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Faces of the Regge theory

1 t-channel consideration (a real theory)
Analytical continuation of t-channel unitarity equations

hard to understand;
gives t-channel quantum number classi�cation

2 s-channel approach (Regge �eld theory)
Analysis of Feynman diagrams using Regge poles as input

reproduces old results
allows to get new ones
has a simple interpretation

3 Space-time interpretation (human face)
An interpretation only!

very picturesque
easy to accept
gives an intuitive understanding
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Power-like contributions to the amplitude

PDG �t:
σ
pp(p̄)
tot = 18.3s0.095 + 60.1s−0.34 ± 32.8s−0.55

Optical theorem:

σtot =
1

s
2ImAel (q = 0) ≡ 2ImTel (q = 0)

Indication: High energy elastic scattering goes via quasiparticle,
�Reggeon�, exchanges with powerlike asymptotic in c.m.energy.
Leading contirbution � Pomeron, TP ∼ s∆, ∆ > 0.
Caveat: Single Pomeron exchange violates Froissart bound
(σtot . C ln2 s)
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s-channel (s →∞, t = Q2 small) dominant contributions

Analiticity&unitarity:

Power-like terms come from poles in the complex L plane of
the t-channel amplitude, Pomeron = the rightmost singularity

Field theories (ϕ3, QCD):

p+
1 � p+

2 � . . .� p+
n

p−1 � p−2 � . . .� p−n
p± = p0 ± p3

For phenomenological applications: R/P = exchange of a �ladder�
structure in the t-channel with ordering of the ladder rungs in
rapidity y = 1/2 ln p+/p−
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Contributions to σtot

Contributions to imaginary part (Cutkosky rules):

Cut the diagram for the elastic scattering amplitude

Put cut lines on the mass shell, integrate over the phase space

Single �ladder� exchange � uniform rapidity distribution

2ImT1 = 2Im
( )

= =
∫ ∣∣∣ ∣∣∣ dτn −→

Double �ladder�

2Im

( )
= ︸ ︷︷ ︸

elastic+low-M2 DD

+ +︸ ︷︷ ︸
abs. corrections to2ImT1

+ ︸ ︷︷ ︸
double dN/dy

Iterating ladders slows the growth:
from σtot ∼ s∆ down to σtot ∼ ln2 s.

R. Kolevatov All-loop cross sections in the RFT . . .



Basics of Reggeons and Pomerons.
The stochastic approach

Results

Contributions to σtot

Rapidity gaps � splitting of the �ladder�:
Single di�raction dissociation

+ abs. corrections

Double di�raction dissociation

+ abs. corrections

other cut of same graph

+ abs. corrections
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Picture taken from a talk by Chris Quigg at Nordic particle physics meeting �Spaatind 2012�
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Obvious observation:

Cross sections for the events with rapidity gaps in pp is the
main source of information about the value of e�ective
coupling for �ladder� splitting.

Pomeron (�ladder�) splitting and fusion must be especially
important for large number of exchanged Pomerons.
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RFT

Reggeon Field Theory = the theory of the Pomeron (Reggeon)
exchanges and interactions. The underlying principles of the RFT
are analyticity and t-channel unitarity of the elastic amplitude.

Gives reliable predictions of hadronic X-sections

The σtot . C ln2 s comes out quite naturally (taking into
account multiple Pomeron exchanges)

Cuts of the RFT diagrams de�ne X-sections of various inelastic
processes via AGK rules (a special case of Cutkosky rules)

Provides a baseline for describing the events with rapidity gaps
(single and double di�raction). At higher energies the loop
contributions become increasingly important.

Account of loop contirbution is an untrivial task and is under
investigation by several groups (Ostapchenko, Khoze et al.,
Poghosyan; also Lund group non-RFT approach).
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Contribution of di�ractive cut

Lowest order contribution:

d2σSD

dtd(M2/s)
∼
(
M2

s

)−1−∆
s∆ ⇒ σSD(M2/s < α) ∼ s∆

Absorptive corrections:

Alternatives:

Introduce reg. scale and compute order by order

Use speci�c models with tuned mP→ nP vertices →
transforms power-like behaviour of Pomeron propagator to ∼ ln2.

Use e�ective approaches.
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RFT

The elastic amplitude T = A/(8πs) is written as (Regge factorization):

T =
∑
n,m

Vn ⊗ Gnm ⊗ Vm

Green functions Gmn are obtained within the e�ective �eld theory,
process independent

L =
1

2
φ†(
←−
∂y −

−→
∂y )φ− α′(∇bφ

†)(∇bφ) + ∆φ†φ+ Lint .

For Lint = i r3Pφ
†φ(φ† + φ) + χφ†

2
φ2

it is possible to use reaction-di�usion (or �stochastic�) models for
obtaining the Green functions with account of all loops.
[Grassberger&Sundermeyer'78; Boreskov'01]

R. Kolevatov All-loop cross sections in the RFT . . .



Basics of Reggeons and Pomerons.
The stochastic approach

Results

The stochastic model.

Consider a system of classic �par-
tons� in the transverse plane with:

Di�usion (chaotical movement) D;

Splitting (λ � prob. per unit time)

Death (m1)

Fusion (σν ≡
∫
d2b pν(b))

Annihilation (σm2 ≡
∫
d2b pm2(b))

Parton number and positions are described in terms of

probability densities ρN(y ,BN) (N = 0, 1, ...;BN ≡ {b1, . . . , bN})

with normalization pN(y) ≡ 1
N!

∫
ρN(y ,BN)

∏
dBN ;

∞∑
0

pN = 1.
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Inclusive distributions

S-parton inclusive distributions:

fs(y ;Zs) =
∑
N

1

(N − s)!

∫
dBN ρN(y ;BN)

s∏
i=1

δ(zi − bi );

∫
dZs fs(y ;Zs) =

∑
N!

(N−s)! pN(y) ≡ µs(y). � factorial moments.

Example: Start with a single parton with only di�usion and splitting
allowed.

f
1 parton
1 (y , b) =

exp(λy) exp(−b2/4Dy)

4πDy
.

� the bare Pomeron propagator.

The set of evolution equations for fs(Zs), (s = 1, . . .) coincides

with the set of equations for the exact Green functions of the RFT.

R. Kolevatov All-loop cross sections in the RFT . . .



Basics of Reggeons and Pomerons.
The stochastic approach

Results

The amplitude.

Green functions:

fs(y ;Zs) ∝
∑
m

∫
dXm Vm(Xm)Gmn(0;Xm|y ;Zn);

fm(y = 0,Xm) ∝ Vm(Xm) � particle�mPomeron
vertices

The amplitude (g(b) assumed narrow;
∫
g(b)d2b ≡ ε):

T (Y ) = 〈A|T |Ã〉 =

=
∞∑
s=1

(−1)s−1

s!

∫
dZsdZ̃s fs(y ;Zs)f̃s(Y − y ; Z̃s)

s∏
i=1

g(zi − z̃i − b).

It does not depend on the linkage point y (�boost invariance�) if

λ

∫
g(b)d2b =

∫
pm2(b)d2b +

1

2

∫
pν(b)d2b ,
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Correspondence RFT�Stochastic model

We use the simplest form of g(b), pm2(b) and pν(b):

pm2(b) = m2 θ(a − |b|); pν(b) = ν θ(a − |b|);
g(b) = θ(a − |b|);.

with a � some small scale; ε ≡ πa2.
RFT stochastic model

Rapidity y Evolution time y
Slope α′ Di�usion coe�cient D

∆ = α(0)− 1 λ−m1

Splitting vertex r3P λ
√
ε

Fusion vertex r3P (m2 + 1
2ν)
√
ε

Quartic coupling χ 1
2(m2 + ν)ε

Boost invariance (λ = m2 + ν
2 ) ⇔ equality of fusion and splitting vertices.
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Summary of the stochastic approach

The approach allows to compute numerically (via the explicit
evolution of the stochastic system) the RFT Green functions in
their convolutions which correspond to

the elastic scattering amplitude

the single di�ractive cut of the amplitude.

⇒ ;

Peculiarities of the stochastic approach to the RFT:

Presence of the triple and 2→ 2 couplings

Regularization scale (equivalient to the cuto� or the Pomeron
size in RFT) enters via functions g(b), pm2(b) and pν .

Neglect of the real part of the P exchange amplitude.
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Fitting the cross sections

The calculation method for elastic amplitude is described in detail
in R.K., K.Boreskov and L.Bravina, Eur. Phys. J. C 71 (2011) 1757
[arXiv:1105.3673 [hep-ph]]. Compared to that now we:

Implement two-channel eikonal p�nP vertices to incorporate
low-M2 di�raction

Account the secondary Reggeons contribution in the lowest
order

Other assumptions:

Neglect the real part of the Pomeron exchange amplitude
(keeping it for the secondary Reggeons)

Neglect central di�raction in calculation of SD cross sections.
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Model parameters

r3P � �xed [Kaidalov'79]
a � regularization scale
1 + ∆ � bare Pomeron intercept
α′ � Pomeron slope
|p〉 = β1|1〉+ β2|2〉; |β1|2 ≡ C1; |β2|2 ≡ C2 = 1− C1.
P couplings to |1〉 and |2〉: g1/2 = g0(1± η)
R � size of the p�P vertex

Strategy:

1 Eikonal �t to σtot , σel , B and low-M2 σSD @ 14GeV/c (∼ 2.2
mbn)

2 All-loop �t to σtot , σel , B starting with parameter set from [1]

3 Calculation of di�ractive cross sections with parameters
obtained at [2]
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Results on X-sections and slope (B = d

dt
ln dσel

dt

∣∣
t=0

)

Fit parameters: 1) a = 0.018fm=0.09GeV−1, ∆ = 0.255; 2) a = 0.036fm=0.18GeV−1, ∆ = 0.24

r3P = 0.087GeV−1 [Kaidalov'79], α′ = 0.0035fm2=0.09GeV−2 for both.

R. Kolevatov All-loop cross sections in the RFT . . .



Basics of Reggeons and Pomerons.
The stochastic approach

Results

Conclusions

Total, elastic and SD cross sections are computed within a
single approach.

All-loop RFT �t to total and elastic cross setions with all
enhanced and loop contributions taken into account on equal
basis.

Slow growth of all-loop high-M2 SD cross sections is
consistent with the experimental data.
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Backup � cross sections de�nitions

σtot(Y ) = 2 ImM(Y ,q = 0), σel =

∫
d2q

(2π)2
|M(Y ,q)|2 ,

f (Y ,b) =
1

(2π)2

∫
d2q e−iqbM(Y ,q) .

σtot(Y ) = 2

∫
d2b Imf (Y ,b) , σel =

∫
d2b |f (Y ,b)|2.

f (Y ,b) ' iT (Y ,b), T ≡ Imf

B = − d
dt
ln dσel

dt

∣∣∣
t=0

=
∫
b2ImA(b)d2b

∫
ImA(b)d2b+

∫
b2<A(b)d2b

∫
<A(b)d2b

2((
∫
ImA(b)d2b)2+(

∫
<A(b)d2b)2)
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Backup � secondary trajectories

pp: Imfpp(b) =
(
ImAP(b) + 1

) (
1 + ImAR+(b) + ImAR−(b)

)
− 1

<fpp(b) = (ImAP(b) + 1)(<AR+ + ReAR−)

pp̄: Imfpp̄(b) =
(
ImAP(b) + 1

) (
1 + ImAR+(b)− ImAR−(b)

)
− 1

<fpp̄(b) = (ImAP(b) + 1)(<AR+ − ReAR−)

∆+ R2
+, GeV

−2 α′+, GeV
−2 ∆− R2

−, GeV
−2 α′−, GeV

−2

-0.34 4.5 0.70 -0.55 10.0 1.0

R. Kolevatov All-loop cross sections in the RFT . . .



Basics of Reggeons and Pomerons.
The stochastic approach

Results

Backup - calculation method

Taking an explicit note of the initial parton distributions

T =
∑
n,k

Pn(X )⊗
∑
s

(−1)s−1

s!
fns(X|Z)⊗

∏
g(Z − Z̃)⊗ f̃ks(X̃ |Z̃)︸ ︷︷ ︸

Tsample

⊗P̃k(X̃ ).

Main idea: simulate a sample of 2 parton sets which correspond to
fs and f̃s on the average, compute Tsample and make its MC average.
For N partons with �xed positions

fs(Zs) =
∑

{x̂i1 ,..,x̂is }∈X̂N

δ(z1 − x̂i1) . . . δ(zs − x̂is )

Tsample =

Nmin∑
s=1

(−1)s−1
∑

i1<i2...<is

∑
j1<...<js

gi1j1 . . . gis js .

expansion of Tsample in the number of P exchanges s;

works for any position of the linkage point y .
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Backup � calculation method 2

Setting the linkage point to full rapidity interval y = Y simpli�es
the calculation: f̃s(y = 0,Zs) = Ns(Zs)/εs/2 and the MC average
involves evolution from only one side:

T =
∑
n

Pn(X )⊗
∑
s

(−1)s−1

s!
fns(X|Z)⊗

∏
g(Z − X̃ )⊗ P̃s(X̃ ).︸ ︷︷ ︸

Tsample
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Other RFT calculations with enhanced contributions

Ostapchenko

In�nite number of n→ m couplings: G (n,m) = Gγn+m

Fine-tuned hard Pomeron

Some contributions neglected

Khoze, Martin, Ryskin & Luna

In�nite number of couplings
G (n,m) = Gγn+m or G (n,m) = mnGγn+m

Special set of graphs, no loops (as I understand)

Poghosyan & Kaidalov

Enhanced and loop contributions are neglected in the elastic
amplitude, one loop is kept for the double di�ractive cut

In�nite number of n→ m Pomerons couplings
G (n,m) = Gγn+m exp(−R2

π

∑
q2i )

Explicit account of GPPR , GRRP etc. couplings
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