Trace Anomaly, Chiral Symmetry Breaking and Baryons at High Density

Chihiro Sasaki Frankfurt Institute for Advanced Studies

Outline

- 1. The problem of hadron mass
- 2. How to embed nucleon and scalar fields?
- 3. Dilaton limit: consequences and implications
- 4. Polyakov loops and pure gluo-thermodynamics

I. Main Objectives

Origin of hadron masses?

• spontaneous chiral symmetry breaking \cdots dynamics of strong int., Λ_{OCD}

- scale symmetry breaking $(x^{\mu} \to e^{\tau} x^{\mu}) \cdots$ emergence of a scale in QCD $\partial_{\mu} J^{\mu} = T^{\mu}_{\mu} = -\left(\frac{11}{24}N_c - \frac{1}{12}N_f\right) \frac{\alpha_s}{\pi} G_{\mu\nu} G^{\mu\nu} + \sum_f m_f \bar{q}_f q_f$
- \bullet chiral SB and trace anomaly closely related $~\to$ hadron masses $m_{H}=\mathcal{F}\left(\mathrm{CSB}\,,\mathrm{non-CSB}\right)$
- baryons near CS restoration? · · · dynamical origin of nucleon mass?

- standard assignment: $D\chi SB$ generates entire masses. $m_N \stackrel{\sigma \to 0}{\to} 0$

- mirror assignment:
$$D\chi SB$$
 generates mass difference of parity doublers.
 $m_{N\pm} = \frac{1}{2} \left[\sqrt{c_1 \sigma^2 + 4m_0^2} \mp c_2 \sigma \right] \stackrel{\sigma \to 0}{\to} m_0 \neq 0$ [Detar-Kunihiro (89)]

Role of scalar bosons in nuclear matter

- how to have empirical saturation in Walecka model? [e.g., Serot-Walecka (97)] $\mathcal{L} = \bar{N} (i\partial \!\!\!/ - g_V \psi - M + g_S \phi) N + \mathcal{L}_{kin+mass}(\omega) + \mathcal{L}_{kin+mass}(\phi) - \kappa \phi^3 - \lambda \phi^4$ - chiral symmetry: the signs and magnitudes of interactions $\kappa = (m_\sigma^2 - m_\pi^2) / 2, \quad \lambda = (m_\sigma^2 - m_\pi^2) / 8f_\pi$
 - $-L\sigma M$ yields no stable ground state! [Kerman-Miller (74)] thus $\phi \neq \sigma$!
- MF studies of nuclear matter and finite nuclei [Heide-Rudaz-Ellis (92-93), Mishustin-Bondorf-Rho (93), Furnstahl-Tang-Serot (95), Papazoglou et al. (97-99), ...]

NM ground state requires an additional scalar other than genuine chiral partner of pion.

• low density:

Walecka's ϕ : a mixture of quarkonia, tetraquarks and glueballs

• higher density towards chiral restoration: scalar meson gets lighter \Rightarrow O(4) multiplet with pions $(\vec{\pi}, s)$

How does Walecka's scalar transmute into the 4th component of O(4) vector?

gluon condensate vs. light quark mass

- low-energy theorem (q = u, d, s) [Novikov-Shifman-Vainstein-Zakharov (81)]

$$\frac{d}{dm_q}\frac{\alpha_s}{\pi}\langle G^2\rangle = \frac{-24\langle \bar{q}q\rangle}{\frac{11}{3}N_c - \frac{2}{3}N_f}$$

- decomposition ("PCDC" hypothesis) [Miransky-Gsynin (89), Lee-Rho (09)] $\langle G^2 \rangle = \underbrace{\langle G^2 \rangle_{\text{soft}}}_{\chi \text{SB}, f_{\pi}^2} + \underbrace{\langle G^2 \rangle_{\text{hard}}}_{\text{SSB}},$ $F(T, \mu; m_q, g) \rightarrow \langle \mathcal{O} \rangle (T, \mu; m_q, g)$

- from Lattice EoS: gluon *decondensation* at finite T [Miller (07)]

$$\langle G^2 \rangle_{T_{\text{chiral}}} \simeq \frac{1}{2} \langle G^2 \rangle_{T=0} \quad \Rightarrow \quad \text{melting} \langle G^2 \rangle_{\text{soft}}$$

- soft and hard dilatons

$$\chi = \chi_s + \chi_h, \quad V_{s,h} = \frac{1}{4} B \left(\frac{\chi_{s,h}}{F_{\chi_{s,h}}} \right)^4 \left[\ln \left(\frac{\chi_{s,h}}{F_{\chi_{s,h}}} \right)^4 - 1 \right]$$

-role of hard dilaton \Rightarrow origin of m_0

II. From Low Density to High Density

Role of scalar mesons: nonlinear vs linear

- combine chiral symmetry breaking and trace anomaly in a single theory
- non-linear chiral Lagrangian, chiral perturbation theory: a minimal theory for NG bosons, reliable in low density
- from linear to non-linear basis, or the other way around

$$P \rightarrow Q$$
: chiral transformation
 $(\pi_1, \pi_2, \pi_3, \sigma) \rightarrow (\theta_1, \theta_2, \theta_3; f_{\pi})$

$$\begin{split} \Phi &= \sigma + i\vec{\tau} \cdot \vec{\pi} \qquad f_{\pi} = \sqrt{\sigma^2 + \vec{\pi}^2} \\ &= (\sigma_0 + \tilde{\sigma})U \,, \quad U = e^{-i\vec{\tau} \cdot \vec{\pi}/f_{\pi}} \\ &\Rightarrow \mathcal{L} = \frac{f_{\pi}^2}{4} \mathrm{tr} \left[\partial_{\mu} U^{\dagger} \partial^{\mu} U \right] \end{split}$$

changeover of effective theories: from NLSM (low T, ρ) to LSM (around χ SR) what is/are constraint(s) from symmetries?

- transmutation of a scalar from NLSM to LSM [Beane-van Kolck (94)]
 - 1. non-linear chiral Lagrangian plus χ_s : $U = \xi^2 = e^{2i\pi/F_{\pi}}, \sqrt{\kappa} = F_{\pi}/F_{\chi_s}$

$$U \to LUR^{\dagger}, \quad \xi \to v\xi R^{\dagger} = L\xi v^{\dagger}, \quad \psi \to v\psi, \quad \chi_s \to \chi_s$$

2. linearization: $\Sigma = \sqrt{\kappa}U\chi_s = s + i\vec{\tau}\cdot\vec{\pi} \& B = \frac{1}{2}[(\xi + \xi^{\dagger}) - \gamma_5(\xi - \xi^{\dagger})]\psi$ $\Sigma \rightarrow L\Sigma R^{\dagger}, \quad B_L \rightarrow LB_L, \quad B_R \rightarrow RB_R$

3. a LSM $\mathcal{L}(s, \vec{\pi}, B)$ emerges when $\kappa \to 1$ & $g_A \to 1$ (dilaton limit). $\mathcal{L}_{sing} = (1 - \kappa)\mathcal{F}(1/\mathrm{tr}[\Sigma\Sigma^{\dagger}]) + (1 - g_A)\mathcal{G}(1/\mathrm{tr}[\Sigma\Sigma^{\dagger}]) \to 0$

- higher dim. ops. suppressed by scale invariance

- emergent LSM renormalizable

• introduce vector mesons: $(N, \pi, \rho, \omega, \chi)$ [CS-Lee-Paeng-Rho (2011)] hidden local symmetry (HLS): $U = \xi^2 \rightarrow \xi_L^{\dagger} \xi_R$ [Bando et al. (85)]

-dilaton limit: $\kappa = 1$ and $g_A = g_V$ (common to standard and mirror)

 $-g_A = g_V = 1$ as IR fixed point of RGEs \Rightarrow DL unaffected by quantum loops!

[Paeng-Lee-Rho-CS (2011)]

- consequence: VN repulsion suppressed $g_{VN} = g(1 - g_V) \rightarrow 0$ * softer EoSs at high density * suppression of n-body repulsion via vector-meson exchanges * short-range repulsion suppressed? higher states $V', V'' \cdots$: KK modes in hQCD

Ground state of a skyrmion matter [Park et al. (2002)]

- baryons as solitons generated from pions: skyrmions
- simulate dense matter: put skyrmions on a crystal lattice and squeeze them \Rightarrow half-skyrmions appear at $\rho_{1/2} > \rho_0$, each carries a half baryon charge

what is it in continuum?

lessons from condensed matter physics

[Senthil et al., Science 303, 1490 (2004)]

- Néel magnet (A: broken spin rotation) and valence bond solid (VBS) paramagnet (B: broken lattice rotation)
- topology captured by CP^1 model ($\hat{n} = z^{\dagger}\vec{\sigma}z$: skyrmion \rightarrow half-skyrmions)
- Berry phase (VBS), emergent gauge symmetry: U(1)

(≠ - ≠ - *)/√2

similar gauge structures expected in dense QCD!

• integrating out "fast" modes \Rightarrow induced gauge fields [Shapere-Wilczek (89)]

• HLS: $(F_V^2/F_\pi^2, g_V - g_A) = (1, 0) \Rightarrow L-R$ mixing only via gauge boson ex. $L \times R$ "restored", $\mathcal{L} \sim (D_\mu \xi_L)^2 + (D_\mu \xi_R)^2$, whereas **III.** Pure Yang-Mills Thermodynamics and Polyakov Loops

"Confinement" in PNJL/PQM models???

• NJL/QM under a constant background A_0 [Meisinger-Ogilvie (96), Fukushima (03)]

$$\mathcal{L}_{\rm kin} = \bar{q} \left(i \partial \!\!\!/ - A_0 \right) q$$

$$\Rightarrow \Omega_q = d_q T \int \frac{d^3 p}{(2\pi)^3} \ln \left[1 + 3\Phi e^{-E/T} + 3\Phi e^{-2E/T} + e^{-3E/T} \right]$$

 $\langle\Phi\rangle\simeq 0$ at low T: 1- and 2-quark states thermodynamically irrelevant \Rightarrow mimicking confinement

• NOTE!

- $\mbox{ no confinement: only quarks existing at any T <math display="inline">$
- no baryons: $3\sqrt{p^2+M_q^2}$ vs. $\sqrt{p^2+(3M_q)^2}$
- color confinement: pure SU(3) YM theory
 - cf. pure gauge sector of PNJL/PQM $\cdots \Omega_q = T^4 \mathcal{U}(\Phi; T)$
 - \Rightarrow no dynamical fields! where are gluons?

How does thermodynamics potential look like? Gluon thermodynamics in low-T phase?

$$Z = \int \mathcal{D}A_{\mu} \mathcal{D}C \mathcal{D}\bar{C} \exp\left[i \int d^4 x \mathcal{L}\right], \quad \mathcal{L} = \mathcal{L}_{\rm kin} + \mathcal{L}_{\rm GF} + \mathcal{L}_{\rm FP}$$

1. employ background field method. [Gross-Pisarski-Yaffe (81)]

$$A_{\mu} = \bar{A}_{\mu} + g\check{A}_{\mu}$$

2. collect terms quadratic in quantum fields.

$$\mathcal{L}^{(2)} = -\frac{1}{2}\check{A}^{a}_{\alpha} \left[\delta_{ab}g^{\alpha\beta}\partial^{2} - f_{abc} \left(\partial^{\beta}\bar{A}^{\alpha,c} + 2g^{\alpha\beta}\bar{A}^{c}_{\mu}\partial^{\mu} \right) + f_{ac\bar{c}}f_{cb\bar{d}}g^{\alpha\beta}\bar{A}^{\bar{c}}_{\mu}\bar{A}^{\mu,\bar{d}} + 2f_{abc}\bar{A}^{\alpha\beta,c} \right] \check{A}^{\ b}_{\beta}$$

3. consider a constant uniform background \overline{A}_0 .

$$\bar{A}^a_\mu = \bar{A}^a_0 \delta_{\mu 0} \,, \quad \bar{A}_0 = \bar{A}^3_0 T^3 + \bar{A}^8_0 T^8$$

4. calculate propagator inverse and diagonalize it.

5. from Minkowski to Euclidean space: carry out Matsubara summation.

$$\sum_{n} \ln \det \left(D^{-1} \right) = \ln \det \left(1 - \hat{L}_A e^{-|\vec{p}|/T} \right)$$

- Polyakov loop matrix in adjoint representation (8x8 matrix)
- $\hat{L}_{A} = \operatorname{diag}\left(1, 1, e^{i(\phi_{1}-\phi_{2})}, e^{-i(\phi_{1}-\phi_{2})}, e^{i(2\phi_{1}+\phi_{2})}, e^{-i(2\phi_{1}+\phi_{2})}, e^{i(\phi_{1}+2\phi_{2})}, e^{-i(\phi_{1}+2\phi_{2})}\right)$ rank of SU(3) group = 2 \Rightarrow elements expressed in 2 variables
 thermodynamic potential (gluon part) [CS-Redlich (2012)]

$$\Omega_g = 2T \int \frac{d^3p}{(2\pi)^3} \operatorname{tr} \ln\left(1 - \hat{L}_A \, e^{-|\vec{p}|/T}\right)$$

traced Polyakov loops $\Phi = \text{tr}\hat{L}_F/N_c$, $\bar{\Phi} = \text{tr}\hat{L}_F^{\dagger}/N_c$ (gauge invariant) full thermodynamics potential: $\Omega = \Omega_g + \Omega_{\text{Haar}}$

$$\Omega_{g} = 2T \int \frac{d^{3}p}{(2\pi)^{3}} \ln \left(1 + \sum_{n=1}^{7} C_{n} e^{-n|\vec{p}|/T} + e^{-8|\vec{p}|/T} \right),$$

$$\Omega_{\text{Haar}} = -a_{0}T \ln \left[1 - 6\bar{\Phi}\Phi + 4 \left(\Phi^{3} + \bar{\Phi}^{3} \right) - 3 \left(\bar{\Phi}\Phi \right)^{2} \right],$$

$$C_{1} = C_{7} = 1 - 9\bar{\Phi}\Phi, \quad C_{2} = C_{6} = 1 - 27\bar{\Phi}\Phi + 27 \left(\bar{\Phi}^{3} + \Phi^{3} \right),$$

$$C_{3} = C_{5} = -2 + 27\bar{\Phi}\Phi - 81 \left(\bar{\Phi}\Phi \right)^{2},$$

$$C_{4} = 2 \left[-1 + 9\bar{\Phi}\Phi - 27 \left(\bar{\Phi}^{3} + \Phi^{3} \right) + 81 \left(\bar{\Phi}\Phi \right)^{2} \right]$$

 \Rightarrow energy distributions solely determined by group characters of SU(3)

High and low temperature phases

• high temperature limit: $\Phi \rightarrow 1 \Rightarrow$ non-int. gluon gas

$$\Omega_g(\Phi = \bar{\Phi} = 1) = 16T \int \frac{d^3p}{(2\pi)^3} \ln\left(1 - e^{-|\vec{p}|/T}\right)$$

 \bullet any finite temperature in confined phase: $\Phi=0$ thus $\Omega_{Haar}=0$

$$\Omega_g(\Phi = \bar{\Phi} = 0) \sim 2T \int \frac{d^3 p}{(2\pi)^3} \ln\left(1 + e^{-|\vec{p}|/T}\right) > 0$$

wrong sign! \Rightarrow Gluons are NOT correct variables below T_c ! cf. PNJL/PQM: approx. $\Omega_g \sim a(T)\bar{\Phi}\Phi \cdots$ unjustifiable near T_c • unchanged by quarks ($T < T_c, \Phi \sim 0$)

$$\begin{split} \Omega_{g+q} &\sim 2T \int \frac{d^3 p}{(2\pi)^3} \ln\left(1 + e^{-E_g/T}\right) - 4N_f T \int \frac{d^3 p}{(2\pi)^3} \ln\left(1 + e^{-3E_q/T}\right) \\ &\sim \frac{T^2}{\pi^2} \left[M_g^2 K_2 \left(\frac{M_g}{T}\right) - \frac{2N_f}{3} K_2 \left(\frac{3M_q}{T}\right) \right] > 0 \\ &\text{ with effective masses: } M_g \equiv M_{\text{gluball}}/2 \,, \quad M_q \equiv M_{\text{nucleon}}/3 \end{split}$$

• applications \Rightarrow talk by Pok Man Lo

Summary

- an effective chiral Lagrangian with scale invariance
 dilaton limit = IR fixed point ⇒ *intrinsic* medium effects in couplings
- role of Polyakov loops in quasi-particle approaches Polyakov loops = group character \Rightarrow gluons forbidden below T_c (MF!)
- at which T or ρ does dilaton limit set in? constraint from Danielewicz et al. (02), $1.97M_{\odot}$ neutron star
- mixed scalar modes: quarkonium, tetraquarks, glueballs
- reliable estimate of m_0 in dense matter, thermodynamics in-medium tensor forces, symmetry energy
- analysis of RG flows, a-theorem
- higher KK modes
- half-skyrmion phase, its EFT in continuum and emergent gauge symmetry