Phenomenology from the extended linear sigma model: status of the scalar particles

Péter Kovács (Wigner RCP)

NeD/TURIC-2012

In collaboration with Gy. Wolf (Wigner RCP), F. Giacosa, D. Parganlija, D. Rischke (Uni. Frankfurt)

- Motivation, scalar mesons
- Chiral symmetry, effective models
- Axial(vector) meson extended linear σ -model
- Technical difficulty: particle mixing
- Tree-level masses, Decay widths
- Parametrization
- Particle identification
- Conclusion

Scalar mesons

	Mass (MeV)	width (MeV)	decays	
$a_0(980)$	(980 ± 20)	50 - 100	$\pi\pi$ dominant	
$a_0(1450)$	(1474 ± 19)	(265 ± 13)	$\pi\eta,\pi\eta',Kar{K}$	
$K_0^{\star}(800) = \kappa$	(676 ± 40)	(548 ± 24)	$K\pi$	
$K_0^{\star}(1430)$	(1425 ± 50)	(270 ± 80)	$K\pi$ dominant	
$f_0(600) = \sigma$	400 - 1200	600 - 1000	$\pi\pi$ dominant	
$f_0(980)$	(980 ± 10)	40 - 100	$\pi\pi$ dominant	
$f_0(1370)$	1200 - 1500	200 - 500	$\pi\pipprox 250, Kar{K}pprox 150$	
$f_0(1500)$	(1505 ± 6)	(109 ± 7)	$\pi\pipprox 38$, $Kar{K}pprox 9.4$	
$f_0(1710)$	(1720 ± 6)	(135 ± 8)	$\pi\pipprox 30, Kar{K}pprox 71$	

scalar nonet: $a_0, K_0, 2 f_0 \rightarrow \text{pseudoscalar nonet: } \pi, K, \eta, \eta'$ Possible scalar states: $\bar{q}q, \bar{q}q\bar{q}q$, meson-meson molecules, glueballs multiquark states: $f_0(980), a_0(980), f_0(600), K_0^{\star}(800)$??? meson-meson bound state $(K\bar{K})$: $f_0(980)$??? glueballs: $f_0(1500), f_0(1710)$???

Chiral symmetry

If the quark masses are zero (chiral limit) \implies QCD invariant under the following global transformation (chiral symmetry):

 $U(3)_L \times U(3)_R \simeq U(3)_V \times U(3)_A = SU(3)_V \times SU(3)_A \times U(1)_V \times U(1)_A$

 $U(1)_V$ term \longrightarrow barion number conservation

 $U(1)_A$ term \longrightarrow broken through axial anomaly

 $SU(3)_A$ term \longrightarrow broken down by any quark mass

 $SU(3)_V$ term \longrightarrow broken down to $SU(2)_V$ if $m_u = m_d \neq m_s$ (isospin symmetry) \longrightarrow totally broken if $m_u \neq m_d \neq m_s$ (realized in nature)

Since QCD is very hard to solve \longrightarrow low energy effective models can be set up \longrightarrow reflecting the global symmetries of QCD \longrightarrow degrees of freedom: observable particles instead of quarks and gluons

Linear realization of the symmetry \longrightarrow linear sigma model (nonlinear representation \longrightarrow chiral perturbation theory (ChPT))

Pseudoscalar and Scalar Meson nonets

$$\Phi_{PS} = \sum_{i=0}^{8} \pi_i T_i = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\eta_N + \pi^0}{\sqrt{2}} & \pi^+ & K^+ \\ \pi^- & \frac{\eta_N - \pi^0}{\sqrt{2}} & K^0 \\ K^- & \bar{K}^0 & \eta_S \end{pmatrix} (\sim \bar{q}_i \gamma_5 q_j)$$

$$\Phi_S = \sum_{i=0}^{8} \sigma_i T_i = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\sigma_N + a_0^0}{\sqrt{2}} & a_0^+ & K_S^+ \\ a_0^- & \frac{\sigma_N - a_0^0}{\sqrt{2}} & K_S^0 \\ K_S^- & \bar{K}_S^0 & \sigma_S \end{pmatrix} (\sim \bar{q}_i q_j)$$

Particle contents:

Pseudoscalars: $\pi(138), K(495), \eta(548), \eta'(958)$ Scalars: $a_0(980 \text{ or } 1450), K_0^{\star}(800 \text{ or } 1430), (\sigma_N, \sigma_S) : 2 \text{ of } f_0(600, 980, 1370, 1500, 1710)$ $\begin{aligned} & \left(\mathsf{Pseudoscalar-scalar} \right) \mathsf{linear sigma model} \\ & \mathcal{L} = \mathsf{Tr}(\partial_{\mu} \Phi^{\dagger} \partial^{\mu} \Phi - m_{0}^{2} \Phi^{\dagger} \Phi) - \lambda_{1} \left(\mathsf{Tr}(\Phi^{\dagger} \Phi) \right)^{2} - \lambda_{2} \mathsf{Tr}(\Phi^{\dagger} \Phi)^{2} \\ & + c \left(\mathsf{det}(\Phi) - \mathsf{det}(\Phi^{\dagger}) \right)^{2} + \mathsf{Tr}(\hat{\epsilon}(\Phi + \Phi^{\dagger})) \end{aligned}$

$$\Phi = \sum_{i=0}^{8} (\sigma_i + i\pi_i) T_i, \qquad \hat{\epsilon} = \sum_{i=0}^{8} \varepsilon_i T_i$$

pseudo(scalar) fields: π_i , σ_i

U(3) generators: $T_0 := \frac{1}{\sqrt{6}}\mathbf{1}, T_i = \frac{\lambda_i}{2}$ $i = 1 \dots 8$

determinant breaks $U_A(1)$ symmetry explicit symmetry breaking: external fields $\varepsilon_0, \varepsilon_8 \neq 0 \iff m_u = m_d \neq 0, m_s \neq 0$ or $\varepsilon_0, \varepsilon_3, \varepsilon_8 \neq 0 \iff m_u \neq m_d \neq 0, m_s \neq 0$

non strange – strange base:

$$\varphi_N = \sqrt{2/3}\varphi_0 + \sqrt{1/3}\varphi_8,$$

$$\varphi_S = \sqrt{1/3}\varphi_0 - \sqrt{2/3}\varphi_8, \qquad \varphi \in (\sigma, \pi, \varepsilon)$$

broken symmetry: non-zero condensates $\langle \sigma_N \rangle, \langle \sigma_S \rangle \longleftrightarrow \Phi_N, \Phi_S$

unknown parameters: $m_0, \lambda_1, \lambda_2, c, \Phi_N, \Phi_S, \varepsilon_N, \varepsilon_S$ (at T = 0: 6 parameters)

technical difficulty: mixing in the N - S sector

Vector Meson nonets

$$V^{\mu} = \sum_{i=0}^{8} \rho_{i}^{\mu} T_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{\omega_{N} + \rho^{0}}{\sqrt{2}} & \rho^{+} & K^{\star +} \\ \rho^{-} & \frac{\omega_{N} - \rho^{0}}{\sqrt{2}} & K^{\star 0} \\ K^{\star -} & \overline{K}^{\star 0} & \omega_{S} \end{pmatrix}^{\mu}$$
$$A_{V}^{\mu} = \sum_{i=0}^{8} b_{i}^{\mu} T_{i} = \frac{1}{\sqrt{2}} \begin{pmatrix} \frac{f_{1N} + a_{1}^{0}}{\sqrt{2}} & a_{1}^{+} & K_{1}^{+} \\ \frac{a_{1}^{-}}{\sqrt{2}} & \frac{f_{1N} - a_{1}^{0}}{\sqrt{2}} & K_{1}^{0} \\ K_{1}^{-} & \overline{K}_{1}^{0} & f_{1S} \end{pmatrix}^{\mu}$$

Particle contents: Vector mesons: $\rho(770), K^*(894), \omega_N = \omega(782), \omega_S = \phi(1020)$ Axial vectors: $a_1(1230), K_1(1270), f_{1N}(1280), f_{1S}(1426)$

Vector meson extended linear sigma model

$$\begin{split} \mathcal{L}_{\text{vec}} &= \text{Tr}[(D_{\mu}\Phi)^{\dagger}(D_{\mu}\Phi)] - m_{0}^{2}\text{Tr}(\Phi^{\dagger}\Phi) - \lambda_{1}[\text{Tr}(\Phi^{\dagger}\Phi)]^{2} - \lambda_{2}\text{Tr}(\Phi^{\dagger}\Phi)^{2} \\ &- \frac{1}{4}\text{Tr}(L_{\mu\nu}^{2} + R_{\mu\nu}^{2}) + \text{Tr}\left[\left(\frac{m_{1}^{2}}{2} + \Delta\right)(L_{\mu}^{2} + R_{\mu}^{2})\right] + \text{Tr}[\hat{\epsilon}(\Phi + \Phi^{\dagger})] \\ &+ c_{1}(\det \Phi - \det \Phi^{\dagger})^{2} + i\frac{g_{2}}{2}(\text{Tr}\{L_{\mu\nu}[L^{\mu}, L^{\nu}]\} + \text{Tr}\{R_{\mu\nu}[R^{\mu}, R^{\nu}]\}) \\ &+ \frac{h_{1}}{2}\text{Tr}(\Phi^{\dagger}\Phi)\text{Tr}(L_{\mu}^{2} + R_{\mu}^{2}) + h_{2}\text{Tr}[(L_{\mu}\Phi)^{2} + (\Phi R_{\mu})^{2}] + 2h_{3}\text{Tr}(L_{\mu}\Phi R^{\mu}\Phi^{\dagger}). \\ &+ g_{3}[\text{Tr}(L_{\mu}L_{\nu}L^{\mu}L^{\nu}) + \text{Tr}(R_{\mu}R_{\nu}R^{\mu}R^{\nu})] + g_{4}[\text{Tr}(L_{\mu}L^{\mu}L_{\nu}L^{\nu}) + \text{Tr}(R_{\mu}R^{\mu}R_{\nu}R^{\nu})] \\ &+ g_{5}\text{Tr}(L_{\mu}L^{\mu}) \text{Tr}(R_{\nu}R^{\nu}) + g_{6}[\text{Tr}(L_{\mu}L^{\mu})\text{Tr}(L_{\nu}L^{\nu}) + \text{Tr}(R_{\mu}R^{\mu})\text{Tr}(R_{\nu}R^{\nu})], \end{split}$$

where

$$D^{\mu}\Phi = \partial^{\mu}\Phi - ig_1(L^{\mu}\Phi - \Phi R^{\mu}) - ieA^{\mu}[T_3, \Phi]$$

$$\begin{split} R^{\mu} &= \sum_{i=0}^{8} (\rho_{i}^{\mu} - b_{i}^{\mu}) T_{i} \\ L^{\mu} &= \sum_{i=0}^{8} (\rho_{i}^{\mu} + b_{i}^{\mu}) T_{i} \\ L^{\mu\nu} &= \partial^{\mu} L^{\nu} - ieA^{\mu} [T_{3}, L^{\nu}] - \{\partial^{\nu} L^{\mu} - ieA^{\nu} [T_{3}, L^{\mu}]\} \\ R^{\mu\nu} &= \partial^{\mu} R^{\nu} - ieA^{\mu} [T_{3}, R^{\nu}] - \{\partial^{\nu} R^{\mu} - ieA^{\nu} [T_{3}, R^{\mu}]\} \end{split}$$

Parameters of the Lagrangian at T = 0:

 $m_0, \lambda_1, \lambda_2, c_1, m_1, g_1, g_2, h_1, h_2, h_3, \delta_N, \delta_S, \Phi_N, \Phi_S \longrightarrow \text{choose } \delta_N = 0 \longrightarrow 13 \text{ unknown parameters}$

particles (mesons up to $\sim 2 \text{ GeV}$):

- pseudoscalars: $\pi(138), K(495), \eta(548), \eta'(958)$
- vector mesons: $\rho(770), K^{\star}(894), \omega(782), \Phi(1020)$
- axialvector-mesons: $a_1(1230)$, $K_1(1270)$, $f_1(1280)$, $f_1(1426)$
- scalars: more physical states than we can describe:

 $\begin{array}{l} 2 \ a_0 \text{'s} \ (a_0(980), a_0(1450)), \ 2 \ K_S \text{'s} \ (K_0^{\star}(800), K_0^{\star}(1430)), \\ 5 \ f_0 \text{'s} \ (f_0(600), f_0(980), f_0(1370), f_0(1500), f_0(1710)) \end{array}$

Spontaneous symmetry breaking and particle mixing

SSB \longrightarrow through Higgs mechanism generates particle masses \longrightarrow since vacuum has zero quantum numbers \longrightarrow only $\sigma_0, \sigma_8, \sigma_3$ (equivalently $\sigma_N, \sigma_S, \sigma_3$) can have non-zero vev ($\sigma_3 \longrightarrow$ isospin violation \longrightarrow neglected)

note: pion/kaon condensates \longrightarrow even other σ 's have non-zero expectation values (\longrightarrow parity, charge violation)

shifting with vev in the Lagrangian: $\sigma_i \rightarrow \sigma_i + \Phi_i$ (\longrightarrow mass generation)

- For (pseudo)scalars this shifting results in particle mixing in the N S sector $\longrightarrow \sigma_N/\pi_N, \sigma_S/\pi_S$ fields are not mass eigenstates \longrightarrow orthogonal transformations needed to resolve
- For (axial)vectors —> mixing between different nonets —> resolved by certain field shiftings

Mixing in the extended model

Making the $\sigma_{N/S} \rightarrow \sigma_{N/S} + \Phi_{N/S}$ transformation in \mathcal{L}_{vec} Quadratic terms after shifting:

$$\mathcal{L}^{quad} = -\frac{1}{2}\sigma_a(\partial^2\delta_{ab} + (m_{\sigma}^2)_{ab})\sigma_b - \frac{1}{2}\pi_a(\partial^2\delta_{ab} + (m_{\pi}^2)_{ab})\pi_b$$
$$-\frac{1}{2}\rho_a^{\mu}\left[(-g_{\mu\nu}\partial^2 + \partial_{\mu}\partial_{\nu})\delta_{ab} - g_{\mu\nu}(m_{\rho}^2)_{ab}\right]\rho_b^{\nu}$$
$$-\frac{1}{2}b_a^{\mu}\left[(-g_{\mu\nu}\partial^2 + \partial_{\mu}\partial_{\nu})\delta_{ab} - g_{\mu\nu}(m_b^2)_{ab}\right]b_b^{\nu}$$
$$-\frac{1}{2}\rho_a^{\mu}(g_1f_{abc}v_c\partial_{\mu})\sigma_b - \frac{1}{2}\sigma_a(g_1f_{abc}v_c\partial_{\mu})\rho_b^{\mu}$$
$$-\frac{1}{2}b_a^{\mu}(g_1d_{abc}v_c\partial_{\mu})\pi_b + \frac{1}{2}\pi_a(g_1d_{abc}v_c\partial_{\mu})b_b^{\mu}$$

Mixing in the N - S sector for σ and $\pi \longrightarrow (m_{\sigma}^2)_{NS} \neq 0$, $(m_{\pi}^2)_{NS} \neq 0$ resolved by simple 2 dim. orthogonal transformations

Mixing between nonets $\longrightarrow \rho_a^{\mu} \leftrightarrow \sigma$ and $b_a^{\mu} \leftrightarrow \pi$ take a closer look \longrightarrow

Explicit form of nonet mixing crossterms:

$$\begin{split} &-g_{1}\phi_{N}(f_{1N}^{\mu}\partial_{\mu}\eta_{N}+\vec{a}_{1}^{\mu}\cdot\partial_{\mu}\vec{\pi})-\sqrt{2}g_{1}\phi_{S}f_{1S}^{\mu}\partial_{\mu}\eta_{S}-\left(\frac{g_{1}}{\sqrt{2}}\phi_{S}+\frac{g_{1}}{2}\phi_{N}\right)\left(K_{1}^{\mu0}\partial_{\mu}\bar{K}^{0}+K_{1}^{\mu0}\partial_{\mu}\bar{K}^{0}+K_{1}^{\mu0}\partial_{\mu}\bar{K}^{0}+K_{2}^{\mu0}+K_{2}^{\mu0}+K_{2}^{\mu0}+K_$$

Resolved by the following field shifts:

$$\begin{split} f_{1N/S}^{\mu} &\longrightarrow f_{1N/S}^{\mu} + w_{f_{1N/S}} \partial^{\mu} \eta_{N/S}, \\ a_{1}^{\mu+,0} &\longrightarrow a_{1}^{\mu+,0} + w_{a_{1}} \partial^{\mu} \pi^{+,0}, (+\text{h.c.}) \\ K_{1}^{\mu+,0} &\longrightarrow K_{1}^{\mu+,0} + w_{K_{1}} \partial^{\mu} K^{+,0}, (+\text{h.c.}) \\ K^{\star\mu+,0} &\longrightarrow K^{\star\mu+,0} + w_{K\star} \partial^{\mu} K_{S}^{+,0} (+\text{h.c.}) \end{split}$$

Vanishing of the crossterms \longrightarrow determination of the w_i 's

After these shifts, π , η_N , η_S , K, and K_S are not canonically normalized \longrightarrow field renormalization \longrightarrow renormalization factors: Z_{π} , Z_{η_N} , Z_{η_S} , Z_K , Z_{K_S}

Tree-level masses

Pseudoscalar mass squares:

$$\begin{split} m_{\pi}^{2} &= Z_{\pi}^{2} \left[m_{0}^{2} + \Lambda_{N} \Phi_{N}^{2} + \lambda_{1} \Phi_{S}^{2} \right] \\ m_{K}^{2} &= Z_{K}^{2} \left[m_{0}^{2} + \Lambda_{N} \Phi_{N}^{2} - \frac{\lambda_{2}}{\sqrt{2}} \Phi_{N} \Phi_{S} + \Lambda_{S} \Phi_{S}^{2} \right] \\ m_{\eta_{N}}^{2} &= Z_{\pi}^{2} \left[m_{0}^{2} + \Lambda_{N} \Phi_{N}^{2} + \lambda_{1} \Phi_{S}^{2} + c_{1} \Phi_{N}^{2} \Phi_{S}^{2} \right] \\ m_{\eta_{S}}^{2} &= Z_{\eta_{S}}^{2} \left[m_{0}^{2} + \lambda_{1} \Phi_{N}^{2} + \Lambda_{s} \Phi_{S}^{2} + \frac{c_{1}}{4} \Phi_{N}^{4} \right] \\ m_{\eta_{NS}}^{2} &= Z_{\pi} Z_{\pi_{S}} \frac{c_{1}}{2} \Phi_{N}^{3} \Phi_{S} \end{split}$$

Scalar mass squares:

$$\begin{split} m_{a_0}^2 &= m_0^2 + \Lambda'_N \Phi_N^2 + \lambda_1 \Phi_S^2 \\ m_{K_S}^2 &= Z_{K_S}^2 \left[m_0^2 + \Lambda_N \Phi_N^2 + \frac{\lambda_2}{\sqrt{2}} \Phi_N \Phi_S + \Lambda_S \Phi_S^2 \right] \\ m_{\sigma_N}^2 &= m_0^2 + 3\Lambda_N \Phi_N^2 + \lambda_1 \Phi_S^2 \\ m_{\sigma_S}^2 &= m_0^2 + \lambda_1 \Phi_N^2 + 3\Lambda_s \Phi_S^2 \\ m_{\sigma_NS}^2 &= 2\lambda_1 \Phi_N \Phi_S \end{split}$$

Mass square eigenvalues for σ and π in the N-S sector

$$m_{f_0^{\prime}/f_0^{I}}^2 = \frac{1}{2} \left[m_{\sigma_N}^2 + m_{\sigma_S}^2 \pm \sqrt{(m_{\sigma_N}^2 - m_{\sigma_S}^2)^2 + 4m_{\sigma_{NS}}^2} \right]$$
$$m_{\eta^{\prime}/\eta}^2 = \frac{1}{2} \left[m_{\eta_N}^2 + m_{\eta_S}^2 \pm \sqrt{(m_{\eta_N}^2 - m_{\eta_S}^2)^2 + 4m_{\eta_{NS}}^2} \right]$$

Vector mass squares:

$$m_{\rho}^{2} = m_{1}^{2} + \frac{1}{2}(h_{1} + h_{2} + h_{3})\Phi_{N}^{2} + \frac{h_{1}}{2}\Phi_{S}^{2} + 2\delta_{N}$$

$$m_{K^{\star}}^{2} = m_{1}^{2} + H_{N}\Phi_{N}^{2} + \frac{1}{\sqrt{2}}\Phi_{N}\Phi_{S}(h_{3} - g_{1}^{2}) + H_{S}\Phi_{S}^{2} + \delta_{N} + \delta_{S}$$

$$m_{\omega_{N}}^{2} = m_{\rho}^{2}$$

$$m_{\omega_{S}}^{2} = m_{1}^{2} + \frac{h_{1}}{2}\Phi_{N}^{2} + \left(\frac{h_{1}}{2} + h_{2} + h_{3}\right)\Phi_{S}^{2} + 2\delta_{S}$$

Axialvector meson mass squares:

$$\begin{split} m_{a_1}^2 &= m_1^2 + \frac{1}{2} (2g_1^2 + h_1 + h_2 - h_3) \Phi_N^2 + \frac{h_1}{2} \Phi_S^2 + 2\delta_N \\ m_{K_1}^2 &= m_1^2 + H_N \Phi_N^2 - \frac{1}{\sqrt{2}} \Phi_N \Phi_S (h_3 - g_1^2) + H_S \Phi_S^2 + \delta_N + \delta_S \\ m_{f_{1N}}^2 &= m_{a_1}^2 \\ m_{f_{1S}}^2 &= m_1^2 + \frac{h_1}{2} \Phi_N^2 + \left(2g_1^2 + \frac{h_1}{2} + h_2 - h_3 \right) \Phi_S^2 + 2\delta_S \end{split}$$

Decay widths

For a $A \rightarrow BC$ decay process the decay with is:

$$\Gamma_{A \to BC} = \frac{k}{8\pi m_A^2} \left| \mathcal{M}_{A \to BC} \right|^2$$

 $k \longrightarrow$ three momentum of the produced particles in the restframe of $A \mathcal{M}_{A \to BC} \longrightarrow$ transition matrix element

If A is a vector particle and $C = B^{\dagger} \Longrightarrow$

$$|\mathcal{M}_{A\to BB^{\dagger}}|^2 = \frac{4}{3}k^2 V_{\mu} V^{\mu\star}$$

 $V_{\mu} \longrightarrow$ vertex function directly followed from the three-coupling terms of \mathcal{L} If A is a vector particle, B scalar and $C = \gamma$ a photon \Longrightarrow

$$|\mathcal{M}_{A\to B\gamma}|^2 = \frac{1}{3} \left(g^{\alpha\beta} - \frac{k_A^{\alpha} k_A^{\beta}}{m_A^2} \right) V_{\alpha\alpha'} V_{\beta}^{\star\alpha'}$$

Some decay widths in the extended model

The $\rho \rightarrow \pi\pi$ decay width:

$$\Gamma_{\rho \to \pi\pi} = \frac{m_{\rho}^5}{48\pi m_{a_1}^4} \left[1 - \left(\frac{2m_{\pi}}{m_{\rho}}\right)^2 \right]^{3/2} \left[g_1 Z_{\pi}^2 - \frac{g_2}{2} \left(Z_{\pi}^2 - 1 \right) \right]^2$$

The experimental value from the PDG: $\Gamma_{\rho \to \pi\pi}^{(exp)} = (149.1 \pm 0.8) \text{ MeV}$

The $a_1 \rightarrow \pi \gamma$ decay width:

$$\Gamma_{a_1 \to \pi\gamma} = \frac{e^2 g_1^2 \Phi_N^2}{96\pi m_{a_1}} Z_\pi^2 \left[1 - \left(\frac{m_\pi}{m_{a_1}}\right)^2 \right]^3$$

The experimental value: $\Gamma_{a_1 \to \pi\gamma}^{(exp)} = (0.640 \pm 0.246) \text{ MeV}$

Parametrization: general considerations

In order to make predictions \longrightarrow unknown constants of the model must be determined

 \implies choose a set of (well known) physical quantities/conditions for fitting procedure

For instance:

- PartiallyConservedAxialCurrent \longrightarrow fix the condensates (2 parameter)
- Particle masses (which can be compared with PDG (K. Nakamura et al., J. Phys. G 37, 075021 (2010)))
- Decay widths (which can be compared with PDG)

Finding a good parameter set \longrightarrow non-trivial task (usually there are lots of solutions, but non of them is perfect)

Parametrization in the extended model

13 unknown parameters \longrightarrow Determined by the minimalization of the χ^2 :

$$\chi^2(x_1, \dots, x_N) = \sum_{i=1}^M \left[\frac{Q_i(x_1, \dots, x_N) - Q_i^{\mathsf{exp}}}{\delta Q_i} \right]^2,$$

where $(x_1, \ldots, x_N) = (m_0, \lambda_1, \lambda_2, \ldots)$, $Q_i(x_1, \ldots, x_N)$ calculated from the model, while $Q_i^{exp} \pm \delta Q_i$ taken from the PDG

multiparametric minimalization \longrightarrow MINUIT

- PCAC $\rightarrow 2$ physical quantities: f_{π}, f_{K}
- Tree-level masses $\rightarrow 14$ physical quantities: $m_{\pi}, m_{\eta}, m_{\eta'}, m_K, m_{\rho}, m_{\Phi}, m_{K^{\star}}, m_{a_1}, m_{f_1^H}, m_{K_1}, m_{a_0}, m_{K_s}, m_{f_0^L}, m_{f_0^H}$
- Decay widths $\rightarrow 12$ physical quantities: $\Gamma_{\rho \rightarrow \pi\pi}, \Gamma_{\Phi \rightarrow KK}, \Gamma_{K^{\star} \rightarrow K\pi}, \Gamma_{a_1 \rightarrow \pi\gamma}, \Gamma_{a_1 \rightarrow \rho\pi}, \Gamma_{f_1 \rightarrow KK^{\star}}, \Gamma_{a_0}, \Gamma_{K_S \rightarrow K\pi}, \Gamma_{f_0^L \rightarrow \pi\pi}, \Gamma_{f_0^L \rightarrow \pi\pi}, \Gamma_{f_0^H \rightarrow KK}$

The question: which a_0 , K_0^* and f_0 s belong to the scalar nonet?

Particle identification, results

In the first step f_0 mesons were left out \rightarrow their properties are very uncertain (Different analyses give different results)

First run \rightarrow which pairs of a_0, K_0^{\star} give acceptable fits

Then we continue by studying which pair of f_0 's can be described better

13 parameters to fit 28 measured quantities For η we never found a good fit, perhaps the description of axial anomaly is too bad

The best solution corresponds to the scalar nonet is: $a_0(1450), K_0(1430)$ and $f_0(1370), f_0(1710)$

 $f_0(600)$ and $f_0(980)$ might be tetraquarks $(f_0(1370), f_0(1500), f_0(1710))$: mixing of glueball and the 2 states above

 $\chi^2 = 49.09 \rightarrow \text{best solution}$

$$\begin{split} K_S &\to K_0^{\star}(1430) \\ a_0 &\to \text{just between the two } a_0\text{'s} \\ f_0^L &\to f_0(600) \\ f_0^H &\to f_0(1370) \end{split}$$

Qty	PDG [GeV]	Fit [GeV]	χ^2	
$f\pi$	0.0922 ± 0.0009	0.0918	0.1910	
f_K	0.1100 ± 0.0011	0.1106	0.2920	
m_{π}	0.1380 ± 0.0026	0.1385	0.0357	
$m\eta$	0.5479 ± 0.0055	0.5298	10.9518	
$m_{\eta'}$	0.9578 ± 0.0096	0.9674	1.0175	
m_K	0.4956 ± 0.0050	0.5056	4.0506	
$m_{ ho}$	0.7755 ± 0.0078	0.7708	0.3690	
m_{Φ}	1.0195 ± 0.0102	1.0134	0.3525	
$m_{K^{\star}}$	0.8938 ± 0.0089	0.9019	0.8195	
ma_1	1.2300 ± 0.0400	1.1636	2.7543	
$m_{f_1^H}$	1.4264 ± 0.0143	1.4088	1.5242	
m_{K_1}	1.2720 ± 0.0127	1.2909	2.2136	
ma_0	1.4740 ± 0.0737	1.2007	13.7494	
m_{Ks}	1.4250 ± 0.0713	1.3128	2.4806	
$m_{f_0^L}$	0.6000 ± 0.2000	0.8940	2.1612	
$m_{f_0^H}$	1.3700 ± 0.1500	1.3642	0.0015	
$\Gamma \rho \rightarrow \pi \pi$	0.149100 ± 0.007455	0.156776	1.060158	
$\Gamma_{\Phi \to KK}$	0.001770 ± 0.000089	0.001684	0.944766	
$\Gamma_{K^{\star} \to K\pi}$	0.046200 ± 0.002310	0.045459	0.103017	
$\Gamma a_1 \rightarrow \pi \gamma$	0.000640 ± 0.000250	0.000605	0.019423	
$\Gamma a_1 \rightarrow \rho \pi$	0.425000 ± 0.175000	0.551275	0.520668	
$\Gamma_{f_1 \to KK^{\star}}$	0.043900 ± 0.002195	0.043896	0.000003	
Γ_{a_0}	0.265000 ± 0.013250	0.267903	0.047995	
$\Gamma_{K_S \to K\pi}$	0.270000 ± 0.080000	0.348810	0.970466	
$\Gamma_{f_0^L \to \pi\pi}$	0.800000 ± 0.200000	0.451370	3.038596	
$\Gamma_{f_0^L \to KK}$	0.000000 ± 0.100000	0.000000	0.000000	
$\Gamma_{f_0^H \to \pi\pi}$	0.250000 ± 0.100000	0.278108	0.079004	
$\Gamma_{f_0^H \to KK}$	0.150000 ± 0.100000	0.258269	1.172223	

	Qty	PDG [GeV]	Fit [GeV]	χ^2
	$f\pi$	0.0922 ± 0.0009	0.0925	0.1173
	f_K	0.1100 ± 0.0011	0.1096	0.1103
	m_{π}	0.1380 ± 0.0026	0.1390	0.1432
$v^2 = 59.66 \rightarrow$ second best solution	$m_{oldsymbol{\eta}}$	0.5479 ± 0.0055	0.5265	15.2159
χ = 05.00 / 0000110 Doot 001011011	$m_{\eta'}$	0.9578 ± 0.0096	0.9677	1.0668
	m_K	0.4956 ± 0.0050	0.5039	2.8260
	$m_{oldsymbol{ ho}}$	0.7755 ± 0.0078	0.7672	1.1528
$V \rightarrow V \star (1420)$	$m_{ar{\Phi}}$	1.0195 ± 0.0102	1.0140	0.2880
$\kappa_S \rightarrow \kappa_0(1430)$	$^mK^\star$	0.8938 ± 0.0089	0.8999	0.4698
$a_0 \to a_0(1450)$	ma_1	1.2300 ± 0.0400	1.1789	1.6338
$f_{2}^{L} \rightarrow f_{2}(1370)$	$m_{f_1^H}$	1.4264 ± 0.0143	1.4051	2.2211
$fH \rightarrow f(1710)$	m_{K_1}	1.2720 ± 0.0127	1.2964	3.6703
$J_0 \rightarrow J_0(1/10)$	m_{a_0}	1.4740 ± 0.0737	1.4417	0.1920
	m_{K_S}	1.4250 ± 0.0713	1.5365	2.4511
	$m_{f_0^L}$	1.3700 ± 0.1500	1.2141	1.0802
	$m_{f_0^H}$	1.7200 ± 0.0860	1.5841	2.4960
	$\Gamma \rho \rightarrow \pi \pi$	0.149100 ± 0.007455	0.166519	5.459288
	$\Gamma_{\Phi \to KK}$	0.001770 ± 0.000089	0.001544	6.518627
	$\Gamma_{K^{\star} \to K\pi}$	0.046200 ± 0.002310	0.044303	0.674290
in this solution there are no	$\Gamma a_1 \rightarrow \pi \gamma$	0.000640 ± 0.000250	0.000650	0.001727
identification problems \rightarrow physically	$\Gamma a_1 \rightarrow \rho \pi$	0.425000 ± 0.175000	0.736729	3.173052
the best solution	$\Gamma f_1 \rightarrow KK^{\star}$	0.043900 ± 0.002195	0.043789	0.002548
	Γ_{a_0}	0.265000 ± 0.013250	0.253140	0.801181
	$\Gamma_{K_S \to K\pi}$	0.270000 ± 0.080000	0.350839	1.021096
	$\Gamma_{f_0^L \to \pi\pi}$	0.250000 ± 0.100000	0.122365	1.629078
	$\Gamma_{f_0^L \to KK}$	0.150000 ± 0.100000	0.125730	0.058903
	$\Gamma_{f_0^H \to \pi\pi}$	0.029700 ± 0.006500	0.031280	0.059121
	$\Gamma_{f_0^H \to KK}$	0.071400 ± 0.029100	0.141566	5.813976

Conclusion

- With multiparametric χ^2 minimalization, the meson assignment to a $q\bar{q}$ state can be constrained
- According to the model the $q\bar{q} a_0$ must be assigned to $a_0(1450)$, while the $q\bar{q} K_S$ to $K_0^{\star}(1430)$
- It seems that most probably the two f_0 's are both above 1 GeV, namely they should be assigned to $f_0(1370)$ and $f_0(1710)$
- In the case when one of the f_0 is below 1 GeV, the only possibility is $f_0^L = f_0(600)$. However in this case the assignment of a_0 becomes problematic.

Various finite temperature and/or density results from the three flavoured pseudoscalar-scalar model (with constituent quarks) at 1-loop level using optimized perturbation theory

Results at zero μ_I, μ_Y : critical surface and CEP

Away from the physical point the model was re-parametrized by using ChPT \implies Reliable up to $m_K \approx 500$ MeV and above the diagonal

The second order surface bends towards the physical point \implies The CEP must exist

The CEP at the physical point of the mass plane

P. Kovács, Zs. Szép: Phys. Rev. D 75, 025015

• $T_{CEP} = 162(2) \text{ MeV}$ $\mu_{B,CEP} = 360(40) \text{ MeV}$

• -0.058(2)

• $T_c \frac{d^2 T_c}{d\mu_B^2}\Big|_{\mu_B=0} = -0.09$

 $\mu_{B,CEP} = 895.38 \text{ MeV}$

Z. Fodor, et al., JHEP 0404 (2004) 050

The critical region of the CEP

For the asymptotically parallel path we get $\gamma = 1.01$, which corresponds to the mean-field Ising exponent.

 \longrightarrow This path is the tangent line of the phase boundary curve at the CEP in the $\mu_B - T$ plane.