C}_{>}(Q) \equiv \int d t \int d^{3} x \mathrm{e}^{i Q x}\left\langle J^{\mu}(x) J_{\mu}(0)\right\rangle_{T}, \quad J^{\mu}(x)=e_{q} \bar{\psi}(x) \gamma^{\mu} \psi(x)
\end{gathered}
$$

I. Direct lattice approach: euclidean correlator

$$
\begin{gathered}
G_{\Gamma}(\tau, \vec{p})=\frac{1}{2 \pi} \int_{0}^{\infty} \rho_{\Gamma}(\omega, \vec{p}) K(\tau, \omega) d \omega, \\
K(\tau, \omega)=\frac{\cosh [\omega(\tau-1 / 2 T)]}{\sinh (\omega / 2 T)}=e^{\omega \tau} n_{B}(\omega)+e^{-\omega \tau}\left[1+n_{B}(\omega)\right] \\
G_{\Gamma}(\tau)=\sum_{\vec{x}, \vec{y}, t}\langle\bar{\psi}(\vec{x}, t) \Gamma \psi(\vec{x}, t) \bar{\psi}(\vec{y}, t+\tau) \Gamma \psi(\vec{y}, t+\tau)\rangle
\end{gathered}
$$

trivial continuation, but numerical inversion ill-defined!

measure euclidean correlator on anisotropic lattices, $\left(a_{t} \neq a_{s}\right)$ "fit" spectral function with Maximum Entropy Methods

Bielefeld
Riken/Columbia

Ultimately: with sufficient compute power (t-resolution!) might give the answers

Currently: (strongly) prior-dependent; unable to resolve correlators from different potential models

II. Potential models, effective theories

$\mathrm{T}=0$: Schrödinger eqn., confining $\mathrm{V}(\mathrm{r})$ from lattice
very successful spectroscopy $\sim 1 \%$
eff. theory derived from QCD: pNRQCD
small expansion parameter $(E-2 M) / M$

finite T: use 'finite T potential' $\quad V(r, T) \approx-\frac{g^{2} C_{F}}{4 \pi} \frac{\exp \left(-m_{D}(T) r\right)}{r}$

The static potential at $\mathrm{T}=0$: Wilson loop

- Euclidean correlator of gauge invariant meson operator
- integrate out quarks in the limit $M \rightarrow \infty$
$\left\langle\bar{\psi}(\mathbf{x}, \tau) U(\mathbf{x}, \mathbf{y} ; \tau) \psi(\mathbf{y}, \tau) \bar{\psi}(\mathbf{y}, 0) U^{\dagger}(\mathbf{x}, \mathbf{y} ; 0) \psi(\mathbf{x}, 0)\right\rangle \longrightarrow \mathrm{e}^{-2 M \tau} W_{E}(|\mathbf{x}-\mathbf{y}|, \tau)$

$$
r=|\mathbf{x}-\mathbf{y}|
$$

- spectral decomposition, $\quad T \rightarrow 0$

$$
W_{E}(r, \tau \rightarrow \infty) \longrightarrow c_{01}^{2}[U(\mathbf{x}, \mathbf{y} ; 0)] \mathrm{e}^{-V(r) \tau}
$$

- lattice generalization to finite T not clear, $\quad N_{\tau}=\frac{1}{a T}$ on lattices short

Static 'potentials' at finite T, free energies: the Polyakov loop

McLerran, Svetitsky PRD 8I

- Static quarks propagate through periodic boundary
- finite T: sum over Boltzmann weighted excited states
\Rightarrow free energy of a static quark in a plasma: $\quad\left\langle\operatorname{Tr} L_{\mathbf{x}}\right\rangle \sim \mathrm{e}^{-F_{q} / T}$
order parameter for confinement: $\quad\langle L\rangle \begin{cases}=0 \Leftrightarrow \text { confined phase, } & T<T_{c} \\ >0 \Leftrightarrow \text { deconfined phase, } & T>T_{c}\end{cases}$
- free energy of static quark anti-quark pair:

$$
\mathrm{e}^{-F_{\bar{q} q}(r, T) / T}=\frac{1}{N^{2}}\left\langle\operatorname{Tr} L^{\dagger}(\mathbf{x}) \operatorname{Tr} L(\mathbf{y})\right\rangle, \quad r=|\mathbf{x}-\mathbf{y}|
$$

Screening of static quark free energy

...in pure gauge theory
Kaczmarek et al., PRD 00

$$
\frac{F_{q \bar{q}}(r, T)}{T}=-\frac{c(T)}{(r T)^{d}} \mathrm{e}^{-\mu(T) r}
$$

numerically:

LO perturbation theory: $\quad d=2, \mu=2 m_{D}^{0}$
$d \approx 3 / 2, \mu \approx M_{0_{+}^{++}}$
lightest gauge inv. screening mass
exchange of two A_{0}

Decomposition in different colour channels

McLerran, Svetitsky PRD 8I

$$
\begin{aligned}
\mathrm{e}^{-F_{\bar{q} q}(r, T) / T} & =\frac{1}{N^{2}}\left\langle\operatorname{Tr} L^{\dagger}(\mathbf{x}) \operatorname{Tr} L(\mathbf{y})\right\rangle=\frac{1}{N^{2}} \mathrm{e}^{-F_{1}(r, T) / T}+\frac{N^{2}-1}{N^{2}} \mathrm{e}^{-F_{8}(r, T) / T} \\
\mathrm{e}^{-F_{1}(r, T) / T} & =\frac{1}{N}\left\langle\operatorname{Tr} L^{\dagger}(\mathbf{x}) L(\mathbf{y})\right\rangle \\
\mathrm{e}^{-F_{8}(r, T) / T} & =\frac{1}{N^{2}-1}\left\langle\operatorname{Tr} L^{\dagger}(\mathbf{x}) \operatorname{Tr} L(\mathbf{y})\right\rangle-\frac{1}{N\left(N^{2}-1\right)}\left\langle\operatorname{Tr} L^{\dagger}(\mathbf{x}) L(\mathbf{y})\right\rangle
\end{aligned}
$$

correlators in 'singlet' and 'octet' channels gauge dependent, non-pert. meaning?

$$
F_{1}(r, T) \sim \frac{\mathrm{e}^{-m_{D}(T) r}}{4 \pi r}
$$

Spectral analysis of Polyakov loop correlators

Jahn, O.P., PRD 05

$\hat{T}_{0}=\mathrm{e}^{-a \hat{H}_{0}} \quad$ with Kogut-Susskind Hamiltonian in temporal gauge

$$
\begin{aligned}
\mathrm{e}^{-F_{\bar{q} q} / T} & =\frac{1}{Z N^{4}} \hat{\operatorname{Tr}}\left[\hat{T}_{0}^{N_{t}} \hat{P}^{\mathrm{F} \otimes \overline{\mathrm{~F}}}\right]=\frac{1}{Z N^{2}} \sum_{n}\left\langle n_{\alpha \beta} \mid n_{\beta \alpha}\right\rangle \mathrm{e}^{-E_{n} / T} \\
\mathrm{e}^{-F_{1} / T} & =\frac{1}{Z N^{2}} \sum_{n}\left\langle n_{\delta \gamma}\right| \hat{U}_{\gamma \delta}(\mathbf{x}, \mathbf{y}) \hat{U}_{\alpha \beta}^{\dagger}(\mathbf{x}, \mathbf{y})\left|n_{\beta \alpha}\right\rangle \mathrm{e}^{-E_{n} / T} \\
\mathrm{e}^{-F_{8} / T} & =\frac{1}{Z N^{2}} \sum_{n}\left\langle n_{\delta \gamma}\right| \hat{U}_{\gamma \delta}^{a}(\mathbf{x}, \mathbf{y}) \hat{U}_{\alpha \beta}^{\dagger a}(\mathbf{x}, \mathbf{y})\left|n_{\beta \alpha}\right\rangle \mathrm{e}^{-E_{n} / T}
\end{aligned}
$$

- energies: usual $(T=0)$ colour singlet potential + excit. in all three channels
- non-vanishing matrix elements in singlet and octet channel
- matrix elements path/gauge dependent but contribute, unphysical!

Effective field theory approach

Soto et al. 08, Beraudo, Blaizot, Ratti NPA 08

Quarkonium correlator, infinite quark mass limit, real time, finite T:

$$
\left\langle\bar{\psi}(\mathbf{x}, \tau) U(\mathbf{x}, \mathbf{y} ; \tau) \psi(\mathbf{y}, \tau) \bar{\psi}(\mathbf{y}, 0) U^{\dagger}(\mathbf{x}, \mathbf{y} ; 0) \psi(\mathbf{x}, 0)\right\rangle_{T} \longrightarrow \mathrm{e}^{-2 M \tau} W_{E}(|\mathbf{x}-\mathbf{y}|, \tau) \quad \tau=i t
$$

Real-time potential: Schwinger-Keldysh

$$
\beta=\frac{1}{T}\{
$$

Real-Time Correlators

$$
i \boldsymbol{G}=i\left(\begin{array}{ll}
G_{11} & G_{12} \\
G_{21} & G_{22}
\end{array}\right)=\left(\begin{array}{cc}
\left\langle\mathcal{T} \hat{\psi}\left(t^{\prime}\right) \hat{\varphi}(t)\right\rangle & -\left\langle\hat{\varphi}(t) \hat{\psi}\left(t^{\prime}\right)\right\rangle \\
\left\langle\hat{\psi}\left(t^{\prime}\right) \hat{\varphi}(t)\right\rangle & \left\langle\tilde{\mathcal{T}} \hat{\psi}\left(t^{\prime}\right) \hat{\varphi}(t)\right\rangle
\end{array}\right)
$$

Retarded, advanced and symmetric correlators are defined via:

$$
\boldsymbol{R}^{-1} \cdot \boldsymbol{G} \cdot \boldsymbol{R}=\left(\begin{array}{cc}
0 & G_{A} \\
G_{R} & G_{S}
\end{array}\right) \quad \text { where } \quad \mathbf{R}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right) .
$$

Our correlator is $C_{21}(t, \mathbf{r})=C_{>}(t, \mathbf{r}) \propto W_{E}(i t, \mathbf{r})$
We need the large time limit (non-rel.)

$$
C_{21}(t \rightarrow \infty) \approx C_{11}(t)
$$

evolution equation for the correlator:

$$
\left\{i \partial_{t}-\left[2 M+V_{>}(t, r)-\frac{\nabla_{\mathbf{r}}^{2}}{M}+O\left(\frac{1}{M^{2}}\right)\right]\right\} C_{>}(t, \mathbf{r})=0
$$

potential $=$ coefficient scaling as $O\left(M^{0}\right)$ in t-derivative of correlator $=$ matching coefficient in EFT
required scale hierarchy: $\quad g^{2} M<T<g M$
absorb heavy mass by rescaling, leading behaviour:

$$
i \partial_{t} W_{E}(i t, \mathbf{r})=V_{>}(t, r) W_{E}(i t, \mathbf{r})
$$

Diagrams contributing to the Wilson-Loop

The Real-Time static potential to $\mathscr{O}\left(g^{2}\right)$

$$
V(\boldsymbol{r})=g^{2} \mathrm{C}_{\mathrm{F}} \int \frac{\mathrm{~d}^{3} k}{(2 \pi)^{3}}(1-\cos \boldsymbol{k} \cdot \boldsymbol{r}) \tilde{G}_{11}^{00}(\omega=0, \boldsymbol{k})
$$

Here \tilde{G}_{11}^{00} is the longitudinal component of the time ordered gluon propagator which can be decomposed as: $\tilde{G}_{11}=\operatorname{Re} \tilde{G}_{R}+\frac{1}{2} \tilde{G}_{S}$.

In the special case of thermal equilibrium the potential takes the form:

$$
\begin{aligned}
V(r)= & \underbrace{-\frac{g^{2} C_{F}}{4 \pi}\left[m_{D}+\frac{\exp \left(-m_{D} r\right)}{r}\right]}_{\operatorname{Re}(\mathrm{V}): \text { Retarded contribution }} \underbrace{-i \frac{g^{2} T C_{F}}{2 \pi} \phi\left(m_{D} r\right)}_{\operatorname{Im}(\mathrm{V}): \text { Symmetric contribution }} \\
& \text { where } \phi(x)=2 \int_{0}^{\infty} \frac{d z z}{\left(z^{2}+1\right)^{2}}\left[1-\frac{\sin (z x)}{z x}\right]
\end{aligned}
$$

Real part: Debye screened as expected

- Imaginary part: Landau damping due to emission/absorption of soft gluons

Non-perturbative effects?

- Wilson loop in Minkowski time not directly calculable on the lattice
-non-perturbative corrections are due to infrared modes $\sim g^{2} T$
high occupation numbers, semi-classical physics! cf. electroweak sphaleron rate: Bödeker, Moore, Rummukainen

$$
G_{S} \sim n_{B}(\omega)+\frac{1}{2}=\frac{T}{\hbar \omega}+\frac{1}{12} \frac{\hbar \omega}{T}+\ldots
$$

$\Rightarrow \lim _{\hbar \rightarrow 0} V_{>}(\infty, r)=-\frac{i g^{2} T C_{F}}{4 \pi} \phi\left(m_{D} r\right)$
non-perturbative check of Landau damping in classical lattice simulation!

Classical lattice simulations

Hamiltonian approach: t continuous, discretise on 3d lattice

- Inclusion of UV quantum effects via HTL effective theory possible

$$
Z=\int \mathcal{D} U_{i} \mathcal{D} E_{i} \delta(G) e^{-\beta H}, \quad \beta=\frac{2 N}{g^{2} T a}, \quad H=\frac{1}{N} \sum_{x}\left[\sum_{i<j} \operatorname{Re} \operatorname{Tr}\left(1-U_{i j}\right)+\frac{1}{2} \operatorname{Tr}\left(E_{i}^{2}\right)\right]
$$

$$
\text { real time evolution: } \quad \dot{U}_{i}(x)=i E_{i}(x) U_{i}(x), \quad \dot{E}_{i}^{a}(x)=-2 \operatorname{Im} \operatorname{Tr}\left[T^{a} \sum_{|j| \neq i} U_{i j}(x)\right]
$$

$\left\langle\operatorname{Tr} U_{i j}\right\rangle$
$=\left\langle\operatorname{Tr} F_{i j}^{2}\right\rangle$

$$
V_{\mathrm{cl}}(t, r)=\frac{i \partial_{t} C_{\mathrm{cl}}(t, r)}{C_{\mathrm{cl}}(t, r)}
$$

classical simulation

classical lattice perturbation theory
non-perturbative strengthening of damping
HTL perturbation theory good to $\sim 25 \%$

Physical signatures

Quarkonium signatures from the finite mass Schrödinger equation:

Spectral function Laine et al.,JHEP0801:043

- The spectral function is depicted for Bottomonium.

■ The imaginary part induces a finite width to the resonance peak (melting of the resonance).
Potential Laine, JHEP 0705:028

- The Dilepton rate is shown for Charmonium and Bottomonium.
- A softening of the resonance is seen for increased temperature.
N.B.: This is for an idealised plasma in complete equilibrium, not phenomenological (yet)

Non-equilibrium: anisotropic plasma

In the following the potential will be discussed for an anisotropic plasma characterized by the static momentum distribution:

$$
\begin{gathered}
f(\vec{p})=n_{B}\left(p \sqrt{1+\xi\left(\vec{v}_{p} \cdot \vec{n}\right)^{2}}\right) \\
n_{B}: \text { Thermal Bose Distribution, } \xi: \text { Anisotropy, } \vec{n}: \text { Collision axis }
\end{gathered}
$$

Effect on quarkonium: previous work

Dumitru, Guo, Strickland 08
Dumitru, Guo, Mocsy, Strickland 09
Burnier, Laine,Vepsälainen 09

Strategy: consider weak anisotropy, expand to leading order in $\xi \leq 1$ evaluate effect on potential

General early findings: anisotropy weakens the effect of Landau damping
increase in dissociation temperature

Problem: normalisation issues

Observation:
Parametrisation removes particles with momentum in the anisotropy direction: dilution!

Particle density: $\quad n=\int \frac{d^{3} p}{(2 \pi)^{3}} f(\xi, \mathbf{p}) \quad=\{3.61,2.55,1.09,0.3\} \quad$ for $\quad \xi=\{0,1,5,100\}$

Weak coupling limit: inconsistent, anisotropy in ideal gas does not mean dilution!
introduce normalisation and condition

$$
n=\int \frac{\mathrm{d}^{3} \boldsymbol{p}}{(2 \pi)^{3}} f_{\text {iso }}(\boldsymbol{p}) \stackrel{!}{=} \int \frac{\mathrm{d}^{3} \boldsymbol{p}}{(2 \pi)^{3}} f(\boldsymbol{p}, \xi)
$$

More problems..... non-equilibrium

- Meaning of " T " in non-equilibrium

Phenomenology: might want to keep energy density fixed, or entropy, or...

- Normalisation procedure not unique!

T-problem: small anisotropy = close to equilibrium; soft modes (stongly coupled) thermalised with T hard modes (weakly interacting) anisotropic, will relax to T

Let the parameter in $f(\xi, \mathbf{p})$ be T^{\prime}
a) $T^{\prime}=T$, i.e. parametrise by final equilibrium temperature
b) Decide which quantity to keep fixed; rescale $T^{\prime}=T^{\prime}(\xi, T)$

Here: keep particle density fixed

- Multiplicative Normalization

To keep the particle density of the medium fixed the distribution function $f(\vec{p})$ is multiplied by the prefactor

- Landau matching

$$
N(\xi)=\sqrt{1+\xi}
$$

This matching procedure is often used in the context of hydrodynamic simulations. The particle density is kept fixed by rescaling T :

$$
T(\xi)=T R^{-\frac{1}{4}}(\xi) \text { where } R(\xi)=\frac{1}{2}\left(\frac{1}{1+\xi}+\frac{\arctan (\sqrt{\xi})}{\sqrt{\xi}}\right)
$$

The results from both schemes are consistent for $\xi \ll 1$.

Note: when expanded to first order, Landau matching also keeps the energy density fixed!

Calculation

How to obtain the gluon propagator $\tilde{G}_{11}^{00}(\omega=0)$?

The longitudinal part of $\tilde{G}_{11}=\operatorname{Re} \tilde{G}_{R}+\frac{1}{2} \tilde{G}_{S}$ in the static limit is needed. \tilde{G}_{R} is known and \tilde{G}_{S} is obtained from a Schwinger-Dyson relation.

- Retarded gluon propagator in covariant gauge Dumitru et al., Romatschke

$$
\begin{aligned}
\tilde{G}_{R}^{\mu \nu}(K)= & \Delta_{G}\left[\left(K^{2}-\alpha-\gamma\right) \frac{\omega^{4}}{K^{4}} B^{\mu \nu}+\left(\omega^{2}-\beta\right) C^{\mu \nu}+\delta \frac{\omega^{2}}{K^{2}} D^{\mu \nu}\right] \\
& +\Delta_{A}\left[A^{\mu \nu}-C^{\mu \nu}\right]-\frac{\lambda}{K^{4}} K^{\mu} K^{\nu}
\end{aligned}
$$

with structure functions $\alpha(K)-\delta(K)$ and

$$
\Delta_{G}^{-1}=\left(K^{2}-\alpha-\gamma\right)\left(\omega^{2}-\beta\right)-\delta^{2}\left[\boldsymbol{k}^{2}-(n \cdot K)^{2}\right] \text { and } \Delta_{A}^{-1}=K^{2}-\alpha .
$$

$A(K)-D(K)$ form a tensor basis for this system where Lorentz symmetry is broken by the plasma rest frame and the anisotropy vector.

- Schwinger-Dyson Relation Arnold, Moore, Yaffe

The needed Schwinger-Dyson relation [Π_{S} : symmetric self-energy] is:

$$
\begin{aligned}
& \tilde{\boldsymbol{G}}_{\mathrm{R}}=\boldsymbol{G}_{\mathrm{R}}+\boldsymbol{G}_{\mathrm{R}} \cdot \Pi_{\mathrm{R}} \cdot \tilde{\boldsymbol{G}}_{\mathrm{R}}, \\
& \tilde{\boldsymbol{G}}_{\mathrm{S}}=G_{\mathrm{S}}+\boldsymbol{G}_{\mathrm{R}} \cdot \Pi_{\mathrm{R}} \cdot \tilde{\boldsymbol{G}}_{\mathrm{S}}+G_{\mathrm{S}} \cdot \Pi_{A} \cdot \tilde{\boldsymbol{G}}_{\mathrm{A}}+G_{\mathrm{R}} \cdot \Pi_{\mathrm{S}} \cdot \tilde{\boldsymbol{G}}_{\mathrm{A}} \longrightarrow \quad \tilde{\boldsymbol{G}}_{\mathrm{S}}=\tilde{\boldsymbol{G}}_{\mathrm{R}} \cdot \Pi_{\mathrm{S}} \cdot \tilde{\boldsymbol{G}}_{\mathrm{R}}^{*}
\end{aligned}
$$

Static Limit for $\xi \ll 1$

- Retarded Propagator

It is straightforward to obtain the retarded propagator in the static limit:

$$
\tilde{G}_{\mathrm{R}}^{00}(\omega=0, \boldsymbol{k})=\frac{k^{2}+m_{\alpha}^{2}+m_{\gamma}^{2}}{\left(k^{2}+m_{\alpha}^{2}+m_{\gamma}^{2}\right)\left(k^{2}+m_{\beta}^{2}\right)-m_{\delta}^{4}}
$$

Effective masses $\left[\theta_{k}=\angle(\boldsymbol{n}, \boldsymbol{k})\right.$]:

$$
\begin{aligned}
\hat{m}_{\alpha}^{2}=-m_{D}^{2} \frac{\xi}{3} \cos ^{2} \theta_{k} & \hat{m}_{\beta}^{2}=1+\xi\left(\cos ^{2} \theta_{k}-\frac{1}{6}\right) \\
\hat{m}_{\gamma}^{2}=\frac{\xi}{3} \sin ^{2} \theta_{k}, & \hat{m}_{\delta}^{2}=-\xi \frac{\pi}{4} \sin \theta_{k} \cos \theta_{k}
\end{aligned}
$$

Note that $\hat{m_{x}}=m_{x} / m_{D}$ where m_{D} is the isotropic Debye mass.

$$
\mathrm{i} \Pi_{\mathrm{S}}^{\mu \nu}=8 \pi g^{2} N \frac{1}{k} \int \frac{d^{3} p}{(2 \pi)^{3}} v_{p}^{\mu} v_{p}^{\nu} f(\mathbf{p})(1+f(\mathbf{p}+k)) \delta\left(\mathbf{v}_{p} \cdot \mathbf{v}_{k}\right)
$$

- No Normalization

This case implies a specific relation between the particle density and the anisotropy. The medium is diluted quickly with increased anisotropy and the (perturbative) vacuum potential is approached.
■ Fixed particle density
The change in the potential is very small compared to the isotropic result. The change observed in the upper case is a density effect.

Conclusions

Quark anti-quark free energy is not a potential"Singlet" and "octet" free energies are unphysicalStatic potential + Schrödinger equation at finite T can be defined in effective field theory

Landau damping effective before Debye screeningAnisotropy: how to parametrise?

- Anisotropic distribution function alone has very small effect when energy or particle density are kept fixed, cf. Strickland II

