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Basics of Reggeons and Pomerons.

Faces of the Regge theory

© t-channel consideration (a real theory)
Analytical continuation of t-channel unitarity equations
e hard to understand;
e gives t-channel quantum number classification

@ s-channel approach (Regge field theory)
Analysis of Feynman diagrams using Regge poles as input
e reproduces old results
o allows to get new ones
o has a simple interpretation

© Space-time interpretation (human face)
An interpretation only!

@ very picturesque
e easy to accept
e gives an intuitive understanding
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Basics of Reggeons and Pomerons.

Power-like contributions to the amplitude

PDG fit:
oPhP) = 18.35009 1 60.157034 4 32.857055

Optical theorem:

1
Otor = EQImAe,(q =0)=2ImTg(q =0)

0 10000
s, GeV

Indication: High energy elastic scattering goes via quasiparticle,

“Reggeon”, exchanges with powerlike asymptotic in c.m.energy.

Leading contirbution — Pomeron, Tp ~ s2, A > 0.

Caveat: Single Pomeron exchange violates Froissart bound

(0tor < Cln?s)
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Basics of Reggeons and Pomerons.

s-channel (s — co, t = @2 small) dominant contributions

Analiticity&unitarity:
o Power-like terms come from poles in the complex L plane of
the t-channel amplitude, Pomeron = the rightmost singularity

Field theories (¢3, QCD):

Pa D1

= ps>pl>> o> pf
° > ~ s py K py L...Lpy
n Pn-1 pﬂ: :pozl:p:")

P Pn

For phenomenological applications: R/P = exchange of a “ladder”
structure in the t-channel with ordering of the ladder rungs in

rapidity y =1/2Inpy /p_
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Basics of Reggeons and Pomerons.

Contributions to oo

Contributions to imaginary part (Cutkosky rules):
o Cut the diagram for the elastic scattering amplitude
@ Put cut lines on the mass shell, integrate over the phase space

Single “ladder” exchange — uniform rapidity distribution

2ImT; =2Im <g) :E::f‘E dr, — _111 |n|5|/5: 1L

Double “ladder”
Y-

elastic+low-M2 DD abs. corrections to2ImT;  double dN/dy

1 1 HITHTNTNT TATIT T T
n s/, Y n s/, Y

Iterating ladders slows the growth:
from oot ~ 52 down to orot ~ In’s.
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Basics of Reggeons and Pomerons.

Contributions to oo

Rapidity gaps — splitting of the “ladder™

Single diffraction dissociation
l 11111 Yy + abs. corrections
Ver=In—3
M

Dolulbl? diffraction dissociation

+ abs. corrections

— SSo
Yeap IHW

other cut of same graph

S [T T
AN Yy
double ==
dy

+ abs. corrections
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Basics of Reggeons and Pomerons.

Example Event Displays from CDF Run Il

CDF Run Il Preliminary

Hot spot!?

Rapidity gap ‘

Picture taken from a talk by Chris Quigg at Nordic particle physics meeting “Spaatind 2012"

[m] = =
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Basics of Reggeons and Pomerons.

Obvious observation:

@ Cross sections for the events with rapidity gaps in pp is the
main source of information about the value of effective
coupling for “ladder” splitting.

e Pomeron (“ladder”) splitting and fusion must be especially
important for large number of exchanged Pomerons.
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Basics of Reggeons and Pomerons.

Reggeon Field Theory = the theory of the Pomeron (Reggeon)
exchanges and interactions. The underlying principles of the RFT
are analyticity and t-channel unitarity of the elastic amplitude.

@ Gives reliable predictions of hadronic X-sections
o The g40r S C In? s comes out quite naturally (taking into
account multiple Pomeron exchanges)
o Cuts of the RFT diagrams define X-sections of various inelastic
processes via AGK rules (a special case of Cutkosky rules)

@ Provides a baseline for describing the events with rapidity gaps
(single and double diffraction). At higher energies the loop
contributions become increasingly important.

Account of loop contirbution is an untrivial task and is under
investigation by several groups (Ostapchenko, Khoze et al.,
Poghosyan; also Lund group non-RFT approach).




Basics of Reggeons and Pomerons.

Contribution of diffractive cut

Lowest order contribution:

d> —1-
dtd(l(\j/liD/s) ~ (M?2>

Absorptive corrections:
Alternatives:
@ Introduce reg. scale and compute order by order

@ Use specific models with tuned mP — nlP vertices —
transforms power-like behaviour of Pomeron propagator to ~ In?.

@ Use effective approaches.
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Basics of Reggeons and Pomerons.

The elastic amplitude T = A/(87s) is written as (Regge factorization):

T:ZVn®Gnm®Vm

n,m

Green functions G, are obtained within the effective field theory,
process independent

fczb*? 36 — o/ (Vo) (Voo) + AS'é + Lint.

For Lint = i rsp6!6(6" + 9) + x6'°¢?

it is possible to use reaction-diffusion (or “stochastic”) models for
obtaining the Green functions with account of all loops.
[Grassberger&Sundermeyer'78; Boreskov'01]
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The stochastic approach

The stochastic model.

Consider a  system  of  classic  “par-
tons” in the transverse plane  with:
- e Diffusion (chaotical movement) D; N

o Death (mq)
T e Fusion (0, = [ d?bp,(b))
o Annihilation (om, = [ d?b pm,(b)) e
Parton number and positions are described in terms of
probability densities py(y, By) (N =0,1,...; By = {b1,..., bn})]|

with normalization py(y) = 7 [ pn(y. Bu) [1dBn; > pn = 1.
0

@ Splitting (A — prob. per unit time) -4
=0
e
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The stochastic approach

Inclusive distributions

S- parton inclusive distributions:

des Vi Zs)=>, ﬁp,\,(y) = us(y). — factorial moments.
Example: Start with a single parton with only diffusion and splitting

allowed.
exp(\y) exp(—b*/4Dy)
47Dy ’

fll parton(y’ b) _

— the bare Pomeron propagator.

The set of evolution equations for 7(Z;), (s=1,...
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The stochastic approach

The amplitude.

Green functions:
fs(v; Zs) de Vin(Xm) Gmn(0; Xmly: Zn);

fm(y = 0, _)(‘ ) x V ( ) _ partlcle—mPomeron ................................
vertices
fi(y: Zs)

The amplitude (g(b) assumed narrow; [ g(b) )d?b = e \< f(Y\ ¥iZs)
AT W B

T(Y)=(AT|A) =
0 (_ s—1 . - A 5
=> /dstZsfs(y; ZOE(Y -y Z5) [ [ e(zi - 2i - b).
s=1 i=1

It does not depend on the linkage point y (“boost invariance”) if

)\/g(b)dzb: /pmz(b)d2b+;/py(b)d2b,
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The stochastic approach

Correspondence RFT—Stochastic model

We use the simplest form of g(b), pm,(b) and p,(b):
pmy (b) = my 8(a —[b[);  p,(b) = v 6(a — |b]);

¢(b) = 8(a — |b):
with a — some small scale; € = 7a?.
RFT stochastic model
Rapidity y Evolution time y
Slope o Diffusion coefficient D
A=a0) -1 A—my
Splitting vertex r;p AVe
Fusion vertex r;p (m2 + 3v)\/e
Quartic coupling x 2(my +v)e

Boost invariance (A = my + 5) < equality of fusion and splitting vertic
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The stochastic approach

Summary of the stochastic approach

The approach allows to compute numerically (via the explicit
evolution of the stochastic system) the RFT Green functions in
their convolutions which correspond to

@ the elastic scattering amplitude

e the single diffractive cut of the amplitude.

= - — ;

Peculiarities of the stochastic approach to the RFT:

@ Presence of the triple and 2 — 2 couplings

@ Regularization scale (equivalient to the cutoff or the Pomeron
size in RFT) enters via functions g(b), pm,(b) and p,.

o Neglect of the real part of the P exchange amplitude.
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Results

Fitting the cross sections

The calculation method for elastic amplitude is described in detail
in R.K., K.Boreskov and L.Bravina, Eur. Phys. J. C 71 (2011) 1757
[arXiv:1105.3673 [hep-ph]]. Compared to that now we:

o Implement two-channel eikonal p—nlP vertices to incorporate
low-M? diffraction

@ Account the secondary Reggeons contribution in the lowest
order

Other assumptions:

@ Neglect the real part of the Pomeron exchange amplitude
(keeping it for the secondary Reggeons)

o Neglect central diffraction in calculation of SD cross sections.
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Results

Model parameters

rsp — fixed [Kaidalov'79]

a — regularization scale

1+ A - bare Pomeron intercept

o/ — Pomeron slope

lp) = B1l1) + B212); (B = Ci; |B)P= G =1—- G
PP couplings to [1) and [2): g1/, = go(1 £ 7)

R — size of the p—IP vertex

Strategy:

1 Eikonal fit to osor, 0¢, B and low-M? osp @ 14GeV/c (~ 2.2
mbn)

2 All-loop fit to oo, 0e/, B starting with parameter set from [1]

3 Calculation of diffractive cross sections with parameters
obtained at [2]
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Results

Results on X-sections and slope (B =
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Fit parameters: 1) a = 0.018fm=0.09GeV %, A = 0.255; 2) a = 0.036fm=0.18GeV 1, A = 0.24

r3p = 0.087GeV ! [Kaidalov'79], o’ = 0.0035fm2=0.09GeV ~2 for both.
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Results

Conclusions

o Total, elastic and SD cross sections are computed within a
single approach.

@ All-loop RFT fit to total and elastic cross setions with all
enhanced and loop contributions taken into account on equal
basis.

@ Slow growth of all-loop high-M? SD cross sections is
consistent with the experimental data.
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Results

Backup — cross sections definitions

2
7Y =20mM(Y.q =0), o = [ S mMY.a)f

1 .
fY.b) = ge "PM(Y,q) .

Ao (y) = /dszmf(Y b) /dzb\f (Y,b)2.

F(Y,b) ~iT(Y,b), T=Imf

_ [ BImA(b)db [ 1mA(b)db+ [ PRA(b)db [ RA(b)db
t=0 2((J 1mA(b)d2b)2+(J RA(b)d2b)?) .

__d . do*
B=—2In%
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Results

Backup — secondary trajectories

pp: Imfyp(b) = (ImAp(b) + 1) ( + ImAg, (b) + ImAg_(b)) — 1
Rfpp(b) = (ImAp(b) + 1)(RAg, + ReAr_)

pp: Imfyp(b) = (ImAp(b) + 1) (1 + ImAg, (b) — ImAg_(b)) —
Rfpp(b) = (ImAp(b) + 1)(RAg, — ReAr )

Ay ‘ R_%, GeV—2 ‘ oy, GeV—2 H A_ ‘ R2, GeV—2 ‘ o, GeV—2
034 45 | 0.70
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Results

Backup - calculation method

Taking an epricit note of the initial parton distributions

T=Y Pu) Z T fs(¥12) @ [ [ 8(2 - 2) @ fis(F12) @Pu(X).

.. : T .
Main idea: simulate a sample of 2 ;s)%n?ﬂl)en sets which correspond to
fs and 5 on the average, compute Tg,mpe and make its MC average.
For N partons with fixed positions

(Z)= Y. 6z —%y)...0(zs — %)

{)/E,'l,..,)A(,'s}E/\?N
Nmin
_ 2 : s—1 § E .. ..
Tsample - (_1) 8ivjyr - - 8isjs+
s=1 i1 <iz...<is j1<...<js

@ expansion of Tg,mple in the number of P exchanges s;

@ works for any position of the linkage point y.
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Results

Backup — calculation method 2

Setting the linkage point to full rapldlty interval y = Y simplifies
the calculation: f(y = 0, Z5) = Ny(Z5)/e%/? and the MC average
involves evolution from only one side:

T = ZP(X ®Z ,,SX|Z )@ [[a(2 - &) ® Py(X).

-~

Tsample
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Results

Other RFT calculations with enhanced contributions

Ostapchenko
o Infinite number of n — m couplings: G("™ = GA"tm
@ Fine-tuned hard Pomeron ' ,, ., :
@ Some contributions neglected I
Khoze, Martin, Ryskin & Luna
@ Infinite number of couplings
G = Gym+m op GUNM) — mpGynem /
@ Special set of graphs, no loops (as | understand) L}A
Poghosyan & Kaidalov
@ Enhanced and loop contributions are neglected in the elastic
amplitude, one loop is kept for the double diffractive cut
@ Infinite number of n — m Pomerons couplings

GIm) = G exp(~R2 Y g?) Y
e Explicit account of Gppgr, Grrp etc. couplings
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