The quark-gluon plasma shear viscosity from RHIC to LHC*

Ulrich Heinz

Department of Physics The Ohio State University 191 West Woodruff Avenue Columbus, OH 43210

presented at

Non-equilibrium Dynamics Heraklion, Crete, Greece, Aug. 31 – Sep. 3, 2011

Work done in collaboration with

S.A. Bass, T. Hirano, P. Huovinen, Zhi Qiu, Chun Shen, and H. Song

*Supported by the U.S. Department of Energy (DOE)

Prologue: How to measure $(\eta/s)_{ m QGP}$

0.16 Hydrodynamics converts Au+Au RHIC spatial deformation of initial state \Longrightarrow 0.14 20~30% momentum anisotropy of final state, 0.12 through anisotropic pressure gradients 0.10 0.08 · ى^م **Shear viscosity** degrades conversion efficiency 0.06 $\varepsilon_x = \frac{\langle\!\langle y^2 - x^2 \rangle\!\rangle}{\langle\!\langle y^2 + x^2 \rangle\!\rangle} \Longrightarrow \varepsilon_p = \frac{\langle T^{xx} - T^{yy} \rangle}{\langle T^{xx} + T^{yy} \rangle}$ 0.04 ■— ideal -n/s = 0.080.02 -- n/s = 0.16of the fluid; the suppression of ε_p is monoto-**▼**— n/s = 0.24 0.00 nically related to η/s . 2 3 5 6 7 $\tau - \tau_{0}$ (fm/c)

The observable that is most directly related to the total hydrodynamic momentum anisotropy ε_p is the total (p_T -integrated) charged hadron elliptic flow v_2^{ch} :

$$\varepsilon_p = \frac{\langle T^{xx} - T^{yy} \rangle}{\langle T^{xx} + T^{yy} \rangle} \Longleftrightarrow \frac{\sum_i \int p_T dp_T \int d\phi_p \, p_T^2 \, \cos(2\phi_p) \, \frac{dN_i}{dy p_T dp_T d\phi_p}}{\sum_i \int p_T dp_T \int d\phi_p \, p_T^2 \, \frac{dN_i}{dy p_T dp_T d\phi_p}} \iff v_2^{\rm ch}$$

Prologue: How to measure $(\eta/s)_{\rm QGP}$ (ctd.)

- If ε_p saturates before hadronization (e.g. in PbPb@LHC (?))
 - $\Rightarrow~v_2^{\rm ch}\approx$ not affected by details of hadronic rescattering below $T_{\rm c}$

but: $v_2^{(i)}(p_T)$, $\frac{dN_i}{dyd^2p_T}$ change during hadronic phase (addl. radial flow!), and these changes depend on details of the hadronic dynamics (chemical composition etc.)

 $\Rightarrow v_2(p_T)$ of a single particle species **not** a good starting point for extracting η/s

- If ε_p does not saturate before hadronization (e.g. AuAu@RHIC), dissipative hadronic dynamics affects not only the distribution of ε_p over hadronic species and in p_T, but even the final value of ε_p itself (from which we want to get η/s)
 - ⇒ need hybrid code that couples viscous hydrodynamic evolution of QGP to realistic microscopic dynamics of late-stage hadron gas phase
 - ⇒ **VISHNU** ("Viscous Israel-Steward Hydrodynamics 'n' UrQMD")

(Song, Bass, Heinz, PRC83 (2011) 024912) Note: this paper shows that $UrQMD \neq viscous hydro!$

Extraction of $(\eta/s)_{ m QGP}$ from AuAu@RHIC

H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, PRL106 (2011) 192301 MC-Glauber hydro $(\eta/s) + UrOMD$ MC-KLN hydro $(\eta/s) + UrQMD$ η/s hydro (η /s)+UrQMD 0.25 0.25 ⁻ (a) **(b)** 0.2 0.2 ~ 0.15 $\overset{\boldsymbol{\omega}}{\stackrel{\scriptstyle\sim}{\scriptstyle\sim}} 0.15$ (fm/c) max 0.1 dN/dy 0.1 τ_{o} Glauber / KLN 0.4810 $\diamondsuit v_2^{\{2\}} / \big<\! \epsilon_{part}^2 \big>_{KLN}^{1/2}$ $\Box v_2\{2\} / \langle \varepsilon_{part}^2 \rangle_{Gl}^{1/2}$ 810 0.6 0.05 0.05 0.16 0.9 810 $\diamondsuit \left< v_2 \right> / \left< \epsilon_{part} \right>_{KLN}$ $\Box \ \left< v_2^{} \right> / \left< \epsilon_{part}^{} \right>_{Gl}$ 0,24 1.2 810 0 0 $(1/S) dN_{ch}^{20}/dy (fm^{-2})^{30}$ $\frac{20}{(1/S) dN_{ch}^{2}/dy (fm^{-2})}$ 30 10 $\frac{20}{(1/S)} \frac{20}{dN_{ch}} \frac{30}{dy} (fm^{-2})$ 10 10 0 0 40 40 0

 $1 < 4\pi(\eta/s)_{
m QGP} < 2.5$

- All shown theoretical curves correspond to parameter sets that correctly describe centrality dependence of charged hadron production as well as p_T -spectra of charged hadrons, pions and protons at all centralities
- v_2^{ch}/ε_x vs. $(1/S)(dN_{ch}/dy)$ is "universal", i.e. depends **only on** η/s but (in good approximation) not on initial-state model (Glauber vs. KLN, optical vs. MC, RP vs. PP average, etc.)
- dominant source of uncertainty: $\varepsilon_x^{
 m Gl}$ vs. $\varepsilon_x^{
 m KLN}$
- smaller effects: early flow \rightarrow increases $\frac{v_2}{\varepsilon}$ by \sim few % \rightarrow larger η/s

pulk viscosity
$$ightarrow$$
 affects $v_2^{
m ch}(p_T)$, but $pprox$ not $v_2^{
m ch}$

Zhi Qiu & UH, PRC84 (2011) 024911

Extraction of $(\eta/s)_{ m QGP}$ from AuAu@RHIC

H. Song, S.A. Bass, U. Heinz, T. Hirano, C. Shen, PRL106 (2011) 192301

 $1 < 4\pi(\eta/s)_{
m QGP} < 2.5$

- All shown theoretical curves correspond to parameter sets that correctly describe centrality dependence of charged hadron production as well as p_T -spectra of charged hadrons, pions and protons at all centralities
- v_2^{ch}/ε_x vs. $(1/S)(dN_{ch}/dy)$ is "universal", i.e. depends only on η/s but (in good approximation) not on initial-state model (Glauber vs. KLN, optical vs. MC, RP vs. PP average, etc.)
- dominant source of uncertainty: $arepsilon_x^{
 m Gl}$ vs. $arepsilon_x^{
 m KLN}$
- smaller effects: early flow \rightarrow increases $\frac{v_2}{\varepsilon}$ by \sim few % \rightarrow larger η/s

bulk viscosity
$$\rightarrow$$
 affects $v_2^{ch}(p_T)$, but \approx not v_2^{ch}
e-by-e hydro \rightarrow decreases $\frac{v_2^{ch}}{\varepsilon}$ by $\lesssim 5\% \rightarrow$ smaller η/s

Global description of AuAu@RHIC spectra and v_2

• $(\eta/s)_{QGP} = 0.08$ for MC-Glauber and $(\eta/s)_{QGP} = 0.16$ for MC-KLN work well for charged hadron, pion and proton spectra and $v_2(p_T)$ at all collision centralities

Global description of AuAu@RHIC spectra and v_2

- $(\eta/s)_{QGP} = 0.08$ for MC-Glauber and $(\eta/s)_{QGP} = 0.16$ for MC-KLN work well for charged hadron, pion and proton spectra and $v_2(p_T)$ at all collision centralities
- A purely hydrodynamic model (without UrQMD afterburner) with the same values of η/s does almost as well (except for centrality dependence of proton $v_2(p_T)$) \implies Shen et al., arXiv:1105.3226
- Main difference: VISHNU develops more radial flow in the hadronic phase (larger shear viscosity), pure viscous hydro must start earlier than VISHNU ($\tau_0 = 0.6$ instead of 0.9 fm/c), otherwise proton spectra are too steep
- These η/s values agree with Luzum & Romatschke, PRC78 (2008), even though they used EOS with incorrect hadronic chemical composition \implies shows robustness of extracting η/s from total charged hadron v_2

Pre- and postdictions for PbPb@LHC

- After normalization in 0-5% centrality collisions, MC-KLN + VISHNU (w/o running coupling, but including viscous entropy production!) reproduces centrality dependence of $dN_{\rm ch}/d\eta$ well in both AuAu@RHIC and PbPb@LHC
- $(\eta/s)_{\text{QGP}} = 0.16$ for MC-KLN works well for charged hadron $v_2(p_T)$ and integrated v_2 in AuAu@RHIC, but overpredicts both by about 10-15% in PbPb@LHC
- Similar results from predictions based on pure viscous hydro \implies Shen et al., arXiv:1105.3226
- **but:** At LHC, we see significant sensitivity of v_2 to initialization of viscous pressure tensor $\pi^{\mu\nu}$ (Navier-Stokes or zero), and it is not excluded that it may be possible to bring down v_2 at LHC to the ALICE data without increasing η/s at higher T (requires more study)

⇒ QGP at LHC perhaps a bit, but not dramatically more viscous than at RHIC!

Why is $v_2^{ch}(p_T)$ the same at RHIC and LHC?

Answer: Pure accident! (Kestin & Heinz EPJC61 (2009) 545)

 $v_2^{\pi}(p_T)$ increases a bit from RHIC to LHC, for heavier hadrons $v_2(p_T)$ at fixed p_T decreases (radial flow pushes momentum anisotropy of heavy hadrons to larger p_T)

This is a hard (and successful!) prediction of hydrodynamics! (See also Nagle et al., arXiv:1102.0680)

Confirmation of increased mass splitting at LHC

Data: ALICE @ LHC, Quark Matter 2011 (symbols), PHENIX @ RHIC (shaded)

Lines: Shen et al.,arXiv:1105.3226 (VISH2+1)

- \bullet Qualitative features of data agree with VISH2+1 predictions
- ullet VISH2+1 does not push proton v_2 strongly enough to higher p_T , both at RHIC and LHC
- At RHIC we know that this is fixed when using VISHNU is the same true at LHC?

Successful prediction of $v_2(p_T)$ for identified hadrons in PbPb@LHC

Perfect fit in semi-peripheral collisions!

The problem with insufficient proton radial flow exists only in more central collisions \implies hadronic cascade (VISHNU) may help!

Comparison VISH2+1...

Data: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011)

Lines: C. Shen et al., arXiv:1105.3226 (VISH2+1, MC-KLN, $\eta/s=0.2$)

... vs. VISHNU

Data: ALICE, preliminary (Snellings, Krzewicki, Quark Matter 2011)

Lines: UH, Shen, Song, arXiv:1108.5323 (VISHNU, MC-KLN, $(\eta/s)_{QGP}=0.2$)

• VISHNU yields correct centrality dependence of $v_2(p_T)$ for pions, kaons and protons!

• $v_2(p_T)$ slightly too low (by ~ 5–10%, increasing with peripherality) for all particle species $\implies (\eta/s)_{\text{QGP}}=0.16$ will probably work better

Back to the elephant in the room: How to eliminate the large model uncertainty in the initial eccentricity?

Initial eccentricities ε_n and angles ψ_n :

$$\varepsilon_{\mathbf{n}}e^{in\psi_{\mathbf{n}}} = -\frac{\int r dr d\phi r^{2}e^{in\phi} e(r,\phi)}{\int r dr d\phi r^{2} e(r,\phi)}$$

- MC-KLN has larger ε_2 and ε_4 , but similar ε_5 and almost identical ε_3 as MC-Glauber
- Angles of ε_2 and ε_4 are correlated with reaction plane by geometry, whereas those of ε_3 and ε_5 are random (purely fluctuation-driven)
- While v_4 and v_5 have mode-coupling contributions from ε_2 , v_3 is almost pure response to ε_3 and $v_3/\varepsilon_3 \approx \text{const.}$ over a wide range of centralities (for details see PRC84 (2011) 024911)
- \implies Idea: Use total charged hadron v_3^{ch} to determine $(\eta/s)_{QGP}$, then check v_2^{ch} to distinguish between MC-KLN and MC-Glauber!

Shooting the elephant

Proof of principle calculation:

- Take ensemble of sum of deformed Gaussian profiles,
 - $s({m r}_\perp)=s_2({m r}_\perp; ilde{arepsilon}_2,\psi_2)+s_3({m r}_\perp; ilde{arepsilon}_3,\psi_3)$, with
 - 1. equal Gaussian radii $R_2^2=R_3^2=8\,{\rm fm}^2$ to reproduce $\langle r_\perp^2\rangle$ of MC-KLN source for 20-30% AuAu
 - 2. $\tilde{\varepsilon}_2$ and $\tilde{\varepsilon}_3$ adjusted such that

$$\overline{\varepsilon}_{2,3} = \langle \varepsilon_{2,3}
angle_{ ext{KLN}}^{20-30\%}$$
 ("MC-KLN-like")

-
$$\bar{\varepsilon}_{2,3} = \langle \varepsilon_{2,3} \rangle_{\text{Cl}}^{20-30\%}$$
 ("MC-Glauber-like")

- 3. $\psi_2 = 0$, ψ_3 (direction of triangularity) distributed randomly
- Use $v_2^\pi(p_T)$ from VISH2+1 for $\eta/s=0.20$ with MC-KLN initial conditions for 20-30% AuAu as "mock data"
- Fit mock $v_2^{\pi}(p_T)$ data with VISH2+1 for "MC-Glauber-like" or "MC-KLN-like" Gaussian initial conditions with both elliptic and triangular deformations by adjusting η/s
 - $\implies (\eta/s)_{\rm KLN} = 0.22$ for "MC-KLN-like", $(\eta/s)_{\rm Gl} = 0.11$ for "MC-Glauber-like"
- Compute $v_3^{\pi}(p_T)$ for "MC-KLN-like" fit with $(\eta/s)_{\text{Gl}}=0.22$ and reproduce it with "MC-Glauber-like" initial condition by readjusting η/s $\implies (\eta/s)_{\text{Gl}}^{v_3} = 0.22$ for "MC-Glauber-like"
- Compute $v_2^{\pi}(p_T)$ for "MC-Glauber-like" initial profiles with readjusted $(\eta/s)_{Gl}^{v_3} = 0.224$ and compare with "MC-Glauber-like" fit to original mock data \implies clearly visible (and measurable) difference!

This exercise proves: (i) Fitting v_3 data with MC-Glauber and MC-KLN initial conditions yields the same η/s (within narrow error band); (ii) The corresponding v_2 fits are quite different, and only one (more precisely: at most one!) of the models will fit the corresponding $v_2(p_T)$ data.

Ulrich Heinz

NED2011, Aug.31 - Sep.3, 2011 14(15)

Conclusions

- Hybrid codes (e.g. VISHNU) that couple viscous hydro evolution of QGP to microscopic hadron cascade now allow a determination of $(\eta/s)_{\text{QGP}}$ with $\mathcal{O}(25\%)$ precision if the initial fireball eccentricity is known to better than 5% relative accuracy
- With VISHNU good global fits that describe all single-particle observables for soft hadron production (spectra, elliptic flow) at all but the most peripheral AuAu collision centralities are obtained, for both MC-Glauber and MC-KLN initial conditions, by using $(\eta/s)_{\rm QGP} = 0.08$ for MC-Glauber and $(\eta/s)_{\rm QGP} = 0.16-0.20$ for MC-KLN. This appears to carry over to PbPb@LHC.
- Event-by-event ideal hydrodynamics with fluctuating initial conditions yields somewhat less v_2/ε_2 than single-shot hydro with smooth average initial profiles \implies Event-by-event hydro may be necessary for a precise extraction of $(\eta/s)_{\rm QGP}$ from charged hadron v_2 . Depending on $(\eta/s)_{\rm QGP}$, event-by-event hydro can matter a lot for proton v_2 .
- While MC-Glauber and MC-KLN give ε_2 that differ by 20-25%, they give almost identical ε_3 (which is not geometric but fluctuation-driven). Only one of them will be able to fit simultaneously both v_2 and v_3 (analysis in progress).
- This should enable us to gain the necessary control over initial conditions to make a precise (i.e. much better than factor 2) measurement of $(\eta/s)_{QGP}$.

Supplements

Global description of AuAu@RHIC spectra and v_2

• $(\eta/s)_{QGP} = 0.08$ for MC-Glauber and $(\eta/s)_{QGP} = 0.16$ for MC-KLN works well for charged hadron, pion and proton spectra and $v_2(p_T)$ at all collision centralities

s95p-PCE: A realistic, lattice-QCD-based EOS

High T: Lattice QCD (latest hotQCD results)

Low T: Chemically frozen HRG $(T_{\rm chem} = 165 \,{\rm MeV})$

No softest point!

s95p-PCE: A realistic, lattice-QCD-based EOS

H₂O: Hydro-to-OSCAR converter

Monte-Carlo interface that samples hydrodynamic Cooper-Frye spectra (including viscous correction δf) on conversion surface to generate particles at positions x_i^{μ} with momenta p_i^{μ} for subsequent propagation in UrQMD (or any other OSCAR-compatible hadron cascade afterburner)

VISHNU: hydro (VISH2+1) + cascade (UrQMD) hybrid Sensitivity to H_2O switching temperature:

With chemically frozen EOS (s95p-PCE), p_T -spectra show very little sensitivity to $T_{\rm sw}$ (Teaney, 2000):

Song, Bass, Heinz, PRC 83 (2011) 024912

200 $A \operatorname{GeV} \operatorname{Au+Au}, b = 7 \operatorname{fm}$

Viscous hydro with fixed $\eta/s = 0.08$ generates more v_2 below T_c than does UrQMD \implies UrQMD is more dissipative

VISH2+1 simulation of UrQMD dynamics requires $T\text{-dependent }(\eta/s)(T)$ that increases towards lower temperature

Is there a switching window in which UrQMD can be simulated by viscous hydro?

Unfortunately NO!

 $(\eta/s)(T)$ extracted by trying to reproduce v_2 independent of switching temperature depends on δ_f input into UrQMD from hadronizing QGP

 $\implies \delta f$ relaxes too slowly in UrQMD to be describable by viscous Israel-Stewart hydro

 \implies extracted $(\eta/s)(T)$ not a proper UrQMD transport coefficient

⇒ UrQMD dynamics can't be described by viscous Israel-Stewart hydrodynamics

Smearing effects from nucleon growth at high energies

