Non-equilibrium Dynamics, Hersonissos, Crete, 25-30 June, 2012

Non-equilibrium phase transitions in expanding matter

Igor Mishustin*)

Frankfurt Institute for Advanced Studies, J.W. Goethe Universität, Frankfurt am Main National Research Centre, "Kurchatov Institute" Moscow

*) in collaboration with Marlene Nahrgang and Marcus Bleicher

"QCD" phase diagram

Contents

- Introduction: Effects of fast dynamics
- Fluctuations of the order parameter
- Chiral fluid dynamics with damping and noise
- Critical slowing down and supercooling
- > Observable signatures
- Conclusions

This talk is based on recent works:

- M. Nahrgang, M. Bleicher, S. Leupold and I. Mishustin, The impact of dissipation and noise on fluctuations in chiral fluid dynamics, arXiv:1105.1962 [nucl-th];
- M. Nahrgang, I.Mishustin, M. Bleicher, Dynamical domain formation in expanding chiral fluid underegoing 1st order phase transition, in preparation

Effects of fast dynamics

Effective thermodynamic potential for a 1st order transition

 $\partial \Omega$

$$\Omega(\phi;T,\mu) = \Omega_0(T,\mu) + \frac{a}{2}\phi^2 + \frac{b}{4}\phi^4 + \frac{c}{6}\phi^6$$

a,b,c are functions of T and μ

 $\Omega(\phi)$

In rapidly expanding system 1-st order transition is delayed until the barrier between two competing phases disappears - spinodal decomposition I.N. Mishustin, Phys. Rev. Lett. 82 (1999) 4779; Nucl. Phys. A681 (2001) 56

Equilibrium fluctuations of order parameter in 1st order phase transition

- Bi-modality in distribution of fluctuations/observables, e.g. Z_{max} distributions
 - In rapid process fluctuations of the order parameter are out of equilibrium
- During supercooling process strong fluctuations may develop in the form of droplets of metastable phase

Evolution of equilibrium fluctuations in 2nd order phase transition

$$\Omega(\phi) = \frac{1}{2}a(T)\phi^{2} + \frac{1}{2}b(\nabla\phi)^{2} + \frac{\lambda}{4}\phi^{4}, \quad a(T) = a_{0}(T - T_{c})$$
$$\langle \phi \rangle = \frac{a(T)}{\lambda}, \quad T < T_{c} \text{ and } \langle \phi \rangle = 0, \quad T > T_{c}, \quad \delta\phi = \phi - \langle \phi \rangle$$

Distribution of fluctuations $P(\delta\phi) \Box \exp$

Critical slowing down in the 2nd order phase transition

"Rolling down" from the top of the potential is similar to spinodal decomposition (Csernai&Mishustin 1995) Fluctuations of the order parameter evolve according to the equation

In the vicinity of the critical point the relaxation time for the order parameter diverges - no restoring force

$$\tau_{\rm rel}(T) \square \frac{1}{\left|T - T_c\right|^{\nu}} \to \infty, \quad \nu \square 2$$

(Landau&Lifshitz, vol. X, Physical kinetics)

Critical slowing down 2

B. Berdnikov, K. Rajagopal, Phys. Rec. D61 (2000)

Critical fluctuations have not enough time to build up. One can expect only a factor 2 enhancement in the correlation length (even for slow cooling rate, dT/dt=10 MeV/fm).

Dynamical model of chiral phase transition

Linear sigma model (L σ M) with constituent quarks

$$L = \overline{q}[i\gamma\partial - g(\sigma + i\gamma_5\tau\pi)]q + \frac{1}{2}[\partial_{\mu}\sigma\partial^{\mu}\sigma + \partial_{\mu}\pi\partial^{\mu}\pi] - U(\sigma,\pi),$$
$$U(\sigma,\overline{\pi}) = \frac{\lambda^2}{4}(\sigma^2 + \pi^2 - v^2)^2 - H\sigma, \quad \langle\sigma\rangle_{\rm vac} = f_{\pi} \to H = f_{\pi}m_{\pi}^2$$

Thermodynamics of LoM on the mean-field level was studied in Scavenius, Mocsy, Mishustin&Rischke, Phys. Rev. C64 (2001) 045202 Effective thermodynamic potential:

$$U_{\text{eff}}(\sigma;T,\mu) = U(\sigma,\pi) + \Omega_q(m;T,\mu)$$
$$m^2 = \sigma^2(\sigma^2 + \pi^2)$$

CO, 2nd and 1st order chiral transitions are obtained in T-µ plane.

Effective thermodynamic potential

$$\Omega_{q}(m;T,\mu) = -v_{q}T \int \frac{d^{3}p}{(2\pi)^{3}} \left\{ \ln \left[1 + \exp\left(\frac{\mu - \sqrt{m^{2} + p^{2}}}{T}\right) \right] + (\mu \to -\mu) \right\}, \ \nu = 2N_{f}N_{c}$$

Here we consider μ =0 system but tune the order of the chiral phase transition by changing the coupling g.

Order parameter field vs T

crossover

1-st order

unstable states at 122 MeV<T<132 MeV \Rightarrow spinodal instability

Chiral fluid dynamics (CFD)

I.N. Mishustin, O. Scavenius, Phys. Rev. Lett. 83 (1999) 3134 K. Paech, H. Stocker and A. Dumitru, Phys. Rev. C 68 (2003) 044907

Fluid is formed by constituent quarks and antiquarks which interact with the chiral field via quark effective mass $m = g\sigma$ CFD equations are obtained from the energy momentum conservation for the coupled system fluid+field

$$\partial_{\nu} (T_{\text{fluid}}^{\mu\nu} + T_{\text{field}}^{\mu\nu}) = 0 \Longrightarrow \partial_{\nu} T_{\text{fluid}}^{\mu\nu} = -\partial_{\mu} T_{\text{field}}^{\mu\nu} \equiv S$$
$$S^{\nu} = -(\partial^{2}\sigma + \frac{\partial U_{\text{eff}}}{\partial\sigma})\partial^{\nu}\sigma = (g\rho_{s} + \eta\partial_{t}\sigma)\partial^{\nu}\sigma$$

We solve generalized e. o. m. with friction (η) and noise (ξ):

$$\partial_{\mu}\partial^{\mu}\sigma + \frac{\partial U_{\text{eff}}}{\partial\sigma} + g < \bar{q}q > + \eta\partial_{t}\sigma = \xi$$

Langevin equation for the order parameter

 ν

$$\langle \xi(t, \vec{r}) \rangle = 0, \quad \langle \xi(t, r)\xi(t', r') \rangle = \frac{1}{V}m_{\sigma}\eta\delta(t-t')\delta(r-r') \operatorname{coth}\left(\frac{m_{\sigma}}{2T}\right)$$

Calculation of damping term

T.Biro and C. Greiner, PRL, 79. 3138 (1997)

M. Nahrgang, S. Leupold, C. Herold, M. Bleicher, PRC 84, 024912 (2011)

The damping is associated with the processes:

$$\sigma \to qq, \ \sigma \to \pi\pi$$

It has been calculated using 2PI effective action

$$\eta = g^2 \frac{\nu_q}{\pi m_\sigma^2} \left[1 - 2n_F \left(\frac{m_\sigma}{2} \right) \right] \left(\frac{m_\sigma^2}{4} - m_q^2 \right)^{3/2}$$

Around Tc the damping is due to the pion modes, η =2.2/fm

Dynamic simulations: Bjorken-like expansion

Initial state: cylinder of length L in z direction, with ellipsoidal cross section in x-y direction

At
$$t = 0$$
: $v(z) = \frac{2z}{L} 0.2c$, $-\frac{L}{2} < z < \frac{L}{2}$; $v_x = v_y = 0$; $T = 160 MeV$

In the vicinity of the c.p. sigma shows pronounced oscillations since damping term vanishes $(m_{\sigma} < 2m_q)$ Supercooling and reheating effects are clearly seen in the 1-st order transition.

Dynamical evolution of chiral fluid

2-nd order transition (g=3.63)

1st order transition (g=5.5)

2-nd order transition (g=3.63)

1st order transition (g=5.5)

sigma-sigmaea in MeV

Latest developments

 Realistic initial conditions are obtained from UrQMD simulations;

- Correlations of noise variables in neighboring cells are introduced by averaging over V=1fm³;
- > Dynamical domain formation studied

Tomographic visualization of domains

Domains of restored phase are embedded into a chirally-broken background

Tomography of the system at t=4 fm/c

 $\Delta \sigma [MeV]$

One can clearly see a big domain in the central region (r<0.8 fm)

Tomography of the system at t=5 fm/c

t = 5.0 fm/c

Smaller domains have been formed in the bigger region (r<1.2 fm)

Tomography of the system at t=6 fm/c

t = 6.0 fm/c

 $\Delta\sigma \ [MeV]$

Domains (droplets) are spred over the large region (r<1.6 fm)

Strength of sigma fluctuations transition

0

$$\frac{dN_{\sigma}}{d^{3}k} = \frac{1}{(2\pi)^{3}} \frac{1}{2\omega_{k}} \left[\omega_{k}^{2} |\sigma_{k}|^{2} + |\sigma_{k}|^{2}\right], \quad \omega_{k} = \sqrt{m_{\sigma}^{2} + k^{2}}, \quad m_{\sigma}^{2} = \frac{\partial^{2}U_{\text{eff}}}{\partial\sigma^{2}}\Big|_{\sigma=\sigma_{\text{eq}}}$$

Crossover transition (g-3.3)

Fluctuations are rather weak, effective number of sigmas is small

Second order transition with critical point (g=3.63)

Fluctuations are stronger, but no traces of divergence are seen

Strong first order transition (g=5.5)

Strong supercooling and reheating effects are clearly seen.

Sharp rise of fluctuations after 6 fm/c, when the barrier in thermodynamic potential disappears. Effective number of sigmas increases by two orders of magnitude!

Rapid expansion should lead to dynamical fragmentation of QGP

In the course of fast expansion the system enters spinodal instability when Q phase becomes unstable and splits into QGP droplets/hadron resonances Csernai&Mishustin 1995, Mishustin 1999, Rafelski et al. 2000, Koch&Randrup, 2003

Extreme possibility - direct transition from quarks to hadrons without mixed phase

Ultrarelativistic A+A collisions

RHIC (STAR)

Charged particles tracks

LHC (ALICE)

one of these tracks could be an antinucleus $d, \overline{\alpha}, \ldots$

Experimental signal of droplets in the rapidity-azimuthal angle plane

Select hadrons in different p_t interwals

Look for event-by-event distributions of hadron multiplicities in momentum space associated with emission from QGP droplets. Such measurements should be done in the broad energy range!

Conclusions

- Phase transitions in relativistic heavy-ion collisions will most likely proceed out of equilibrium
- > 2nd order phase transitions (with CEP) are too weak to produce significant observable effects
- Non-equilibrium effects in a1st order transition (spinodal decomposition, dynamical domain formation) may help to identify the phase transition
- If large QGP domains are produced in the 1-st order phase transition they will show up in large non-statistical multiplicity fluctuations in single events