Viscous Hydrodynamics Joshua Vredevoogd NeD-TuRiC 2012

Outline

* About Shear Viscosity with Boost Invariance.

Signs from Longitudinal Dynamics.

Elliptic Flow

Kolb and Heinz. arxiv:nucl-th/0305084v2

* Elliptic Flow scales very nicely with shear viscosity.

System increasingly resist anisotropic expansion.

Luzum and Romatschke arxiv:0804.4015v4

Source Shape

J. VREDEVOOGD UNPUBLISHED * For smooth distributions.

Significant uncertainty in shape.

* Leads to uncertainty in shear viscosity. Ad Hoc Saturation $\bar{T} = (T_A + T_B)/2$ * Slight modification to $T_R = 2T_A T_B/(T_A + T_B)$ wounded nucleon. $n_S = T_R \left(1 - \exp^{-\sigma \bar{T}}\right)$

* Roughly same scaling.

Much more eccentricity.

Model Description

* Longitudinally Invariant Viscous Hydrodynamics.
* No bulk viscosity or chemical potential.
* Coupled to Resonance Gas (T=155 MeV).
* Central Multiplicity fit to data.
* Initial Flow Parameter: $\frac{T^{0x}}{T^{00}} \approx \frac{-\partial_x T^{xx}}{2T^{00}} \tau$

Most Central Spectra

J. VREDEVOOGD UNPUBLISHED * Multiplicity tuned.

* Too much radial flow.

* Start Time?

* Initial Flow?

Spectra seem insensitive to IC.

Mid-peripheral Elliptic Flow

Move to 20-30% centrality (b=7.37 fm)

Strong dependence on initial conditions.

J. VREDEVOOGD UNPUBLISHED

Shear Initialization

Elliptic flow insensitive.

Same for transverse shear.

Flow Initialization

J. VREDEVOOGD UNPUBLISHED

Double Viscosity?

Change only normalization and shear viscosity.

Result changes by factor of two.

J. VREDEVOOGD UNPUBLISHED

Doubled Viscosity

UNPUBLISHED

Without initial flow.

Somewhat overpredicts elliptic flow.

Even larger shear?

(3+1) Viscous Hydro

- * Fully functional for smooth conditions.
- * Surface finding in testing.
- * Longitudinal initial conditions are Gaussian.

* Longitudinal velocity gradient at origin.

* Bjorken Subtracted.

Shows perhaps 5% effect of longitudinal extent.

J. VREDEVOOGD AND SCOTT PRATT

Cooling

* Longitudinal gradient speed cooling.

Structure of surface changes very little.

J. VREDEVOOGD AND SCOTT PRATT

Transverse Velocity

* Transverse velocity difference.

- * Modest Effect.
- * Likely somewhat smaller flow.
- * Consistent with experimental data?

 $\sqrt{\delta u_x^2 + \delta u_y^2}, \ \eta = \{0.0, 0.8\}$

Transverse Velocity $\sqrt{\delta u_x^2 + \delta u_y^2}, \ \eta = \{0.0, 2.4\}$

* At larger rapidity.

Significant differences.

* Much less flow.

Concluding Remarks

- * Estimate of shear viscosity depends on initial shape and velocity.
 - * No initial velocity gives minimum result.
- * Longitudinal effects likely small at midrapidity.
- * Longitudinal shape of elliptic flow likely an interesting constraint.

EOS Merging

Multiplicity Scaling

STAR Collaboration. arxiv:nucl-ex/0808.2041v2

Chemical Temperature

Braun-Munzinger et al., PLB 518 (2001) 41.

Two Temperatures

STAR Collaboration. arxiv:nucl-ex/0808.2041v2