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RELATIVISTIC HYDRODYNAMICS AS COVARIANT 

LOCAL CLASSICAL FIELD THEORY 

 

 Local Thermal Equilibrium is considered as a 

necessary condition 

 Very difficult….  even Conflicting, if it is really 

local. 
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Ideal fluid case 
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EXAMPLE: 

 Matter density expressed in terms of Lagrange 
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 When we don’t have space-time resolution, 
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Physical meaning of  and n:  

“Proper” energy and number densities 

measured in the local rest frame defined 

with the coarse-grained quantities.   
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Reminder:  

For a given coarse-grained profile  0( , )n t r

there are many events in microscopic level, 

that is exists a big statistical ensemble.   



Say, W , such  an ensemble that,  
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is determined by the action, 

 n
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4 ( ( ))I d x n x 
(continuum generalization of the 

Lagrangian for a particle ) 
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4 ( ( )) 0I d x n x    

for stochastic variable leads to  

T. Koide and T. K, .J. PhysA: 45(25):255204 

Navier-Stokes Eqs. for a viscous fluid, 

in non-relativistic limit ! 

When the fluctuation is not negligible; 

In fact, fluctuations in initial conditions 

gives a similar effect as viscosity 



Event averaged v2 

R. Andrade, et al,, Phys. Rev. Lett., 97:202302 

Ph. Mota et al., Nuclear Physics A, 862:188 , 2011 



• Once arrived to the relativistic Euler 

equation, we cannot tell the coarse-graining 

scale.  

 

• Transport coefficients, or even effective 

EoS may depend on this scale. 

 

•  Some observables may not be sensitive to 

this scale. If we see only these, we would 

conclude that the ideal hydro works well… 

NOW WE HAVE PROBLEM….. 



IMPORTANT TO STUDY 

  Event by Event fluctutations 

     S.Paiva, Y. Hama and T.K. Phys. Rev. C,    55:1455 
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in the initial condition 
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  Find observables that are sensitive to the genuine 
hydro signal 

  



GENUINE (LOCAL) HYDRODYNAMIC SIGNAL 

  Time evolution of hydrodynamic profile. 

 

  - Not  observable in heavy ion collisions (may be 

shock wave and its thickness,  or  Kelvin-

Helmholtz instability (L. P. Csernai, D. D. 

Strottman, and Cs. Anderlik.  Phys. Rev. C, 
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NECESSITY FOR SYSTEMATIC STUDIES ON THE 

EFFECTS OF GRANULARITIES IN THE INITIAL 

CONDITIONS 

 Multi-flux tube inspired model Gaussian with 

the width s and the 

energy 0  =  T /N   
Hannu Holopainen’s talk 



Sensitivity of v2 /e2 

Event averaged v2 /e2 is not sensitive to the 

granularity, although almost looses the EbE 

correlation for high granularity    
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TAKE A LOOK ON THE NEXSPHERIO CASE 
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n-dependence of event averaged vn/n 







SUMMARY 

  Hydrodynamic model requires the coarse-

graning scale, but not easy to discover. 

  Effective model based on variational principle?  

  Viscosity vs. Fluctuation 

  Need genuine hydro signals. 

  Pt separation may carry information on time 

evolution. 

  Emission plane (mid rapidity) changes in time. 

 How to separate “non-hydro” part? (Klaus’ talk) 

  More systematic study is necessary.  
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