Transition from ideal to viscous Mach Cones in a partonic transport model

Ioannis Bouras

in collaboration with A. El, O. Fochler, H. Niemi, Z. Xu and C. Greiner
I. Bouras et al., Phys. Rev. Lett. 103:032301 (2009)
I. Bouras et al., PRC 82, 024910 (2010)
I. Bouras et al., Phys.Lett. B710 (2012)

HGS-HIRe for FAIR

Bundesministerium für Bildung und Forschung

Helmholtz International Center

Motivation

QCD Phase diagram

QCD is most probably the theory we have to describe

Motivation

Elliptic Flow

- Matter behaves like a nearly perfect fluid
- Early thermalization

Motivation

Jet-Quenching and Two-particle correlations

- Jet-physics is another good observable ot understand the Porperties of the matter

Do Mach Cones have something to do with double peaks?
\rightarrow Then answer is given in the end of the talk

The Parton Cascade BAMPS

- Transport algorithm solving the Boltzmann equation using Monte Carlo techniques

$$
p^{\mu} \partial_{\mu} f(x, p)=C_{22}+C_{23}+\ldots
$$

Boltzmann
Approach for Multi-
Parton
Scatterings

- Stochastic interpretation of collision rates

$$
P_{2 \mathrm{i}}=v_{\text {rel }} \frac{\sigma_{2 \mathrm{i}}}{N_{\text {test }}} \frac{\Delta t}{\Delta^{3} \chi}
$$

Z. Xu \& C. Greiner, Phys. Rev. C 71 (2005) 064901

- In general: pQCD interactions, $2 \leftrightarrow 3$ processes, quarks and gluons

The Parton Cascade BAMPS

Boltzmann
 Approach for Multi-
 Parton
 Scatterings

Z. Xu \& C. Greiner,

Phys. Rev. C 71 (2005) 064901
for $2 \rightarrow 2 \quad P_{22}=v_{\text {rel }} \frac{\sigma_{22}}{N_{\text {test }}} \frac{\Delta t}{\Delta^{3} x}$
for $2 \rightarrow 3 \quad P_{23}=v_{\text {rel }} \frac{\sigma_{23}}{N_{\text {test }}} \frac{\Delta t}{\Delta^{3} x}$
for $3 \rightarrow 2 \quad P_{32}=\frac{1}{8 E_{1} E_{2} E_{3}} \frac{I_{32}}{N_{\text {test }}^{2}} \frac{\Delta t}{\left(\Delta^{3} x\right)^{2}}$

$$
I_{32}=\frac{1}{2} \int \frac{d^{3} p_{1}^{\prime}}{(2 \pi)^{3} 2 E_{1}^{\prime}} \frac{d^{3} p_{2}^{\prime}}{(2 \pi)^{3} 2 E_{2}^{\prime}}\left|M_{123 \rightarrow 1^{\prime} 2^{\prime}}\right|^{2}(2 \pi)^{4} \delta^{(4)}\left(p_{1}+p_{2}+p_{3}-p_{1}^{\prime}-p_{2}^{\prime}\right)
$$

The Relativistic Riemann Problem Investigation of Shock Waves in one dimension

Boltzmann solution of the relativistic Riemann problem
->what effects have viscosity?

Transition from ideal hydro to free streaming
I. Bouras et al., Phys. Rev. Lett. 103:032301 (2009)
I. Bouras et al., PRC 82, 024910 (2010)

Mach Cones

- If source (perturbation) is propagating faster than the speed of sound, then a Mach Cone structure is observed

"Source" Ferms in BAMPS

1) Punch Through Scenario
2) Pure energy deposition scenario

Punch through Scenario

A scenario usefull to investigate the shape and development of ideal Mach Cones

- Jet has finite initial energy and momentum $E=p z$ and is massless; no transverse momentum $\rightarrow \mathrm{px}=\mathrm{py}=0$
- The Jet deposits energy to the medium due to binary collisions with particles
- After every collision with a thermal particle of the medium the energy of the jet gets recharged to its inital value

Movie:
 Evolution of Mach Cones in BAMPS
 For the Punch Through Scenario

Pure energy deposition Scenario

Energy deposition via the creation of thermal distributed particles

- The source (green) propagates with the speed of light and generates new particles (blue) at different timesteps
- The advantage of that method: a constant energy deposition but no momentum deposition, because new particles are thermal distributed

$$
-f_{p e d}(x, p)=e^{-E / T}
$$

Movie:
 Evolution of Mach Cones in BAMPS

For the Pure energy deposition scenario

Ideal Solutions of Mach Cones

Mach Cones
 Mach angle depencence

Scenario for a very weak perturbation

Mach Cones
 Mach angle dependence

Scenario for a very weak perturbation

- In the case of a perfect fluid, i.e. $\eta=0$, the Mach angle is

$$
\alpha=\arccos \frac{c_{s}}{v_{\text {jel }}} \approx 54.7^{\circ}
$$

for a massless Boltzmann gas, i.e.e $=3 \mathrm{P}$, with $c_{s}=1 / \sqrt{3}$ and $v_{\text {jet }}=1$

- This is only valid for small perturbation, i.e. energy of the jet is infinite small

Mach Cones

Mach angledependence

- In the case of a stronger perturbation the energy deposition is larger and therefore shock waves develop which exceed the speed of sound. Therefore the angle is approximately given by

$$
\alpha=\arccos \frac{v_{\text {shock }}}{v_{\text {jet }}} \quad v_{\text {shock }}=\left[\frac{\left(P_{4}-P_{3}\right)\left(e_{3}+P_{4}\right)}{\left(e_{4}-e_{3}\right)\left(e_{4}+P_{3}\right)}\right]^{\frac{1}{2}}
$$

- The emission angle α changes to smaller values than in the weak perturbation case

Viscous Solutions of Mach Cones

Mach Cones in BAMPS

Two Particle Correlations

- First, we (have) expect(ed) that the double peak observed in experimental data is a hint for a conical structure...because of the naive picture

Mach Cones in BAMPS

Two Particle Correlations

- First, we (have) expect(ed) that the double peak observed in experimental data is a hint for a conical structure...because of the naive picture

- But....

1) viscosity is not zero in heavy-ion collisions (HIC)...and as we have already seen, viscosity in order expected in HIC destroys the conical structure to a very weak signal
2) The jet in reality has not infinite energy....and the formation-time is finite
3) The angle changes of the Mach Cone changes depending on the energy deposition
4) The diffusion wake and head shock will have a big contribution...as we will see..

- However, one can can find an analytical expression for the two-particle correlations of Mach Cones....

Mach Cones in BAMPS

Two Particle Correlations Analytical solution

Assume two wings in thermal equilibrium

alpha is a const and corresponds to the Mach angle, where v_coll is the collective velocity of matter velocity in the wings

Mach Cones in BAMPS

Two Particle Correlations Analytical solution

- We are looking for the angle ω, which is the angle in the p_x and p_z plane

Δp_{x}	
ω	$p_{z}=p \cos (\omega) \sin (\theta)$
θ	$p_{x}=p \sin (\omega) \sin (\theta)$ $p_{y}=p \cos (\theta)$
p_{y}	

One calculate for each wing the particle distribution

$$
\frac{d N}{d \omega}=\frac{V}{(2 \pi)^{3}} \iint p^{2} \sin (\theta) e^{-u_{\mu} p^{\mu} / T} d p d \theta
$$

In the end one has to add both contributions!

$$
\mathrm{x}^{\boldsymbol{\Delta}} \boldsymbol{\sim}
$$

Mach Cones in BAMPS
 Two Particle Correlations for ideal solution Numerical Results

$10 \mathrm{GeV} / \mathrm{fm} 200 \mathrm{GeV} / \mathrm{fm}$

The source term plays a big role for observation a double peak structure

Mach Cones in BAMPS
 Two Particle Correlations for viscous solution Numerical Results

Viscosity does not help for the development fo the double peak structure

Conclusion

- BAMPS is an excellent benchmark to investigate phenomena like shock waves and Mach Cones in the ideal and viscous region
- Mach Cones might exist in heavy-ion collisions...
...but have NOT to be the origin of the famous "double peak structure"....

... and Outiook

- Investigation of Mach cones in a full 3D simulation of HIC
- 3-particle correlations

T⿵冂人）Mrandel

Mach Cones in BAMPS

Two Particle Correlations Analytical solution Results

Taking the very weak perturbation case in account, we do not observe a double peak structure as we expected.

alpha and v _coll depends on the ratio of density in the wing and medium in rest

Mach Cones in BAMPS

Two Particle Correlations Analytical solution Results

Taking the very weak perturbation case in account, we do not observe a double peak structure as we expected.
\rightarrow Only if the shock gets stronger a double peak is observed
\rightarrow If the shock gets stronger, also v_coll gets larger and therefore the double peak is clearer

alpha and v _coll depends on the ratio of density in the wing and medium in rest

The Parton Cascade BAMPS

For this setup:

- Boltzmann gas, isotropic cross sections, elastic processes only
- Implementing a constant η / s, we locally get the cross section σ_{22} :

Transport collision rate $R^{t r}$
For isotropic elastic collisions:

$$
R_{22}^{t r}=n \frac{2}{3} \sigma_{22}
$$

$$
\begin{aligned}
& \epsilon=3 \mathrm{nT} \\
& s=4 \mathrm{n}-n \ln \left(\lambda_{f u g}\right) \\
& \lambda_{f u g}=\frac{n}{n_{e q}} \quad n_{e q}=\frac{g}{\pi^{2}} T^{3} \\
& g=16 \text { for gluons }
\end{aligned}
$$

Z. Xu \& C. Greiner, Phys.Rev.Lett.100:172301,2008

$$
\sigma_{22}=\frac{6}{5} \frac{T}{s}\left(\frac{\eta}{s}\right)^{-1}
$$

