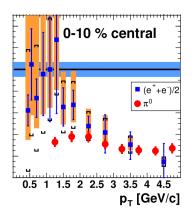
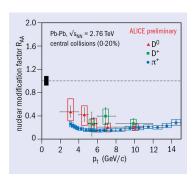
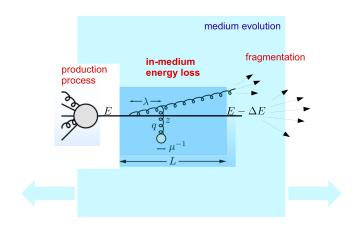
Radiative energy loss in the absorptive QGP


Marcus Bluhm

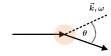


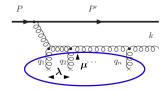
with P. B. Gossiaux, T. Gousset, J. Aichelin

NeD-Symposium & TURIC workshop, Chersonissos, Greece, June 27th, 2012


Experimental observations

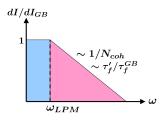
- RHIC and LHC: strong suppression of hadron spectra
 - \rightarrow medium is opaque for coloured excitations (large in-medium energy loss)
- influence of medium (nearly) same for different parton masses


In-medium energy loss


- $\Delta E_{rad} \gg \Delta E_{coll}$ for large E
- less radiative energy loss for heavy quarks (dead cone effect)

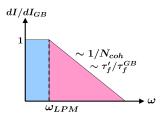
Formation of bremsstrahlung in QCD

- formation of gluon radiation is a quantum phenomenon (quantum decoherence between emitting parton and radiated gluon takes time)
- estimate for **formation time**: their transverse separation is of order of gluon-transverse wavelength, $\tau_f \simeq \frac{\omega}{k_1^2} \simeq \frac{1}{\omega \theta^2}$



▶ in case $\tau_f \gg \lambda$ (parton mean free path in medium), $N_{coh} \simeq \tau_f / \lambda$ scatterings contribute coherently to formation of radiation

Formation of bremsstrahlung in QCD

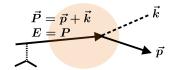

- ▶ gluon rescatterings alter the formation time to $\tau_f' \simeq \sqrt{\omega/\hat{q}}$ because $\langle k_\perp^2 \rangle \simeq \hat{q}\tau_f$ with $\hat{q} \sim \mu^2/\lambda$ (quenching parameter)
- consequence: radiation spectrum reduced compared with GB-spectrum from independent, successive scatterings for larger ω (LPM effect)

• gluon dispersion relation that is not *light-like* (e.g. due to medium polarization) alters the probability of bremsstrahlung production at soft ω (**TM effect** analogon)

Formation of bremsstrahlung in QCD

- ▶ gluon rescatterings alter the formation time to $\tau_f' \simeq \sqrt{\omega/\hat{q}}$ because $\langle k_\perp^2 \rangle \simeq \hat{q}\tau_f$ with $\hat{q} \sim \mu^2/\lambda$ (quenching parameter)
- consequence: radiation spectrum reduced compared with GB-spectrum from independent, successive scatterings for larger ω (LPM effect)

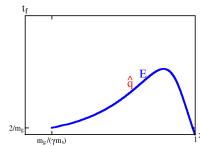
• gluon dispersion relation that is not *light-like* (e.g. due to medium polarization) alters the probability of bremsstrahlung production at soft ω (**TM effect** analogon)


Kampfer+Pavlenko (2000), Djordjevic+Gyulassy(2003)

→ What is influence of damping mechanisms?

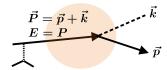
Formation time in QCD

ate particle line


cf. P. Arnold Phys. Rev. D **79** (2009) 065025 estimate for formation time t_f from off-shellness of intermedi-

quantum mechanical duration of off-shell "state" \rightarrow condition for t_f :

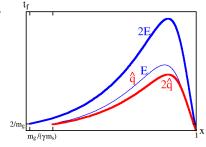
$$t_f^2 \frac{(1-x)\hat{q}}{2xE} + t_f \frac{[x^2 m_s^2 + m_g^2 (1-x)]}{2x(1-x)E} \simeq 1$$


$$x = \omega / E$$

Formation time in QCD

cf. P. Arnold Phys. Rev. D 79 (2009) 065025

estimate for formation time t_f from \it{off} -shellness of intermediate particle line

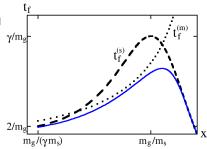


quantum mechanical duration of off-shell "state" \rightarrow condition for t_f :

$$t_f^2 \frac{(1-x)\hat{q}}{2xE} + t_f \frac{[x^2 m_s^2 + m_g^2 (1-x)]}{2x(1-x)E} \simeq 1$$

$$x = \omega / E$$

- t_f increases with E
- $ightharpoonup t_f$ decreases with \hat{q}

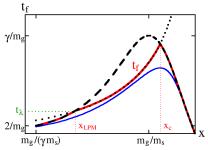

Qualitative study

Qualitative behaviour can be discussed via an approximate solution of condition equation

$$t_f^2 \frac{(1-x)\hat{q}}{2xE} + t_f \frac{[x^2 m_s^2 + m_g^2 (1-x)]}{2x(1-x)E} \simeq 1 \int_{\gamma/m_g}^{t_f} t_f \frac{1}{2xE} dt dt$$

by defining

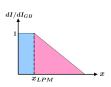
$$t_f^{(s)} = \frac{2x(1-x)E}{x^2m_s^2 + m_g^2(1-x)}$$
$$t_f^{(m)} = \sqrt{\frac{2xE}{(1-x)\hat{q}}}$$


Qualitative study

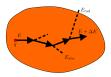
Qualitative behaviour can be discussed via an approximate solution of condition equation

$$t_f^2 \frac{(1-x)\hat{q}}{2xE} + t_f \frac{[x^2 m_s^2 + m_g^2 (1-x)]}{2x(1-x)E} \simeq 1 \int_{\gamma/m_g}^{t_f} t_g dx$$

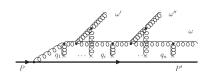
by defining

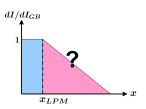

$$\begin{array}{lcl} t_{t}^{(s)} & = & \dfrac{2x(1-x)E}{x^{2}m_{s}^{2}+m_{g}^{2}(1-x)} \\ \\ t_{t}^{(m)} & = & \sqrt{\dfrac{2xE}{(1-x)\hat{q}}} \end{array}$$

and assuming


$$\mathit{t_f} = \min(\mathit{t_f^{(s)}}, \mathit{t_f^{(m)}})$$

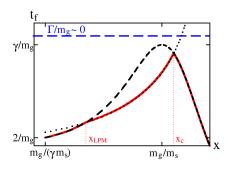
► LPM-suppression for $x \ge x_{LPM} \sim m_g^4/(\hat{q}E)$ when $t_f \ge t_\lambda$

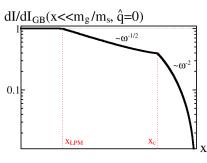



Damping of gluon radiation

- Is it possible that damping mechanisms influence the formation of radiation itself?
- assume gluons to be time-like excitations with in-medium effective mass m_g and width (associated with damping rate Γ)

▶ mechanisms: $\bar{q}q$ -pair creation or secondary bremsstrahlung → in pQCD: $\Gamma \sim g^4 T \ln(1/g)$

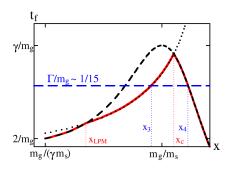


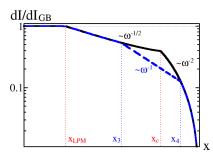


- higher order effect
- associated damping time $t_d \sim 1/\Gamma$: formation influenced if $t_d \lesssim t_f$

Influence on the radiation spectrum

exploit spectra scaling $\frac{dl}{dl_{GB}} \simeq \frac{\tilde{t}_f}{t_{GB}}$: $\tilde{t}_f = \min(t_f, t_d)$, $t_{GB} \simeq \frac{\omega}{m_g^2}$ negligible damping:

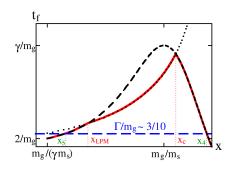


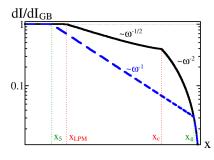


- shows influence of multiple, elastic scatterings (LPM effect) and finite parton mass
- ▶ LPM-suppression for $m_a^4/\hat{q}E \sim x_{LPM} \le x \le x_c \sim (\hat{q}E/m_s^4)^{1/3}$

Influence on the radiation spectrum

exploit spectra scaling $\frac{dl}{dl_{GB}} \simeq \frac{\tilde{t}_f}{t_{GB}}$: $\tilde{t}_f = \min(t_f, t_d)$, $t_{GB} \simeq \frac{\omega}{m_g^2}$ intermediate damping:

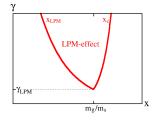




- ▶ development of a NEW additional regime due to gluon damping between $x_3 \sim \hat{q}/(\Gamma^2 E)$ and $x_4 \sim \Gamma E/m_s^2$
- reduction stronger than due to LPM effect

Influence on the radiation spectrum

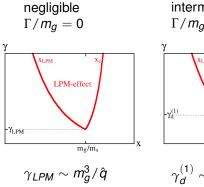
exploit spectra scaling $\frac{dI}{dI_{GB}} \simeq \frac{\tilde{t}_f}{t_{GB}}$: $\tilde{t}_f = \min(t_f, t_d)$, $t_{GB} \simeq \frac{\omega}{m_g^2}$ large damping:

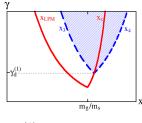


- ▶ development of a NEW additional regime due to gluon damping between $x_5 \sim m_g^2/(\Gamma E)$ and $x_4 \sim \Gamma E/m_s^2$
- reduction stronger than due to LPM effect
- for fixed E, increasing Γ influences shape of the spectrum

Behaviour with increasing energy

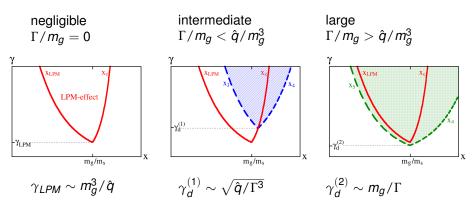
▶ for fixed Γ , effect should show up with increasing $\gamma = E/m_s$


$$\begin{array}{l} \text{negligible} \\ \Gamma/\textit{m}_{\textit{g}} = 0 \end{array}$$


$$\gamma_{LPM}\sim m_g^3/\hat{q}$$

Behaviour with increasing energy

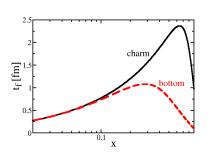
• for fixed Γ , effect should show up with increasing $\gamma = E/m_s$

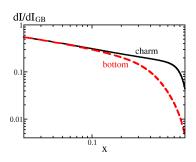

intermediate
$$\Gamma/m_g < \hat{q}/m_g^3$$

$$\gamma_d^{(1)} \sim \sqrt{\hat{q}/\Gamma^3}$$

Behaviour with increasing energy

• for fixed Γ , effect should show up with increasing $\gamma = E/m_s$

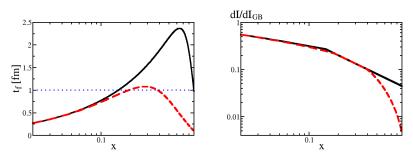



both increasing E and Γ make effect more pronounced

Parton mass dependence

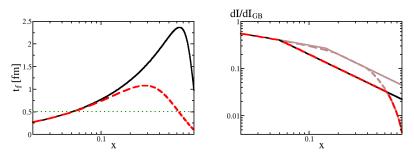
negligible damping

$$E=40$$
 GeV, $m_c=1.3$ GeV, $m_b=4.2$ GeV, $\hat{q}=2$ GeV $^2/{\rm fm},$ $m_g=0.8$ GeV



- at small x, parton-mass independent
- clear difference at intermediate and large x

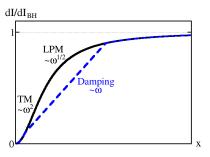
Parton mass dependence


damping rate $\Gamma = 0.2 \text{ GeV}$

spectrum parton-mass independent in sizeable x-region

Parton mass dependence

damping rate $\Gamma = 0.4 \text{ GeV}$

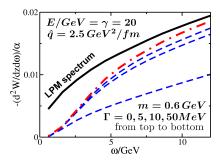

spectrum parton-mass independent in almost entire x-region

Conclusions

- qualitative discussion of possible effects of gluon damping on radiative energy loss of partons
 - ightarrow development of new, mass-independent scale t_d
 - → reduction of radiation spectrum stronger than in LPM-regime
 - ightarrow region of effect increases with Γ and/or E
- damping medium hampers formation of hard(er) gluons in favour of soft gluons
 - ightarrow formation time increases with ω
- with increasing Γ, radiation spectra become more and more parton-mass independent

Absorptive QED-plasma

- \rightarrow investigation of photon damping effects for $\omega \ll E$:
 - ▶ difference to formation time in QCD: $t_f^{(m)} \simeq \sqrt{E/(\hat{q}x)}$ → LPM-suppression of spectrum in soft ω -region
 - assume photons to be time-like with in-medium mass and width
 - ▶ photon damping leads to competing time scale $t_d \sim 1/\Gamma$
 - ▶ spectra scaling $(t_{BH} \simeq E^2/(\omega M^2))$: $\frac{dI}{dI_{BH}} \simeq \frac{\tilde{t}_f}{t_{BH}}$



Absorptive QED-plasma

- \rightarrow investigation of photon damping effects for $\omega \ll E$:
 - complex medium index of refraction $n(\omega) = n_r(\omega) + in_i(\omega)$
 - energy loss spectrum per unit length:

$$-\frac{d^2W}{dzd\omega} \simeq \frac{\alpha}{3\pi} \frac{\hat{q}}{E^2} \int_0^\infty d\bar{t} \, e^{-\omega |n_i|\beta\bar{t}} \, \omega \sin\left[\omega\bar{t} \left(1 - |n_r|\beta\right) + \frac{\omega |n_r|\beta \, \hat{q}}{6E^2} \, \bar{t}^2\right]$$

- lacktriangle exponential damping factor ightarrow damping time scale
- for $n_r = 1$, $n_i = 0$ reduced to LPM radiation spectrum

