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How to study the QCD phase diagram...

... be brave and solve

Z (T , µB) =
∫
D(A,q,q†)e−SE

QCD

ab initio and nonperturbatively,

... be strong and collide heavy
ions at ultrarelativistic energies,

... be creative and study effec-
tive models of QCD. Leff



Being brave
The critical point in lattice QCD

Methods to explore the T − µB–plane

I reweighting

(Z. Fodor, S.D. Katz, JHEP 0203 (2002)) (G. Endrodi, Z. Fodor, S. D. Katz, K. K. Szabo, JHEP 1104
(2011))

I imaginäres µB (de Forcrand, Philipsen): µc
B > 500 MeV



Being brave



Being strong
The critical point in heavy-ion collisions

non-monotonic fluctuations in pion and proton multiplicities by
coupling to the order parameter of chiral symmetry

〈∆np∆nk 〉 = v2
p δpk +

1
m2

σ

G2

T
v2

p v2
k

ωpωk

(M. A. Stephanov, K. Rajagopal and E. V. Shuryak,

PRD 60 (1999), NA49 collaboration J. Phys. G 35

(2008))

Higher moments, e.g. Kurtosis ∝ ξ7

(M. A. Stephanov, PRL 102 (2009)

(STAR collaboration, PRL 105 (2010))



Being strong
The critical point in dynamic systems

long relaxation times near a critical point⇒ critical slowing down
⇒ the system is driven out of equilibrium

d
dt

mσ(t) = −Γ[mσ(t)](mσ(t)−
1

ξeq(t)
)

with Γ(mσ) =
A
ξ0
(mσξ0)

z

z = 3
(dynamic) critical exponent

⇒ ξ ∼ 1.5− 2 fm

(B. Berdnikov and K. Rajagopal, PRD 61 (2000)); D.T.Son, M.Stephanov, PRD 70 (2004); M.Asakawa, C.Nonaka, Nucl. Phys. A774 (2006))



Being strong



Being creative
The linear sigma model with constituent quarks

L = q
[
iγµ∂µ − g (σ + iγ5τ~π)

]
q + 1/2

(
∂µσ

)2
+ 1/2

(
∂µ~π

)2 −U (σ, ~π)

U (σ, ~π) =
λ2

4

(
σ2 + ~π2 − ν2

)2
− hqσ−U0

(M.Gell-Mann, M.Levy, Nuovo Cim. 16, (1960))

(O. Scavenius, A. Mocsy, I.N. Mishustin, D.H. Rischke, PRC 64
(2001))



The linear sigma model with constituent quarks
The effective potential at µB = 0

Veff = −
T
V

ln Z = −dqT
∫ d3p

(2π)3 ln
(

1 + exp(−E
T
)

)
+ U (σ, ~π)

Tune the strength of the phase
transition via the coupling g.

first order phase transition

dynamic symmetry breaking



Being creative



Phase transitions - thermodynamically

first order phase transition
I two degenerate minima

separated by a barrier
I nucleation
I spinodal decomposition

(I.N.Mishustin, PRL 82 (1999); Ph.Chomaz, M.Colonna,

J.Randrup, Physics Reports 389 (2004))

critical point

I m2
σ = ∂2V

∂σ2 → 0
I correlation length diverges

ξ = 1
mσ
→ ∞

I universality classes (for QCD:
3d Ising model)⇒ 〈σ2〉 ∝ ξ2

I critical opalescence



Chiral fluid dynamics

I Fluid dynamic description
of a heavy-ion collision

I Model with a chiral phase
transition

I Dynamics of the order
parameter

(I. N. Mishustin and O. Scavenius, PRL 83 (1999); K. Paech, H. Stöcker and A. Dumitru, PRC 68 (2003))

Full nonequilibrium description with
relaxational dynamics by including
damping and noise!



Chiral fluid dynamics

I Langevin equation for the sigma field: damping and noise from
the interaction with the quark fluid = heat bath

∂µ∂µσ +
δU
δσ

+ gρs + η∂t σ = ξ

I Fluid dynamic expansion of the quark fluid = heat bath

T µν
q = (e + p)uµuν − pgµν

I Energy and momentum exchange

∂µT µν
q = Sν = −∂µT µν

σ

=⇒ Selfconsistent approach within the two-particle irreducible effec-
tive action!

(MN, S. Leupold, C. Herold, M. Bleicher, PRC 84 (2011))



The two-particle irreducible (2PI) effective action

for the σ mean field and the quark propagators Sab

Γ[σ,S] = Scl[σ]− iTr ln S−1 − iTrS−1
0 S + Γ2[σ,S] ,

equation of motion for σ and Sab

δΓ[σ,S]

δσa = 0 and
δΓ[σ,S]

δSab = 0

give conserving transport equations if the self-energy is given by

−iΣab(x , y) = − δΓ2[σ,S]

δSab(x , y)
.

(J. M. Luttinger, J. C. Ward, Phys. Rev. 118 (1960); G. Baym, L. P. Kadanoff, Phys. Rev. 124 (1961); G. Baym, Phys. Rev. 127 (1962))



The two-particle irreducible effective action

Γ2[σ,S] = g
∫
C

d4xtr(S++(x , x)σ+(x)+S−−(x , x)σ−(x))

equation of motion for the σ mean field

− δScl[σ]

δσa =
δΓ2[σ,S]

δσa = gtrSaa(x , x)

the effective action along the contour

Γ[σ,S] =gtrS++
th (x , x)∆σ(x)− T

V
ln Zth

+
∫

d4xD[σ̄](x)∆σ(x)

+
i
2

∫
d4x

∫
d4y∆σ(x)I [σ̄](x , y)∆σ(y)

with ∆σ = σ+ − σ− and σ̄ = 1/2(σ+ + σ−) on the contour.



The 2PI effective action - term by term

equilibrium properties, equation of state:

−T
V

ln Zth

lowest order in the equation of motion for the sigma field:

gtrS++
th (x , x)∆σ(x)

dissipative processes: ∫
d4xD[σ̄](x)∆σ(x)

origin of fluctuations:

i
2

∫
d4x

∫
d4y∆σ(x)I [σ̄](x , y)∆σ(y)



The origin of fluctuations

imaginary part of Γ is interpreted as stochastic fluctuations

exp[−1
2

∫
d4x

∫
d4y∆σ(x)I(x , y)∆σ(y)]

=
∫
DξP[ξ] exp[i

∫
d4xξ(x)∆σ(x)]

P[ξ] Gaussian measure with

〈ξ〉 = 0

〈ξ(t)ξ(t ′)〉 = I−1(t ,x; t ′,y)



Semiclassical equation of motion for the sigma field

∂µ∂µσ +
δU
δσ

+ gρs + η∂t σ = ξ

damping term η and noise ξ for k = 0

η = g2 dq

π

(
1− 2nF(

mσ

2
)
) (m2

σ
4 −m2

q)
3
2

m2
σ

〈ξ(t)ξ(t ′)〉 = 1
V

δ(t− t ′)mση coth
(mσ

2T

)
below Tc damping by the interaction with the hard pion modes, apply
η = 2.2/fm
(T. S. Biro and C. Greiner, PRL 79 (1997))



Relaxation for an isothermal heat bath

initialize the sigma field in equilibrium at T = 160MeV > Tc , then
quench the system (i.e. a sudden temperature drop from T = 160
MeV to T < Tc)

first order phase transition

long relaxation times at the
phase transition due to

phase coexistence

critical point

long relaxation times at the
critical point due to

critical slowing down



Equilibration for a heat bath with reheating
first order phase transition

relaxation of the σ field

temperature

critical point

relaxation of the σ field

temperature

long relaxation times near the phase transition
(MN, S. Leupold, M. Bleicher, arXiv:1105.1396)



Energy-momentum conservation

Energy-momentum tensor of the
coupled system is conserved for
the full propagator:

∂µT µν
q = gtrS++(x , x)

∂µT µν
σ = −gtrS++(x , x)

HERE, approximation of an ideal
fluid and the source term

∂µT µν
q =gtrS++

th (x , x)

= −∂µT µν
σ = Sν

first order phase transition

critical point

(MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962)



Time evolution

energy density
critical point

first order phase transition

sigma field
critical point

first order phase transition



Reheating and supercooling

relaxation of the σ field temperature

I oscillations at the critical point
I supercooling of the system at the first order phase transition
I reheating effect visible at the first order phase transition



Intensity of sigma fluctuations

dNσ

d3k
=

(ω2
k |σk |2 + |∂t σk |2)
(2π)32ωk

ωk =
√
|k |2 + m2

σ

mσ =
√

∂2Veff/∂σ2|σ=σeq

deviation from equilibrium

critical point

first order phase transition

(MN, M. Bleicher, S. Leupold, I. Mishustin, arXiv:1105.1962)



Pion fluctuations

So far: pion fluctuations were not considered and ~π = 〈~π〉 = 0.
Now: extend the model to explicitly propagate pion fluctuations, too.

critical point first order phase transition

Larger fluctuations in the pionic field in a scenario with a first order
phase transition⇒ potential formation of disoriented chiral
condensates!



Summary

I chiral fluid dynamics including damping and noise
I energy-momentum conservation by the back reaction on the heat

bath
I effects of supercooling, reheating, critical slowing down
I enhanced fluctuations at the first order phase transition

I Polyakov-loop extended chiral fluid dynamics⇒ talk by
Christoph Herold on Monday, TORIC meeting

In collaboration with: Marcus Bleicher, Stefan Leupold, Igor Mishustin, Carsten Greiner,
Christoph Herold



Fluid dynamics

equation of state, pressure:

p(σ,T ) = −Veff(σ,T ) + U(σ)

energy density:

e(σ,T ) = T
∂p(σ,T )

∂T
− p(σ,T )

This relation is obtained from thermodynamic consistency, which is
guaranteed by the 2PI effective action!



Initial conditions

temperature profile, Tini = 160 MeV:

T (~x , t = 0) =
Tini

(1 + exp((r̃ − R̃)/ã))(1 + exp ((|z| − lz)/ã))

sigma field:
σ(~x , t = 0) = σeq + δσ(~x) .

with
〈δσ2〉 = T

V
1

m2
σ

.

energy density in units of e0

e(~x , t = 0) = eeq(T , σ)


