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Variation Principle for 

(Ideal) Hydrodynamics

Once established, 

a. Effective Hydrodynamics (can reduce 

DOF)

b. Optimization for Descretization (SPH)

Physically stable -> Event by event 

analysis
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Limitation of Classical VP

How to deal with dissipation? 

Dissipation:  Effects of  “invisible” microscopic degrees of freedom

( , )I v , ,, ).., .(I qv q
Micro. degrees

Origin of 

viscosity
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Hydrodynamics with noises ?  :  Csernai, Capusta,…



Phenomenological approach

by Rayleigh Dissipative Function
The action contains a microscopic degree S,

( , )L x x ( , , )L x x S

Variation

d L L

dt x x

 
  

 

1
( , , )

L dS
x x S

x S dt


 


where

The form of      is tuned so as to derive a dissipative equation 

which we wish to derive.
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Variational Principle with noise? 

( , )

b

a

I dtL X DX 
a

b
How to deal with stochastic

variables, when

the action DOE contains

effects of noises?

•If possible, a wide applicability expected... 
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With X: Stochastic Variables



Can be approximated by noise ?

Fluid element

Undeterminancy of fluid elements
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Can be approximated by noise ?

Fluid element

Molecules 

(inside other 

fluid elements)

The effect of molecules can be absorbed into that of noise as 

the Brownian Motion !?
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Stochastic Variational Method

Instead modifying the action, the effect of microscopic 

degrees of freedom is represented as noise. 

( ) ( )
d

X t V t
dt



( ( )) ( )
d

X t V t t
dt

 

classical V.P.

stochastic V.P.

Yasue, J. Funct. Anal, 41, 327 („81), Guerra&Morato, Phys. Rev. D27, 1774 („83),

Nelson, “Quantum Fluctuations” („85).
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Path by CVP

Noise changes classical path

Cannot walk 

straight !

noise (molecules)

Brownian particle
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Euler and Lagrange Coordinates

0 ( , )aR t 

( , )v r t

( , )r t

Euler co.

Lagrangian co.

( , )r R t

( , )r R t

t





a fluid element at
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Euler Langange

mass density

velocity

Initial 

position

14



Action for Hydrodynamics

(Non-relativistic)

The action is given by kinetic energy and potential energy.
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Classical variational method



Variations
As the variation, we consider only r r r 

S S

/v v d r dt 

( / )

i

i j j
ij

J r

J r R R

 
 

 
 

   


Constraint from 

entropy conservation

0I 
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v v
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= pressure, P
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Variations
As the variation, we consider only r r r 
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Stochastic variational method

The Lagrangian coordinates of fluid elements are 

stochastic variables ->

Derivatives are discontinuous !



How to define velocity ?

r

t t dtt dt
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Forward SDE
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Backward SDE
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Forward SDE

( ( , ), ) 2 ( )dr u r R t t dt dW t  

 0dt Forward Stochastic Differential Equation

( ) 0dW t  ( ) ( )i j ijdW t dW t dt

Gaussian White Noise
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Backward SDE

( ( , ), ) 2 ( )dr u r R t t dt dW t  

 0dt 

( ) 0dW t  ( ) ( ) | |i j ijdW t dW t dt

Gaussian White Noise

Backward Stochastic Differential Equation
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Backward SDE

( ( , ), ) 2 ( )dr u r R t t dt dW t  

 0dt 

( ) 0dW t  ( ) ( ) | |i j ijdW t dW t dt

Gaussian White Noise

Backward Stochastic Differential Equation
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To describe the backward process,    is not independent of    .u u



Consistency Condition

Fokker-Plank equation (Forward)

 t u      

Fokker-Plank equation (Backward)

 t u      

The two equation must be equivalent.

2 lnu u    
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Two Fluid Velocities

The velocities        and      are not parallel to the mass current.

The mass velocity parallel to the mass current is given by 
u u

  ( )t mu v         

where ln
2

mv
u u

u  


   

mv

u : the diffusion velocity

: the mass velocity
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Partial Integration Formula

Mean forward derivative D ur 

Mean backward derivative rD u

stochastic partial integration formula
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Because of the two definitions of velocities,

we introduce two different time derivative operators
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Stochastic Representation of Action
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We have to replace     by        and/or       .v Dr rD
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Gross-Pitaevskii Eq.

Inverse of 1)

We apply 1)
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Stochastic Variation for Kinetic Term

As the variation, we consider only r r r 

3 30
0( ) ( ) ( ) ( )

2
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dt d R Dr Dr dt d R Dr D r
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0 ( )

b

a
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3

0

b

a

dt d R u rD    

 tDu u u    From the Ito formula
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Variation of Action

 3

0

1
b

t

a

T
I dt d R u u P r S    

 

  
          

  
 

Now entropy is not a conserved quantity and             .0S 

The variation for the potential term is same as the classical VP.

Thus we have

from kinetic term from potential term

30



Variation of Entropy

 ( )S g   

 1

2

2S a a    

min min

/hyd

 


  
 

If there is non-quasi-static changes of fluids, entropy is 

not conserved. This entropy change will be expressed 

as a function of    , which characterizes the difference of 

time scales,



Lowest order truncation

In         ,  the process becomes quasi-static and             . Thus0  0S 
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Hydrodynamics
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substitution
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Hydrodynamics

 3

0

1
b

t

a

T
I dt d R u u P r S    

 

  
          

  
 

      0t j j

j

m mv vu uP           

Shear viscosity coefficient  

Second coefficient of viscosity ( )T g  

The contribution from      effectively changes pressure by            . S
mv

substitution
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3

m i j

ij j m i m m ije v v v     

should be replaced with      using                              . u mv lnmv u    

Bulk viscosity coefficient
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2

3
   

2
( )

3

m i j

ij j m i m m ije v v v     

should be replaced with      using                              . u mv lnmv u    

Bulk viscosity coefficient

The last term is higher order 

and should be neglected.

TK, Kodama, arXiv:1105.6256
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Results of SVM for NS

 The most of viscous terms of NS is 

obtained from the kinetic term as noise.

 Differences of interaction among 

constituent molecules of various fluids 

affect only the form of the potential term.

 The potential term changes only the 

definition of pressure. 

Thus NS is naturally obtained from 

the framework of SVM !
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Generalized Hydrodynamics

    ln 0m

t m m j m ij ij j j

j j

v v P v e


     


 
               

 
 

      0t j j

j

m mv vu uP           

When the higher order correction is considered,

Generalized hydrodynamics can be expressed 

with two fluid velocities.

Consistent with Brenner‟s hydrodynamics.

H.Brenner, PRE70 (2004), Int.J.Eng.Sci 47(2011) 37



Idealized Case (no potential        ) 0 

SVM leads to 

   l 0n
m m m

i j i

j i j j j i

jj

d
v v v

dt
            

This term is higher order in NS

mvIn macro scale where the time dependence of     is negligible,
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Generalized Diffusion Equation

m

d
v

dt
   

From FP equation,

ln
2

mv


  

Diffusion equation

2
t
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Generalized Diffusion Equation
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Diffusion equation

2
t


   

The equation obtained in SVM describes the generalized

diffusion processes.
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d
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dt
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j i j j j i
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d
v v v

dt
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Generalized Diffusion Equation

m

d
v

dt
   

From FP equation,

ln
2

mv


  

Diffusion equation

2
t


   

The equation obtained in SVM describes the generalized

diffusion processes.

m

d
v

dt
   

   l 0n
m m m

i j i

j i j j j i

jj

d
v v v

dt
            

Maybe important  

even for NS ?
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Successful Applications of SVM
 Incompressible NS equation

 Compressible NS equation

 Diffusion phenomena

 Schroedinger equation

 Gross-Pitaevskii equation

Nakagomi, Yasue, Zambrini, Marra, Kanno, Cipriano, 

Cruzeiro, Shamarova,Arnaudon,....

Hasegawa, Misawa, Jaekel, TK&TK ...

Loffred, Morato, TK&TK

Yasue, Zambrini, Nelson, Davidson, Guerra, Morata, 

Nagasawa, Tanaka,…

TK&TK classical

quantum
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Concluding Remarks

 The NS equation can be derived from the action 

of the ideal fluid by SVM.

 Shear Viscosity in NS comes from noises.

 The higher order correction to NS is important in 

discussing generalization of the diffusion eq. 

 The generalized hydro. can be expressed with 

two velocities. This is similar to Brenner‟s idea.

 Diffusion and NS are macroscopic equations of 

different coarse-grained scales.

44



Future Perspective 

(further check of SVM)
 Importance of the higher order correction term 

(turbulence, glass transition,…)

 Magneto hydrodynamics

 Generalization of the white noise

 Field theory

 Relativistic systems

45

relativistic Brownian motion:J. Dunkel and P. H¨anggi, PR471, 1 (2009),

TK&TK, PRE83, 061111 (2011).
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Another Reduction to Diffusion Eq.

   ln 0
m m m

i j i

j i j j j i

j j

d
v v v

dt
               

If we assume ln (1)mv    

(Note: the coefficient is different from before)

(2)t    

If we chose the initial condition satisfying  (1),  dynamics is 

described by the diffusion equation (2).
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Noether Theorem
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  ( )G r t( )r t  0G I

We consider the following linear transform,

When the Lagrangian is invariant, we obtain

stochastic Neother theorem
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( ) 0.
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dGd L
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Classical NT



History of Brownian Motion

However, the theory of  the relativistic Brownian motion has not yet established.  

1882 the discovery of  the Brownian motion     R. Brown

1905 the fluctuation-dissipation theorem          A. Einstein

1908   Avogadro’s number                                 J. B. Perrin

Langevin equation                                   P. Langevin 

1940~ Mathematical  formulation                      K. Ito

K. Yoshida

N. Wiener

P. Levy

Hakin (1965)

Ben-Ya’acov (1981)

Debbasch,Mallick&Rivet (1997)

Oron&Horwitz (2003)

Dubkel&Haenggi (2005)
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Variation Principle for 

(Ideal) Hydrodynamics

a. Principle of Relativity

b. Gauge Principle

c. Uncertainty Principle

d. Variational Principle
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