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Variation Principle for
(Ideal) Hydrodynamics

Sl =5 j dtdrL(p,V) =0

Once established,

a. Effective Hydrodynamics (can reduce
DOF)

b. Optimization for Descretization (SPH)

Physically stable -> Event by event

analysis
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Origin of
ViScosity

Micro. degrees



Limitation of Classical VP

How to deal with dissipation?
Dissipation: Effects of “invisible” microscopic degrees of freedom

Origin of
ViScosity

Micro. degrees

0.0,

1(p,V.¢

Hydrodynamics with noises ? : Csernai, Capusta,...



Phenomenological approach
by Rayleigh Dissipative Function

The action contains a microscopic degree S,

L(X, )°() g L(X1 Xl S)
Variation
d oL oL _ . 1 oL dS
—— =% where d(X, X, S) =
dt X O X 0S dt

The form of = is tuned so as to derive a dissipative equation
which we wish to derive.

Hydrodynamics with noises ? : Csernai, Capusta,...



Variational Principle with noise?

How to deal with stochastic
variables, when

the action DOE contains
effects of noises?

| :idtL(X,DX)

With X: Stochastic Variables

*If possible, a wide applicability expected...



Can be approximated by noise ?

L 4
!
:

Fluid element

Undeterminancy of fluid elements
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Can be approximated by noise ?

,4"'; | \
| q ‘«—— Molecules

(inside other
fluid elements)

Fluid element

The effect of molecules can be absorbed into that of noise as
the 1?
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Stochastic Variational Method

Instead modifying the action, the effect of microscopic
degrees of freedom is represented as noise.

classical V.P. d X (t) =V (1)

T

stochastic V.P. % X () =V (t)+&(t) @

Yasue, J. Funct. Anal, 41, 327 (‘81), Guerra&Morato, Phys. Rev. D27, 1774 (‘83),

Nelson, “Quantum Fluctuations” (‘85). 1



Noise changes classical path
noise (molecules)

Brownian partlcle v b4 'y g
R s , | ‘ /e,
';' ‘ | : ' / . /’\.
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7

Cannot walk
straight !

Path by CVP 5



Euler and Lagrange Coordinates

Lagrangian co.

Euler co.

)—» a fluid element at F(R, t)

Euler Langange

_ or _
p(r,t) p=det—|p, p,=p(R1,)

mass density oR /

velocity ot position




Action for Hydrodynamics
(Non-relativistic)

The action is given by kinetic energy and potential energy.

Euler K= §\72 V =¢(p,S)
Lagrange K = £o (8rj v=F~ g(p,S)
2 \ ot Jo,
Action

_jdtjd R(K-V) jdtjd?’R(‘;O@trj %e(p,S)J




Classical variational method



Variations

As the variation, we consideronly r —>r+0r

v—oVv+dor/dt
O0J oor'
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S > S «<——— Constraint from

entropy conservation
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Stochastic variational method

The Lagrangian coordinates of fluid elements are
stochastic variables ->

Derivatives are discontinuous !



How to define velocity ?
| 1

t—dt t t+dt

Jtim TR TRY)

dt—0+ dt

Forward SDE

G _ i r(R,t)—r(R,t—dt)

dt—0+ dt
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How to define velocity ?
| 1

t—dt t t+dt

Jtim TR TRY)

dt—0+ dt

Forward SDE

- . TF(R1)-TF(R,t—dt)
V= lim - @ packward SDE

21




Forward SDE

Forward Stochastic Differential Equation (dt > O)

dr = G(F(R,t),t)dt +/2v - dW (t)

Gaussian White Noise

<dvv (t)> =0 (dW'(t)aw’(t))="dt

22



Backward SDE

Backward Stochastic Differential Equation (dt < O)

dF = G(F(R, 1), t)dt +~/2v - dW (t)

Gaussian White Noise

<dv§ (t)> 0 (dW'(ydW i) =" |dt]
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Backward SDE

Backward Stochastic Differential Equation (dt < O)

dF = G(F(R, 1), t)dt +~/2v - dW (t)

To describe the backward process, ﬁ is not independent of U .

Gaussian White Noise

<dv§ (t)> 0 (dW'(ydW i) =" |dt]
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Consistency Condition

Fokker-Plank equation (Forward)

o p=—V(Ui-W)p

Fokker-Plank equation (Backward)

@tp:—V(ﬁ+VV)p

The two equation must be equivalent.

W (=0+2WInp

25




Two Fluid Velocities

The velocities § and ( are to the mass current.
The mass velocity parallel to the mass current is given by

Op=-V(U-W)p=-V(pV,)

_ u+u
where V. = - - Winp

—

U : the diffusion velocity

V_ : the mass velocity

26



Partial Integration Formula

Because of the two definitions of velocities,
we introduce two different time derivative operators

Mean forward derivative DFf =0

Mean backward derivative I =

stochastic partial integration formula

[ dtE[(DX)-Y]

=E[X (b)Y (b) - X (@)Y (a)]—j:th[x (DY) |




Stochastic Representation of Action

Icla :idtIdSRLI[;O (Z:jz _&8(,0,8)]

yo,

We have to replace V. by Dr and/or r.

1) Dr-Dr
Ve=42) -1 Inverse of 1)
3) Dr-Dr+r-0r et i
We apply 1) | > oss-Pitaevskii Eq.

Isto :zdtdeR(%( I_;)( F)—&E(p,S)j

yo,
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Stochastic Variation for Kinetic Term

As the variation, we consider only r->r+o0r
b b
3 po — — _ 3 — . —
5£dtjd R?(Dr)-(Dr)_IdtId R p, (DF) - (DSF)

= [ dt[d°Rpp,0i - (D5T)

Q)'—;CT

=—jdtjd3Rpoﬁu.5r

From the Ito formula D :(6t -I-ﬁ-V—VA)U

AS



Variation of Action

The variation for the potential term is same as the classical VP.
Thus we have

b ) _
Sl =—£dtjd3Rpo ((&ﬁ-vm)m;vijﬁ;)as

from kinetic term from potential term

Now entropy is not a conserved quantity and 6S =0 .
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Variation of Entropy

If there is non-quasi-static changes of fluids, entropy Is

not conserved. This entropy change will be expressed
as a function of 4, which characterizes the difference of

time scales, .

min

ﬂ, — Tmin = —
Tog PP
In A =0, the process becomes quasi-static and 6S =0. Thus

5S :5(a1/1+a2/12+---)

Lowest order truncation

E— 5S=6(9(p)p)

31



Hydrodynamics

Sl :—idtjd3Rpo ((5t+ﬁ-V—vA)U’+%VPj5F+TZ§S

’

- \ —
1 substitution
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Hydrodynamics

Sl =—Tdtjd3Rpo

((atm-V—vA)

1

U+£VP

yo,

J

ST + — 35S

O

’

\

substitution

p (0, +V,-V)U+V(P—uV-V

)= 2205 (0,

i)=0

Shear viscosity coefficient

n=pv

Second coefficient of viscosity u«=T pg(0)

The contribution from oS effectively changes pressure by 4V -v .

33




U should be replaced with V,, using V. =U—wWln p.

Bulk viscosity coefficient

- i .2 .
Ci = aij +aivrfn _g(v°vm)§ij



U should be replaced with V,, using V. =U—wWIn p.

Bulk viscosity coefficient
2

Navier-Stokes Equation  <-++ A

I TK, Kodama, arXiv:1105.6256

The last term is higher order e{j“ — 5,-V:n +5inJﬁ _g(v.vm)g)‘ij
and should be neglected. 3 35




Results of SVM for NS

m [he most of viscous terms of NS Is
obtained from the kinetic term as noise.

m Differences of interaction among
constituent molecules of various fluids
affect only the form of the potential term.

= The potential term changes only the
definition of pressure.

Thus NS Is naturally obtained from
the framework of SVM !




Generalized Hydrodynamics
(o ng )
P (8, +Vy V)V + .0, (P-¢V¥,)3, —neg‘]—Zaj (naj ;Vlnp/le

When the higher order correction is considered,

p (0, +V,-V)U+V(P— V-V Za( i)=0

Generalized hydrodynamics can be expressed
with

— Consistent with Brenner’s hydrodynamics.

H.Brenner, PRE70 (2004), Int.J.Eng.Sci 47(2011) >



Idealized Case (no potential £ =0)

This term is higher order in NS
SVM leads to l
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Generalized Diffusion Equation

From FP equation,

%pz_pv.vm £ V,=-2Vinp EE) 8tp:gA,0

Diffusion equation

40



Generalized Diffusion Equation

From FP equation,

d _
ap —,()V-Vm + Vm:—%vmpj> 5tp=gA,0

Diffusion equation

The equation obtained in SVM describes the generalized
diffusion processes.

d
dt

d . | ﬁi
p V. —;aj (voo, ! +vpo v )—;aj (vp0,18,In p) =

=—pV-V_




Generalized Diffusion Equation

From FP equation,

%p —pV-\7m + Vm:—%vmpj> 5tp=gA,0

Diffusion equation

The equation obtained in SVM describes the generalized
diffusion processes.

d
dt

Maybe important
=—pV -V even for NS ?

/
d_; = i
p V. —;aj (voo, ! +vpo v )—;aj (vp0,18,In p) =0




Successful Applications of SVM

m Incompressible NS equation —

Nakagomi, Yasue, Zambrini, Marra, Kanno, Cipriano,
Cruzeiro, Shamarova,Arnaudon,....

[]
UIREEUS > classical
[]
Hasegawa, Misawa, Jaekel, TK&TK ...
_/
: : —
m Schroedinger equation
Yasue, Zambrini, Nelson, Davidson, Guerra, Morata,
Nagasawa, Tanaka,...
° > quantum

m Gross-Pitaevskil eguation
Loffred, Morato, TK&TK S
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Concluding Remarks

m The NS equation can be derived from the action
of the ideal fluid by SVM.

m Shear Viscosity in NS comes from noises.

m The higher order correction to NS is important in
discussing generalization of the diffusion eq.

m [he generalized hydro. can be expressed with
two velocities. This Is similar to Brenner's idea.

= Diffusion and NS are macroscopic equations of
different coarse-grained scales.

44



Future Perspective
(further check of SVM)

= Importance of the higher order correction term
(turbulence, glass transition,...)

s Magneto hydrodynamics
m Generalization of the white noise
= Field theory

m Relativistic systems

relativistic Brownian motion:J. Dunkel and P. H'anggi, PR471, 1 (2009),
TK&TK, PRES3, 061111 (2011).
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Future Perspective

Field th
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Another Reduction to Diffusion Eq.

avm_zjlé (VP@VJ—I-V,OaV ) zﬁj(Vp@jvéi |np):0

If we chose the Initial condition satisfying (1), dynamics is
described by the diffusion equation (2).

49



Noether Theorem

We consider the following linear transform,

r(t) G(a)r(t) G(0)=I

When the Lagrangian is invariant, we obtain

stochastic Neother theorem

defj o o dG(a)
dt | |oDr(t) oDr(t)| da

F(t)} - 0.

_ d| oL dG(a)
Classical NT

dt| oF(t) de

F(t)}

50




History of Brownian Motion

1882 the discovery of the Brownian motion  R. Brown

1905 the fluctuation-dissipation theorem A. Einstein
1908 Avogadro’s number J. B. Perrin
Langevin equation P. Langevin
1940~ Mathematical formulation K. Ito
K. Yoshida
N. Wiener
P. Levy

However, the theory of the relativistic Brownian motion has not yet established.

Hakin (1965)

Ben-Ya’acov (1981)
Debbasch,Mallick&Rivet (1997)
Oron&Horwitz (2003)
Dubkel&Haenggi (2005)
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