Non-Equilibrium Dynamics

Towards a first principles description of quarkonium in medium

Owe Philipsen

Equilibrium: perturbative and non-perturbative evaluation

- Non-equilibrium: anisotropic plasmas
- Here: field theoretical aspects, not much phenomenology

collaborators: O. Jahn (MIT), M. Laine (Bielefeld), M. Tassler (McGill), P. Romatschke (Frankfurt)

Preparation of this talk....

....by finding inner equilibrium!

A real time problem: quarkonia in the QCD plasma

$$\frac{dN_{\mu^+\mu^-}}{d^4x d^4Q} \sim \frac{\rho_V(\omega)}{\omega^2} e^{-\frac{\omega}{T}}$$

Bound states of heavy quarks: c (~IGeV), b (~4 GeV)

suppressed in plasma?

Dilepton production proportional to spectral function;

Matsui, Satz

QFT: need to know real time correlation function

$$o(Q) = \frac{1}{2} \left(1 - e^{-\frac{q^0}{T}} \right) \tilde{C}_{>}(Q)$$

$$\tilde{C}_{>}(Q) \equiv \int dt \int d^3x \,\mathrm{e}^{iQx} \langle J^{\mu}(x) J_{\mu}(0) \rangle_T, \quad J^{\mu}(x) = e_q \bar{\psi}(x) \gamma^{\mu} \psi(x)$$

I. Direct lattice approach: euclidean correlator

$$G_{\Gamma}(\tau, \vec{p}) = \frac{1}{2\pi} \int_0^{\infty} \rho_{\Gamma}(\omega, \vec{p}) K(\tau, \omega) d\omega \,,$$

$$K(\tau,\omega) = \frac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)} = e^{\omega\tau}n_B(\omega) + e^{-\omega\tau}[1 + n_B(\omega)]$$
$$G_{\Gamma}(\tau) = \sum_{\vec{x},\vec{y},t} \langle \overline{\psi}(\vec{x},t)\Gamma\psi(\vec{x},t)\overline{\psi}(\vec{y},t+\tau)\Gamma\psi(\vec{y},t+\tau)\rangle$$

trivial continuation, but numerical inversion ill-defined!

measure euclidean correlator on anisotropic lattices, $(a_t \neq a_s)$ "fit" spectral function with Maximum Entropy Methods

Bielefeld Riken/Columbia Swansea JLQCD

- Ultimately: with sufficient compute power (t-resolution!) might give the answers
- Currently: (strongly) prior-dependent;
 Unable to resolve correlators from different potential models

Mocsy, Petreczky, PRD 08

II. Potential models, effective theories

T=0: Schrödinger eqn., confining V(r) from lattice very successful spectroscopy ~1% eff. theory derived from QCD: pNRQCD small expansion parameter (E - 2M)/M

finite T: use 'finite T potential'

$$V(r,T) \approx -\frac{g^2 C_F}{4\pi} \frac{\exp(-m_D(T)r)}{r}$$

Matsui, Satz

The static potential at T=0: Wilson loop

- Euclidean correlator of gauge invariant meson operator
- ullet integrate out quarks in the limit $M o\infty$

 $\langle \bar{\psi}(\mathbf{x},\tau) U(\mathbf{x},\mathbf{y};\tau) \psi(\mathbf{y},\tau) \bar{\psi}(\mathbf{y},0) U^{\dagger}(\mathbf{x},\mathbf{y};0) \psi(\mathbf{x},0) \rangle \longrightarrow e^{-2M\tau} W_E(|\mathbf{x}-\mathbf{y}|,\tau)$

• spectral decomposition, $T \to 0$ $W_E(r, \tau \to \infty) \longrightarrow c_{01}^2[U(\mathbf{x}, \mathbf{y}; 0)] e^{-V(r)\tau}$

• lattice generalization to finite T not clear, $N_{\tau} = \frac{1}{aT}$ on lattices short

Static 'potentials' at finite T, free energies: the Polyakov loop McLerran, Svetitsky PRD 81

- Static quarks propagate through periodic boundary
- finite T: sum over Boltzmann weighted excited states

free energy of a static quark in a plasma: $\langle \operatorname{Tr} L_{\mathbf{x}} \rangle \sim e^{-F_q/T}$

order parameter for confinement: $\langle L \rangle \begin{cases} = 0 \Leftrightarrow \text{ confined phase,} & T < T_c \\ > 0 \Leftrightarrow \text{ deconfined phase,} & T > T_c \end{cases}$

free energy of static quark anti-quark pair:

$$e^{-F_{\bar{q}q}(r,T)/T} = \frac{1}{N^2} \langle \operatorname{Tr} L^{\dagger}(\mathbf{x}) \operatorname{Tr} L(\mathbf{y}) \rangle, \quad r = |\mathbf{x} - \mathbf{y}|$$

Screening of static quark free energy

 $F_{\bar{q}q}$ does not correspond to the Debye-screened static potential!

Decomposition in different colour channels

McLerran, Svetitsky PRD 81

$$e^{-F_{\bar{q}q}(r,T)/T} = \frac{1}{N^2} \langle \operatorname{Tr} L^{\dagger}(\mathbf{x}) \operatorname{Tr} L(\mathbf{y}) \rangle = \frac{1}{N^2} e^{-F_1(r,T)/T} + \frac{N^2 - 1}{N^2} e^{-F_8(r,T)/T} e^{-F_1(r,T)/T} = \frac{1}{N} \langle \operatorname{Tr} L^{\dagger}(\mathbf{x}) L(\mathbf{y}) \rangle, e^{-F_8(r,T)/T} = \frac{1}{N^2 - 1} \langle \operatorname{Tr} L^{\dagger}(\mathbf{x}) \operatorname{Tr} L(\mathbf{y}) \rangle - \frac{1}{N(N^2 - 1)} \langle \operatorname{Tr} L^{\dagger}(\mathbf{x}) L(\mathbf{y}) \rangle.$$

correlators in 'singlet' and 'octet' channels gauge dependent, non-pert. meaning?

$$F_1(r,T) \sim \frac{\mathrm{e}^{-m_D(T)r}}{4\pi r}$$
 Nadkarni PRD 86

Spectral analysis of Polyakov loop correlators Jahn, O.P., PRD 05

 $\hat{T}_0 = e^{-a\hat{H}_0}$ with Kogut-Susskind Hamiltonian in temporal gauge

$$e^{-F_{\bar{q}q}/T} = \frac{1}{ZN^4} \hat{T}r \left[\hat{T}_0^{N_t} \hat{P}^{F \otimes \bar{F}}\right] = \frac{1}{ZN^2} \sum_n \langle n_{\alpha\beta} | n_{\beta\alpha} \rangle e^{-E_n/T}$$
$$e^{-F_1/T} = \frac{1}{ZN^2} \sum_n \langle n_{\delta\gamma} | \hat{U}_{\gamma\delta}(\mathbf{x}, \mathbf{y}) \hat{U}_{\alpha\beta}^{\dagger}(\mathbf{x}, \mathbf{y}) | n_{\beta\alpha} \rangle e^{-E_n/T}$$
$$e^{-F_8/T} = \frac{1}{ZN^2} \sum_n \langle n_{\delta\gamma} | \hat{U}_{\gamma\delta}^a(\mathbf{x}, \mathbf{y}) \hat{U}_{\alpha\beta}^{\dagger a}(\mathbf{x}, \mathbf{y}) | n_{\beta\alpha} \rangle e^{-E_n/T}$$

energies: usual (T=0) colour singlet potential + excit. in all three channels

- non-vanishing matrix elements in singlet and octet channel
- matrix elements path/gauge dependent but contribute, unphysical!

Effective field theory approach

Quarkonium correlator, infinite quark mass limit, real time, finite T:

$$\langle \bar{\psi}(\mathbf{x},\tau)U(\mathbf{x},\mathbf{y};\tau)\psi(\mathbf{y},\tau)\bar{\psi}(\mathbf{y},0)U^{\dagger}(\mathbf{x},\mathbf{y};0)\psi(\mathbf{x},0)\rangle \longrightarrow e^{-2M\tau}W_E(|\mathbf{x}-\mathbf{y}|,\tau) \qquad \tau = it$$

Real-time potential: Schwinger-Keldysh

Real-Time Correlators

$$iG = i \begin{pmatrix} G_{11} & G_{12} \\ G_{21} & G_{22} \end{pmatrix} = \begin{pmatrix} \langle T\hat{\psi}(t')\hat{\varphi}(t) \rangle & -\langle \hat{\varphi}(t)\hat{\psi}(t') \rangle \\ \langle \hat{\psi}(t')\hat{\varphi}(t) \rangle & \langle \tilde{T}\hat{\psi}(t')\hat{\varphi}(t) \rangle \end{pmatrix}$$

Retarded, advanced and symmetric correlators are defined via:

$$R^{-1} \cdot G \cdot R = \begin{pmatrix} 0 & G_A \\ G_R & G_S \end{pmatrix}$$
 where $R = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$.

Our correlator is $C_{21}(t, \mathbf{r}) = C_{>}(t, \mathbf{r}) \propto W_E(it, \mathbf{r})$

We need the large time limit (non-rel.)

 $C_{21}(t \to \infty) \approx C_{11}(t)$

evolution equation for the correlator:

$$\left\{i\partial_t - \left[2M + V_>(t,r) - \frac{\nabla_{\mathbf{r}}^2}{M} + O\left(\frac{1}{M^2}\right)\right]\right\}C_>(t,\mathbf{r}) = 0$$

potential = coefficient scaling as $O(M^0)$ in t-derivative of correlator = matching coefficient in EFT

required scale hierarchy: $g^2 M < T < g M$

absorb heavy mass by rescaling, leading behaviour:

$$i\partial_t W_E(it,\mathbf{r}) = V_>(t,r)W_E(it,\mathbf{r})$$

Diagrams contributing to the Wilson-Loop

The Real-Time static potential to $\mathscr{O}(g^2)$

$$V(\mathbf{r}) = g^{2} C_{F} \int \frac{d^{3}k}{(2\pi)^{3}} (1 - \cos \mathbf{k} \cdot \mathbf{r}) \tilde{G}_{11}^{00}(\omega = 0, \mathbf{k})$$

Here \tilde{G}_{11}^{00} is the longitudinal component of the time ordered gluon propagator which can be decomposed as: $\tilde{G}_{11} = Re \ \tilde{G}_R + \frac{1}{2}\tilde{G}_S$.

In the special case of *thermal equilibrium* the potential takes the form:

$$V(r) = \underbrace{-\frac{g^2 C_F}{4\pi} [m_D + \frac{exp(-m_D r)}{r}]}_{\text{Re(V): Retarded contribution}} \underbrace{-i\frac{g^2 T C_F}{2\pi} \phi(m_D r)}_{\text{Im(V): Symmetric contribution}}$$
where $\phi(x) = 2 \int_0^\infty \frac{dzz}{(z^2+1)^2} \left[1 - \frac{sin(zx)}{zx}\right].$

Real part: Debye screened as expected

Imaginary part: Landau damping due to emission/absorption of soft gluons

Non-perturbative effects?

Wilson loop in Minkowski time not directly calculable on the lattice

) non-perturbative corrections are due to infrared modes ~ g^2T

high occupation numbers, semi-classical physics! cf. electroweak sphaleron rate: Bödeker, Moore, Rummukainen

$$G_S \sim n_B(\omega) + \frac{1}{2} = \frac{T}{\hbar\omega} + \frac{1}{12}\frac{\hbar\omega}{T} + \dots$$

$$\lim_{\hbar \to 0} V_{>}(\infty, r) = -\frac{ig^2 T C_F}{4\pi} \phi(m_D r)$$

non-perturbative check of Landau damping in classical lattice simulation!

Classical lattice simulations

Hamiltonian approach: t continuous, discretise on 3d lattice

Inclusion of UV quantum effects via HTL effective theory possible

$$Z = \int \mathcal{D}U_i \, \mathcal{D}E_i \, \delta(G) e^{-\beta H}, \quad \beta = \frac{2N}{g^2 T a}, \quad H = \frac{1}{N} \sum_x \left[\sum_{i < j} \operatorname{Re} \operatorname{Tr} \left(1 - U_{ij} \right) + \frac{1}{2} \operatorname{Tr} \left(E_i^2 \right) \right]$$

eal time evolution:
$$\dot{U}_i(x) = iE_i(x)U_i(x)$$
, $\dot{E}^a_i(x) = -2 \operatorname{Im} \operatorname{Tr} \left[T^a \sum_{|j| \neq i} U_{ij}(x)\right]$

16

classical simulation

classical lattice perturbation theory

non-perturbative strengthening of damping HTL perturbation theory good to ~ 25%

Physical signatures

Quarkonium signatures from the finite mass Schrödinger equation:

Spectral function Laine et al., JHEP0801:043

- The spectral function is depicted for Bottomonium.
- The imaginary part induces a finite width to the resonance peak (melting of the resonance).

Potential Laine, JHEP 0705:028

- The Dilepton rate is shown for Charmonium and Bottomonium.
- A softening of the resonance is seen for increased temperature.

N.B.: This is for an idealised plasma in complete equilibrium, not phenomenological (yet)

Non-equilibrium: anisotropic plasma

In the following the potential will be discussed for an anisotropic plasma characterized by the *static* momentum distribution:

$$f(\vec{p}) = n_B(p\sqrt{1 + \xi(\vec{v}_p \cdot \vec{n})^2})$$

 n_B : Thermal Bose Distribution, ξ : Anisotropy, \vec{n} : Collision axis

Romatschke, Strickland 03 Mrowczynski, Rebhan, Strickland 04

Effect on quarkonium: previous work

Dumitru, Guo, Strickland 08 Dumitru, Guo, Mocsy, Strickland 09 Burnier, Laine, Vepsälainen 09

Strategy:consider weak anisotropy,expand to leading order in $\xi \leq 1$ evaluate effect on potential

General early findings: anisotropy weakens the effect of Landau damping

Problem: normalisation issues

Observation:

Parametrisation removes particles with momentum in the anisotropy direction: dilution!

Particle density:
$$n = \int \frac{d^3 p}{(2\pi)^3} f(\xi, \mathbf{p}) = \{3.61, 2.55, 1.09, 0.3\}$$
 for $\xi = \{0, 1, 5, 100\}$

Weak coupling limit: inconsistent, anisotropy in ideal gas does not mean dilution!

introduce normalisation and condition

$$n = \int \frac{\mathrm{d}^3 \boldsymbol{p}}{(2\pi)^3} f_{\mathrm{iso}}(\boldsymbol{p}) \stackrel{!}{=} \int \frac{\mathrm{d}^3 \boldsymbol{p}}{(2\pi)^3} f(\boldsymbol{p}, \xi)$$

More problems..... non-equilibrium

- Meaning of "T" in non-equilibrium
- Phenomenology: might want to keep energy density fixed, or entropy, or...
- N
 - Normalisation procedure not unique!

T-problem: small anisotropy = close to equilibrium; soft modes (stongly coupled) thermalised with T hard modes (weakly interacting) anisotropic, will relax to T

```
Let the parameter in f(\xi, \mathbf{p}) be T'
```

a) T'=T, i.e. parametrise by final equilibrium temperature

b) Decide which quantity to keep fixed; rescale $T' = T'(\xi, T)$

used a lot in literature

Here: keep particle density fixed

Multiplicative Normalization

To keep the particle density of the medium fixed the distribution function $f(\vec{p})$ is multiplied by the prefactor

$$N(\xi) = \sqrt{1+\xi}.$$

Landau matching

This matching procedure is often used in the context of hydrodynamic simulations. The particle density is kept fixed by rescaling T:

$$T(\xi) = TR^{-\frac{1}{4}}(\xi) \text{ where } R(\xi) = \frac{1}{2} \left(\frac{1}{1+\xi} + \frac{\arctan(\sqrt{\xi})}{\sqrt{\xi}} \right).$$

The results from both schemes are consistent for $\xi \ll 1$.

Note: when expanded to first order, Landau matching also keeps the energy density fixed!

Calculation

How to obtain the gluon propagator $\tilde{G}_{11}^{00}(\omega = 0)$?

The longitudinal part of $\tilde{G}_{11} = Re \ \tilde{G}_R + \frac{1}{2} \tilde{G}_S$ in the static limit is needed. \tilde{G}_R is known and \tilde{G}_S is obtained from a Schwinger-Dyson relation.

Retarded gluon propagator in covariant gauge Dumitru et al., Romatschke

$$\begin{split} \tilde{G}^{\mu\nu}_{R}(K) &= \Delta_{G} \left[(K^{2} - \alpha - \gamma) \frac{\omega^{4}}{K^{4}} B^{\mu\nu} + (\omega^{2} - \beta) C^{\mu\nu} + \delta \frac{\omega^{2}}{K^{2}} D^{\mu\nu} \right] \\ &+ \Delta_{A} [A^{\mu\nu} - C^{\mu\nu}] - \frac{\lambda}{K^{4}} K^{\mu} K^{\nu} \end{split}$$

with structure functions $\alpha(K) - \delta(K)$ and

$$\Delta_G^{-1} = (K^2 - \alpha - \gamma)(\omega^2 - \beta) - \delta^2 [k^2 - (n \cdot K)^2] \text{ and } \Delta_A^{-1} = K^2 - \alpha.$$

A(K) - D(K) form a *tensor basis* for this system where Lorentz symmetry is broken by the plasma rest frame and the anisotropy vector.

Schwinger-Dyson Relation Arnold, Moore, Yaffe

The needed Schwinger-Dyson relation [$\Pi_{\rm S}$: symmetric self-energy] is:

Retarded Propagator

It is straightforward to obtain the retarded propagator in the static limit:

$$\tilde{G}_{\rm R}^{00}(\omega=0,\boldsymbol{k}) = \frac{k^2 + m_{\alpha}^2 + m_{\gamma}^2}{(k^2 + m_{\alpha}^2 + m_{\gamma}^2)(k^2 + m_{\beta}^2) - m_{\delta}^4}$$

Effective masses $[\theta_k = \angle(n, k)]$:

$$\hat{m}_{\alpha}^2 = -m_D^2 \frac{\xi}{3} \cos^2 \theta_k \qquad \hat{m}_{\beta}^2 = 1 + \xi (\cos^2 \theta_k - \frac{1}{6})$$
$$\hat{m}_{\gamma}^2 = \frac{\xi}{3} \sin^2 \theta_k, \qquad \hat{m}_{\delta}^2 = -\xi \frac{\pi}{4} \sin \theta_k \cos \theta_k$$

Note that $\hat{m_x} = m_x/m_D$ where m_D is the isotropic Debye mass.

$$i\Pi_{\rm S}^{\mu\nu} = 8\pi g^2 N \frac{1}{k} \int \frac{d^3 p}{(2\pi)^3} v_p^{\mu} v_p^{\nu} f(\mathbf{p}) (1 + f(\mathbf{p} + k)) \delta(\mathbf{v}_p \cdot \mathbf{v}_k)$$

Results for $\xi = 1$

No Normalization

This case implies a specific relation between the particle density and the anisotropy. The medium is diluted quickly with increased anisotropy and the (perturbative) vacuum potential is approached.

Fixed particle density

The change in the potential is very small compared to the isotropic result. The change observed in the upper case is a density effect.

Conclusions

- Quark anti-quark free energy is not a potential
- "Singlet" and "octet" free energies are unphysical
- Static potential + Schrödinger equation at finite T can be defined in effective field theory
- Landau damping effective before Debye screening
- Anisotropy: how to parametrise?
- Anisotropic distribution function alone has very small effect when energy or particle density are kept fixed, cf. Strickland 11